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Abstract

Background—Machine learning models that are used for predicting clinical outcomes can be
made more useful by augmenting predictions with simple and reliable patient-specific
explanations for each prediction.

Objectives—This article evaluates the quality of explanations of predictions using physician
reviewers. The predictions are obtained from a machine learning model that is developed to predict
dire outcomes (severe complications including death) in patients with community acquired
pneumonia (CAP).

Methods—Using a dataset of patients diagnosed with CAP, we developed a predictive model to
predict dire outcomes. On a set of 40 patients, who were predicted to be either at very high risk or
at very low risk of developing a dire outcome, we applied an explanation method to generate
patient-specific explanations. Three physician reviewers independently evaluated each explanatory
feature in the context of the patient’s data and were instructed to disagree with a feature if they did
not agree with the magnitude of support, the direction of support (supportive versus contradictory),
or both.

Results—The model used for generating predictions achieved a F1 score of 0.43 and area under
the receiver operating characteristic curve (AUROC) of 0.84 (95% confidence interval [CI]: 0.81—
0.87). Interreviewer agreement between two reviewers was strong (Cohen’s kappa coefficient =
0.87) and fair to moderate between the third reviewer and others (Cohen’s kappa coefficient = 0.49
and 0.33). Agreement rates between reviewers and generated explanations—defined as the
proportion of explanatory features with which majority of reviewers agreed—were 0.78 for actual
explanations and 0.52 for fabricated explanations, and the difference between the two agreement
rates was statistically significant (Chi-square = 19.76, p-value < 0.01).
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Conclusion—There was good agreement among physician reviewers on patient-specific
explanations that were generated to augment predictions of clinical outcomes. Such explanations
can be useful in interpreting predictions of clinical outcomes.

Keywords
predictive model; patient-specific explanation; machine learning; clinical decision support system

Background and Significance

Sophisticated predictive models are increasingly being developed using machine learning
methods to predict clinical outcomes, such as mortality, morbidity, and adverse events.12
These models, in most cases, are viewed as black boxes that produce a prediction for an
outcome from the features of a patient case.” However, for such models to be practically
useful in clinical care, it is critical to provide clear and reliable individual-specific
explanations for each prediction.19 While a prediction provides an estimate of the likely
outcome in the future, an explanation provides insight into features that may be useful in
clinical decision-making. Moreover, explanations will enable physicians to engender trust in
the predictions, interpret them in the clinical context, and help make optimal clinical
decisions.1® In the clinical context, features that are supportive of a prediction provide
potentially actionable aspects that may change the predicted outcome,12.13

In the context of predictive models, a subtle but important distinction exists between model
explanation and prediction explanation. Model explanation provides an interpretation of the
model to the user in terms of structure and parameters, and is useful in the context of making
discoveries.1214 Some predictive models, such as decision trees, linear regression, and rule-
based models, are more easily interpretable, though often such models have poorer
predictive performance than more abstract models, such as random forests, support vector
machines, and neural networks.1214 In contrast to model explanation, prediction explanation
provides an interpretation of the prediction for an individual to whom a model is applied,
and will potentially be different from individual to individual.1>16 Useful prediction
explanations possess two properties. First, an explanation uses concepts that are
understandable to the user, such as clinical variables that are not modified or transformed.
Second, the explanation is parsimonious, so that it is readily and rapidly grasped by the user.
Prediction explanations may be based on the structure and parameters of the model that
yielded the prediction (hence, model dependent) or may be based on an independent method

that is applied after the predictive model has been developed (hence, model independent).
14,17

Novel methods have been developed for prediction explanations and such methods have
been applied in biomedicine and other domains. Table 1 provides a summary of studies that
have developed methods for prediction explanations, with a brief description of each
explanation method.

Twe distinguish between a variable and a feature. A variable describes an aspect of an individual. A feature is the specification of a
variable and its value. For example, “fever” is a variable and “fever = yes” is a feature.
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Only a small number of the methods that are listed in Table 1 have been applied to
predicting clinical outcomes. For example, Luo applied their method to type-2 diabetes risk
predictionl8, Strumbelj et al developed and applied their method to breast cancer recurrence
predictions,19 and Reggia and Perricone developed explanations for predictions of the type
of stroke.11 More widespread application of these methods to clinical predictions can
provide evidence of applicability and utility of these methods to clinical users.

In this study, we apply and evaluate a recently developed prediction explanation method
called Local Interpretable Model-Agnostic Explanations (LIME)1® for clinical predictions.
The developers of LIME demonstrated that human evaluators found explanations generated
by LIME to be more reasonable when compared with the explanations generated by
alternative methods. To our knowledge, LIME has not been extensively evaluated in the
context of clinical predictive models.

Objectives

Methods

Our goal was to evaluate patient-specific explanations for clinical predictions. The aims of
our study were to (1) Develop machine learning models to predict dire outcomes (severe
complications including death) from readily available clinical data in patients who present
with community acquired pneumonia (CAP), followed by application of a model-
independent prediction explanation method to generate patient-specific explanations; and (2)
Evaluate the agreement among physicians for explanations generated for CAP patients who
were predicted to be either at very high risk or at very low risk of developing a dire outcome.

In this section, we briefly describe the pneumonia dataset that we used in the experiments,
the methods for development and evaluation of predictive models, the generation of patient-
specific explanations, and the measures we used to evaluate agreement among physician
reviewers for the explanations. The implementation of the methods is publicly available at:
https://github.com/Amin-Tajgardoon/explanation-project.

Description of Dataset

The pneumonia data were collected by the Pneumonia Patient Outcomes Research Team
(PORT)20 during October 1991 to March 1994 at five hospitals in three geographical
locations including Pittsburgh, Boston, and Halifax, Nova Scotia. The PORT data from
Pittsburgh that we used in the experiments had 2,287 patients diagnosed with CAP who were
either hospitalized or seen in ambulatory care. A variety of clinical data were collected at the
time of presentation and several outcomes at 30 days were assessed. A key goal of the PORT
project was to develop accurate criteria for prognosis of patients with pneumonia that could
provide guidance on which patients should be hospitalized and which patients might be
safely treated at home.

The PORT dataset contains more than 150 variables including demographic information
history and physical examination information, laboratory results, and chest X-ray findings.
From the 150 variables, we selected 41 clinical variables that are typically available in the
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emergency department at the time the decision whether to admit or not is made. Of the 41
variables, 17 are discrete and the remaining 24 are continuous. The 24 continuous variables
were discretized based on thresholds provided by clinical experts on the PORT project.20 A
list of the 41 variables with descriptions is provided in Table 2.

The outcome variable we used as the target variable is called dire outcome and is binary. A
patient was considered to have had a dire outcome if any of the following events occurred:
(1) death within 30 days of presentation; (2) an intensive care unit admission for respiratory
failure, respiratory or cardiac arrest, or shock; or (3) one or more specific, severe
complications, such as myocardial infarction, pulmonary embolism, stroke, etc.2! About
11.4% (261) patients had a dire outcome in the PORT dataset.

Training and test sets: the data consisting of 2,287 cases was divided into a training
dataset of 1,601 cases (70%) and a test dataset of 686 cases (30%) by using stratified
random-sampling such that both sets had approximately the same proportion of cases with
dire outcomes as the full dataset(11.4% [182/1,601] and 11.5% [79/686] of patients had a
dire outcome in the training and test sets, respectively). Missing data were imputed using an
iterated A-nearest neighbor method,2 and continuous variables were discretized based on
clinical judgment of pneumonia experts in the pneumonia PORT project.

Development of Predictive Models

We applied several machine learning methods to the training set to develop predictive
models, and we applied the best-performing model to the test set to generate predictions.

Machine learning methods: the machine learning methods that we used for developing
predictive models are logistic regression with regularization (LR), random forest (RF),
support vector machine (SVM), and naive Bayes (NB). We selected these methods as
representative of the machine-leaning methods that are typically used for developing
predictive models in biomedicine. We used the implementations of these methods that are
available in the scikit-learn package.23

We tuned the hyper-parameters using 10-fold cross validation on the training set. The hyper-
parameters that we configured included the regularization coefficient ([0.1, 1, 10]) for the
LR and SVM models, number of trees ([100, 500, 1,000, 3,000]) for the RF model, and the
Laplace smoothing parameter ([0, 0.1, 1, 10, 100]) for the NB model.

Evaluation of model performance: we evaluated the predictive models on the training
set using 10-fold cross validation. The metrics we used included F1 score, area under the
receiver operating characteristic curve (AUROC), positive predictive value (PPV),
sensitivity, and specificity. The F1 score is the harmonic mean of PPV and sensitivity and
ranges between 0 and 1.24 A high F1 score indicates that both PPV and sensitivity are high.
We selected the machine learning method with the highest F1 score and reapplied it to the
full-training set to derive the final model. We applied the final model to predict the outcomes
for cases in the test set.
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Generation of Patient-Specific Explanations

We used LIME to generate explanations for a selected set of 40 cases in the test set. A
description on the selection of the 40 cases is provided in the next section. LIME is a model-
independent explanation method that provides an explanation for a predicted case by
learning an interpretable model from data in the neighborhood of the case (such as a local
linear model with a small number of nonzero coefficients). More specifically, LIME
provides for each patient feature the magnitude and the direction of support for the predicted
outcome (see Fig. 1). The magnitude of support is the weight of an explanatory feature, and
the direction of support is the sign of the weight, as estimated in LIME’s local regression
model. We limited the explanations to the top six features with the highest magnitudes, as
we found that, on average, the magnitude of five to seven features accounted for most of the
total magnitude. We call the patient features that were included in the explanation as
explanatory features.

Evaluation of Explanations

Three physicians independently evaluated explanations for 40 patient cases that were
selected from the test set. We selected cases for which the model correctly predicted the
outcome with high confidence (i.e., a patient was predicted to have developed a dire
outcome with probability > 0.8 or with probability < 0.1). Of the 40 cases, 20 patients
developed a dire outcome and 20 patients did not. Note that patients with and without a dire
outcome are expected to have mostly the same predictors; however, the values of those
predictors are likely to be different. For example, abnormal values in respiratory rate, arterial
blood gases, and lung status are likely to be predictor features in a patient with a dire
outcome, whereas normal values in respiratory rate, arterial blood gases, and lung status are
likely to be predictor features in a patient without a dire outcome.

For each patient case, we provided the reviewers with a description that included clinical
findings and if a dire outcome occurred or not, and the predicted probability of the dire
outcome occurring along with the explanation for the prediction (see Fig. 2). Each reviewer
assessed all 40 cases and the corresponding explanations, and specified if she agreed or
disagreed with each explanatory feature. The reviewer was instructed to disagree with an
explanatory feature if she did not agree with the magnitude, the direction (supportive vs.
contradictory), or both.

To preclude reviewers from agreeing readily with explanations without careful assessment,
we fabricated explanations in 10 of the 40 cases. To generate a fabricated explanation, we
replaced the labels (feature name and its value) of six top-ranked features with the labels of
six bottom-ranked features, without modifying the magnitude or the direction of support.
The reviewers were informed that some of the cases contained fabricated explanations but
not which ones. Table 3 shows the stratification of cases according to the type of explanation
(actual vs. fabricated) and by outcome (had a dire outcome vs. did not have a dire outcome)
that we used for evaluation.

We analyzed the assessments of the reviewers with several measures as follows: (1) We
measured agreement between pairs of reviewers with Cohen’s kappa coefficient2® and across
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all reviewers concurrently with Fleiss’ kappa statistic.28 Cohen’s kappa coefficient measures
the degree of agreement between two reviewers on a set of samples, whereas Fleiss’ kappa
statistic can assess more than two reviewers simultaneously. (2) For a given set of cases, we
calculated an agreement rate as the proportion of explanatory features with which majority
of reviewers agreed. For example, for a set of 10 cases where each case had an explanation
with six features, the denominator of the agreement rate is 10x 6 = 60 features and the
numerator is the number of features with which majority of reviewers agreed. Agreement
rates were calculated separately for cases with actual and fabricated explanations, and for
cases where the patients had a dire outcome and did not have a dire outcome. (3) To
statistically test for difference between two agreement rates that are derived from two sets of
cases (e.g., actual vs. fabricated explanations, dire outcome vs. no dire outcome), we used
the Chi-square test of independence.?’

We report the performance of the machine learning methods, briefly describe the prediction
explanations, and provide the reviewers’ agreement scores.

Performance of Predictive Models

Table 4 shows the performance of five machine learning methods on the training set, as
measured by F1 score, AUROC, PPV, sensitivity, and specificity. The two logistic regression
models, LR-L1 and LR-L2, were trained with L1 and L2 regularization penalties,
respectively. The LR-L1, LR-L2, NB, and SVM models have similar F1 scores, whereas RF
has a lower F1 score despite having a similar AUROC to other models. The LR-L1 and LR-
L2 models had similar performance; however, we chose the LR-L1 model as the best-
performing model because it shrinks some of the regression coefficients to zero and provides
a sparse solution.

Description of Explanations

We applied the LR-L1 model to all cases in the test set and selected 40 cases based on
criteria described in Section Methods, “Evaluation of Explanations.” We used LIME to
generate explanations for the selected cases. Tables 5 and 6 show the explanatory variables
and their count of appearance in the actual and fabricated explanations respectively.

Evaluation of Explanations

Agreement among reviewers: Table 7 shows the agreement scores between pairs of
reviewers and across all three reviewers. For both actual and fabricated explanations,
Cohen’s kappa coefficients indicate strong agreement between reviewers 1 and 2, and fair to
moderate agreement between reviewer 3 and the other two reviewers (according to the
agreement levels proposed by McHugh?8). The Fleiss’ kappa statistic shows moderate
agreement across all reviewers when considering all explanatory features. Much of the
disagreement between reviewer 3 and the others was due to differing opinions on headache
as an explanatory feature. After excluding headache from the analysis, Cohen’s kappa
coefficient for all explanatory features for reviewers 1 and 3 increased from 0.49 to 0.76, and
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the corresponding Cohen’s kappa coefficient for reviewers 2 and 3 increased from 0.33 to
0.58.

Agreement with LIME-generated explanations: Table 8 shows agreement rates for
explanations as the proportion of explanatory features with which majority of reviewers
agreed. The agreement rate was 0.78 (141/180) for actual explanations and 0.52 (31/60) for
fabricated explanations; the difference between the two agreement rates was statistically
significant (Chi-square = 19.76, p-value < 0.01). For actual explanations, agreement rates
were 0.81 (73/90) for cases where the patients had a dire outcomes and 0.76 (68/90) for
cases where the patients did not have a dire outcome; the difference between the two
agreement rates was not statistically significant (Chi-square = 0.55, p-value = 0.53).

When headache was excluded from the analysis, the agreement rate increased from 0.78 to
0.93 for actual explanations. The agreement rate for fabricated explanations did not change
from 0.52 because headache did not occur in fabricated explanations.

Discussion

Computerized clinical decision-supporting systems that utilize predictive models for
predicting clinical outcomes can be enhanced with explanations for predictions. Such
explanations provide context for the predictions and guide physicians in better understanding
supportive and contradictory evidence for the predictions. In this paper, we presented a
method to augment clinical outcome predictions—obtained from a predictive model—with
simple patient-specific explanations for each prediction. The method uses LIME that
generates a patient-specific linear model which provides a weight for each feature. The
weight provides insight about the relevance of each feature in terms of magnitude and
direction of its contribution to a prediction. LIME has been shown to produce explanations
that users find to be useful and trustworthy in general prediction problems.1®

In this study, we developed and evaluated several machine learning methods and chose a
logistic regression model since it had the best performance. In this scenario, the model could
be used directly to provide explanations—the weight of a feature for an explanation can be
computed by multiplying the feature level by the corresponding odds ratio. However, in
general, as the size and dimensionality of the data increase, more complex, and less
interpretable models, like deep neural networks, are likely to perform better and the use of a
model-independent explanation method like LIME becomes necessary.

Using LIME, we generated explanations for 40 cases and evaluated the explanations with
three physician reviewers. The reviewers agreed with 78% of LIME-generated explanatory
features for actual explanations and agreed with only 52% of explanatory features for
fabricated explanations. This result provides evidence that the reviewers are able to
distinguish between valid and invalid explanations. The results also indicate that agreement
on cases where the patients had a dire outcome is not statistically significantly different from
agreement on cases where the patients did not have a dire outcome.

Headache was a feature that was provided as an explanatory feature in most of the cases
where the patients experienced a dire outcome. Two of the reviewers deemed headache to be
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mildly supportive, whereas the third reviewer did not consider headache to be a supportive
feature. In support of the third reviewer’s judgment, commonly used scoring systems for
assessment of severity of CAP, such as the pneumonia severity index!3 and CURB-652° do
not include headache as a predictive feature. In the dataset, we used, almost all models
included headache as a predictive feature; this may be because the Pittsburgh portion of the
PORT data that we used in our experiments may have predictive features, such as headache,
that are specific to the region. This indicates that predictive features in a model depend on
the dataset that is used and explanations may uncover and inform physicians of features that
are locally valid. More generally, this may suggest that predictive models should be derived
from data that is from the location where the models will be deployed.

It is plausible that explanations of predictions are likely to be useful in clinical decision
making,10:11 and model-independent methods like LIME provide a method to generate
explanations from any type of model.1> However, it needs to be established that such
explanations are valid, accurate, and easily grasped by physicians in the context of clinical
predictive models. This study provides a first step toward that goal.

Limitations and Future Directions

This study has several limitations. Though LIME has the advantage that it can be used in
conjunction with any predictive model, it has the limitation that internally it constructs a
simple model. LIME constructs a local linear model from data in the neighborhood of the
case of interest, and it seems reasonable to assume linearity in a small region even when the
primary model is not linear. However, we and other investigators have noticed that the
prediction of LIME’s local model is not always concordant with the prediction of the
primary predictive model.3% Methods like LIME will need to be modified such that the
predictions agree with those of the primary predictive model and work is ongoing in the
research community to improve LIME.

This study used a single dataset that is relatively old (data collection occurred in the early
1990s), measures only one medical condition, and is limited to patient visits at a single
geographical location. Additionally, the number of physician evaluators was relatively small.
To explore the generalizability of using LIME with predictive models, newer datasets are
needed in which different outcomes are measured and samples are collected from diverse
geographical locations. Higher numbers of physician evaluators can also yield more reliable
evaluations.

Conclusion

This study demonstrated that it is possible to generate patient-specific explanations to
augment predictions of clinical outcomes by using available machine learning methods for
both model development and generation of explanations. Moreover, explanations that were
generated for predicting dire outcomes in CAP were assessed to be valid by physician
evaluators. Such explanations can engender trust in the predictions and enable physicians to
interpret the predictions in the clinical context.
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Clinical Relevance Statement

This study demonstrated that there was good agreement among physicians on patient-
specific explanations that are generated to augment predictions from machine learning
models of clinical outcomes. Such explanations will enable physicians to better
understand the predictions and interpret them in the clinical context, and might even
influence the clinical decisions they make. Computerized clinical decision-supporting
systems that deliver predictions can be enhanced to provide explanations to increase their
utility.
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Dire outcome probability Contradictory Supportive
yes 0.91 0, =38mmH
no:o.og s °

BP(systolic) =107 mm Hg

Headache =No

Hgb = 13.5g/dL 0

Number of prior episodes of pneumonia=0

]
Lungs status = Congested -

1

=

-

Fig. 1.

E)?ample explanation obtained from LIME for a patient who was predicted to have a very
high probability of dire outcome by a logistic regression model. The bar plot at the top left
shows the predicted probability distribution for dire outcome. The bar plot on the right
shows the explanation for the prediction. The explanation is limited to six top-ranked
features by magnitude. The magnitude on the horizontal axis represents the weight of a
feature in the LIME’s local regression model. Green bars represent the magnitude of
predictors that support the predicted outcome, while red bars represent the magnitude of
contradictory features. LIME, local interpretable model-agnostic explanations.
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Patient description

Demographics:
Age =63 years,Sex = Female,Race = White , Ethnicity = Non-hispanic, Smoking status = Non-smoker

Past history:
Number of prior episodes of pneumonia=0

Comorbidities:
Congestive heart failure = Yes, Cerebrovascular disease = No, Liver disease = No, Cancer = No

Symptoms:
Cough = Yes, Fever = Yes, Sweating = Yes, Headache =No

Physical exam:
Confusion = No, Lungs status = Congested

Vitals:
HR = 118/min BP =107/42mmHg RR = 32/min Temp = 37.86°C

Laboratory results:
WBC =5.7x1073/uL  Hgb = 13.5g/dL Hct =41.0% Plt = 156x10°3/ul

Na=128mEq/L K =5.3mEq/L HCO3 = 34 mEqg/L BUN =27mg/dL Cr=1.3mg/dL Glu =727 mg/dL

Totbili =0.6mg/dL SGOT/AST = 45U/L Alk Phos = 108 U/L LDH = 518 U/L
ABG: pH=7.45 pCO2 = 47mmHg pO, = 38 mmHg 02 saturation = 72% (pulse ox)

X-ray:
Infiltrate = Yes, Pleural effusion = No

QOutcome:
Dire outcome = Yes

Explanation
Dire outcome probability Contradictory Supportive
ves 0.91 =38 mmH
no J0.09 PO, ”

BP(systolic) = 107 mm Hg
Headache = No
Hgb = 13.5g/dL

Number of prior episodes of pneumonia=0

===
Lungs status = Congested -
=il
1
=
-

T T T T T
-02 -0 ao ot 0z

Page 13

In the table below in the last column, please state your agreement/disagreement with each feature. You may indicate

agreement with + and disagreement with —.

Feature Agree/Disagree

p02 =38 mmHg

Lungs status = Congested

BP(systolic) = 107 mmHg

Headache = No

Hgb=13.5 g/dL

Number of prior episodes of pneumonia=0

Fig. 2.
An example patient case that gives a description of the patient, followed by an explanation

and the questions that were asked of reviewers.

AC/ gpen. Author manuscript; available in PMC 2021 June 03.
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Cases used for evaluation, stratified by type of explanations and outcomes

Table 3

Type of explanations and outcomes Number of cases
Cases with actual explanations
where patients had a dire outcome 15
where patients did not have a dire outcome | 15
Cases with fabricated explanations
where patients had a dire outcome 5
where patients did not have a dire outcome | 5
Total 40

ACI open. Author manuscript; available in PMC 2021 June 03.
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Table 5

Variables and their count of appearance in the 30 actual explanations

Variable Count
Lungs status 30
Headache 30
pO; (arterial blood gas) 23
RR (respiratory rate) 21
Prior episodes of pneumonia | 18
Hgb (hemoglobin) 18
Glu (glucose) 17
BP systolic 16
Age 5
Sweating 1
Confusion 1
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Table 6

Variables and their count of appearance in the 10 fabricated explanations

Variable

Count

Sex

10

Race

7

Cr (creatinine)

~

K (potassium)

HR (heart rate)

Plt (platelet count)

pCO; (arterial blood gas)

WABC (white blood cell count)

BP (diastolic)

Ethnicity

Hct (hematocrit)

NjwldM]IPdMIdMNlO|lO |l O

Liver disease

Infiltrate

=] -
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