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Abstract

Background—Machine learning models that are used for predicting clinical outcomes can be 

made more useful by augmenting predictions with simple and reliable patient-specific 

explanations for each prediction.

Objectives—This article evaluates the quality of explanations of predictions using physician 

reviewers. The predictions are obtained from a machine learning model that is developed to predict 

dire outcomes (severe complications including death) in patients with community acquired 

pneumonia (CAP).

Methods—Using a dataset of patients diagnosed with CAP, we developed a predictive model to 

predict dire outcomes. On a set of 40 patients, who were predicted to be either at very high risk or 

at very low risk of developing a dire outcome, we applied an explanation method to generate 

patient-specific explanations. Three physician reviewers independently evaluated each explanatory 

feature in the context of the patient’s data and were instructed to disagree with a feature if they did 

not agree with the magnitude of support, the direction of support (supportive versus contradictory), 

or both.

Results—The model used for generating predictions achieved a F1 score of 0.43 and area under 

the receiver operating characteristic curve (AUROC) of 0.84 (95% confidence interval [CI]: 0.81–

0.87). Interreviewer agreement between two reviewers was strong (Cohen’s kappa coefficient = 

0.87) and fair to moderate between the third reviewer and others (Cohen’s kappa coefficient = 0.49 

and 0.33). Agreement rates between reviewers and generated explanations—defined as the 

proportion of explanatory features with which majority of reviewers agreed—were 0.78 for actual 

explanations and 0.52 for fabricated explanations, and the difference between the two agreement 

rates was statistically significant (Chi-square = 19.76, p-value < 0.01).
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Conclusion—There was good agreement among physician reviewers on patient-specific 

explanations that were generated to augment predictions of clinical outcomes. Such explanations 

can be useful in interpreting predictions of clinical outcomes.
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Background and Significance

Sophisticated predictive models are increasingly being developed using machine learning 

methods to predict clinical outcomes, such as mortality, morbidity, and adverse events.1–9 

These models, in most cases, are viewed as black boxes that produce a prediction for an 

outcome from the features of a patient case.† However, for such models to be practically 

useful in clinical care, it is critical to provide clear and reliable individual-specific 

explanations for each prediction.10 While a prediction provides an estimate of the likely 

outcome in the future, an explanation provides insight into features that may be useful in 

clinical decision-making. Moreover, explanations will enable physicians to engender trust in 

the predictions, interpret them in the clinical context, and help make optimal clinical 

decisions.11 In the clinical context, features that are supportive of a prediction provide 

potentially actionable aspects that may change the predicted outcome.12,13

In the context of predictive models, a subtle but important distinction exists between model 

explanation and prediction explanation. Model explanation provides an interpretation of the 

model to the user in terms of structure and parameters, and is useful in the context of making 

discoveries.12,14 Some predictive models, such as decision trees, linear regression, and rule-

based models, are more easily interpretable, though often such models have poorer 

predictive performance than more abstract models, such as random forests, support vector 

machines, and neural networks.12,14 In contrast to model explanation, prediction explanation 

provides an interpretation of the prediction for an individual to whom a model is applied, 

and will potentially be different from individual to individual.15,16 Useful prediction 

explanations possess two properties. First, an explanation uses concepts that are 

understandable to the user, such as clinical variables that are not modified or transformed. 

Second, the explanation is parsimonious, so that it is readily and rapidly grasped by the user. 

Prediction explanations may be based on the structure and parameters of the model that 

yielded the prediction (hence, model dependent) or may be based on an independent method 

that is applied after the predictive model has been developed (hence, model independent).
14,17

Novel methods have been developed for prediction explanations and such methods have 

been applied in biomedicine and other domains. Table 1 provides a summary of studies that 

have developed methods for prediction explanations, with a brief description of each 

explanation method.

†We distinguish between a variable and a feature. A variable describes an aspect of an individual. A feature is the specification of a 
variable and its value. For example, “fever” is a variable and “fever = yes” is a feature.
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Only a small number of the methods that are listed in Table 1 have been applied to 

predicting clinical outcomes. For example, Luo applied their method to type-2 diabetes risk 

prediction18, Štrumbelj et al developed and applied their method to breast cancer recurrence 

predictions,19 and Reggia and Perricone developed explanations for predictions of the type 

of stroke.11 More widespread application of these methods to clinical predictions can 

provide evidence of applicability and utility of these methods to clinical users.

In this study, we apply and evaluate a recently developed prediction explanation method 

called Local Interpretable Model-Agnostic Explanations (LIME)15 for clinical predictions. 

The developers of LIME demonstrated that human evaluators found explanations generated 

by LIME to be more reasonable when compared with the explanations generated by 

alternative methods. To our knowledge, LIME has not been extensively evaluated in the 

context of clinical predictive models.

Objectives

Our goal was to evaluate patient-specific explanations for clinical predictions. The aims of 

our study were to (1) Develop machine learning models to predict dire outcomes (severe 

complications including death) from readily available clinical data in patients who present 

with community acquired pneumonia (CAP), followed by application of a model-

independent prediction explanation method to generate patient-specific explanations; and (2) 

Evaluate the agreement among physicians for explanations generated for CAP patients who 

were predicted to be either at very high risk or at very low risk of developing a dire outcome.

Methods

In this section, we briefly describe the pneumonia dataset that we used in the experiments, 

the methods for development and evaluation of predictive models, the generation of patient-

specific explanations, and the measures we used to evaluate agreement among physician 

reviewers for the explanations. The implementation of the methods is publicly available at: 

https://github.com/Amin-Tajgardoon/explanation-project.

Description of Dataset

The pneumonia data were collected by the Pneumonia Patient Outcomes Research Team 

(PORT)20 during October 1991 to March 1994 at five hospitals in three geographical 

locations including Pittsburgh, Boston, and Halifax, Nova Scotia. The PORT data from 

Pittsburgh that we used in the experiments had 2,287 patients diagnosed with CAP who were 

either hospitalized or seen in ambulatory care. A variety of clinical data were collected at the 

time of presentation and several outcomes at 30 days were assessed. A key goal of the PORT 

project was to develop accurate criteria for prognosis of patients with pneumonia that could 

provide guidance on which patients should be hospitalized and which patients might be 

safely treated at home.

The PORT dataset contains more than 150 variables including demographic information 

history and physical examination information, laboratory results, and chest X-ray findings. 

From the 150 variables, we selected 41 clinical variables that are typically available in the 
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emergency department at the time the decision whether to admit or not is made. Of the 41 

variables, 17 are discrete and the remaining 24 are continuous. The 24 continuous variables 

were discretized based on thresholds provided by clinical experts on the PORT project.20 A 

list of the 41 variables with descriptions is provided in Table 2.

The outcome variable we used as the target variable is called dire outcome and is binary. A 

patient was considered to have had a dire outcome if any of the following events occurred: 

(1) death within 30 days of presentation; (2) an intensive care unit admission for respiratory 

failure, respiratory or cardiac arrest, or shock; or (3) one or more specific, severe 

complications, such as myocardial infarction, pulmonary embolism, stroke, etc.21 About 

11.4% (261) patients had a dire outcome in the PORT dataset.

Training and test sets: the data consisting of 2,287 cases was divided into a training 

dataset of 1,601 cases (70%) and a test dataset of 686 cases (30%) by using stratified 

random-sampling such that both sets had approximately the same proportion of cases with 

dire outcomes as the full dataset(11.4% [182/1,601] and 11.5% [79/686] of patients had a 

dire outcome in the training and test sets, respectively). Missing data were imputed using an 

iterated k-nearest neighbor method,22 and continuous variables were discretized based on 

clinical judgment of pneumonia experts in the pneumonia PORT project.

Development of Predictive Models

We applied several machine learning methods to the training set to develop predictive 

models, and we applied the best-performing model to the test set to generate predictions.

Machine learning methods: the machine learning methods that we used for developing 

predictive models are logistic regression with regularization (LR), random forest (RF), 

support vector machine (SVM), and naïve Bayes (NB). We selected these methods as 

representative of the machine-leaning methods that are typically used for developing 

predictive models in biomedicine. We used the implementations of these methods that are 

available in the scikit-learn package.23

We tuned the hyper-parameters using 10-fold cross validation on the training set. The hyper-

parameters that we configured included the regularization coefficient ([0.1, 1, 10]) for the 

LR and SVM models, number of trees ([100, 500, 1,000, 3,000]) for the RF model, and the 

Laplace smoothing parameter ([0, 0.1, 1, 10, 100]) for the NB model.

Evaluation of model performance: we evaluated the predictive models on the training 

set using 10-fold cross validation. The metrics we used included F1 score, area under the 

receiver operating characteristic curve (AUROC), positive predictive value (PPV), 

sensitivity, and specificity. The F1 score is the harmonic mean of PPV and sensitivity and 

ranges between 0 and 1.24 A high F1 score indicates that both PPV and sensitivity are high. 

We selected the machine learning method with the highest F1 score and reapplied it to the 

full-training set to derive the final model. We applied the final model to predict the outcomes 

for cases in the test set.
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Generation of Patient-Specific Explanations

We used LIME to generate explanations for a selected set of 40 cases in the test set. A 

description on the selection of the 40 cases is provided in the next section. LIME is a model-

independent explanation method that provides an explanation for a predicted case by 

learning an interpretable model from data in the neighborhood of the case (such as a local 

linear model with a small number of nonzero coefficients). More specifically, LIME 

provides for each patient feature the magnitude and the direction of support for the predicted 

outcome (see Fig. 1). The magnitude of support is the weight of an explanatory feature, and 

the direction of support is the sign of the weight, as estimated in LIME’s local regression 

model. We limited the explanations to the top six features with the highest magnitudes, as 

we found that, on average, the magnitude of five to seven features accounted for most of the 

total magnitude. We call the patient features that were included in the explanation as 

explanatory features.

Evaluation of Explanations

Three physicians independently evaluated explanations for 40 patient cases that were 

selected from the test set. We selected cases for which the model correctly predicted the 

outcome with high confidence (i.e., a patient was predicted to have developed a dire 

outcome with probability > 0.8 or with probability < 0.1). Of the 40 cases, 20 patients 

developed a dire outcome and 20 patients did not. Note that patients with and without a dire 

outcome are expected to have mostly the same predictors; however, the values of those 

predictors are likely to be different. For example, abnormal values in respiratory rate, arterial 

blood gases, and lung status are likely to be predictor features in a patient with a dire 

outcome, whereas normal values in respiratory rate, arterial blood gases, and lung status are 

likely to be predictor features in a patient without a dire outcome.

For each patient case, we provided the reviewers with a description that included clinical 

findings and if a dire outcome occurred or not, and the predicted probability of the dire 

outcome occurring along with the explanation for the prediction (see Fig. 2). Each reviewer 

assessed all 40 cases and the corresponding explanations, and specified if she agreed or 

disagreed with each explanatory feature. The reviewer was instructed to disagree with an 

explanatory feature if she did not agree with the magnitude, the direction (supportive vs. 

contradictory), or both.

To preclude reviewers from agreeing readily with explanations without careful assessment, 

we fabricated explanations in 10 of the 40 cases. To generate a fabricated explanation, we 

replaced the labels (feature name and its value) of six top-ranked features with the labels of 

six bottom-ranked features, without modifying the magnitude or the direction of support. 

The reviewers were informed that some of the cases contained fabricated explanations but 

not which ones. Table 3 shows the stratification of cases according to the type of explanation 

(actual vs. fabricated) and by outcome (had a dire outcome vs. did not have a dire outcome) 

that we used for evaluation.

We analyzed the assessments of the reviewers with several measures as follows: (1) We 

measured agreement between pairs of reviewers with Cohen’s kappa coefficient25 and across 
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all reviewers concurrently with Fleiss’ kappa statistic.26 Cohen’s kappa coefficient measures 

the degree of agreement between two reviewers on a set of samples, whereas Fleiss’ kappa 

statistic can assess more than two reviewers simultaneously. (2) For a given set of cases, we 

calculated an agreement rate as the proportion of explanatory features with which majority 

of reviewers agreed. For example, for a set of 10 cases where each case had an explanation 

with six features, the denominator of the agreement rate is 10× 6 = 60 features and the 

numerator is the number of features with which majority of reviewers agreed. Agreement 

rates were calculated separately for cases with actual and fabricated explanations, and for 

cases where the patients had a dire outcome and did not have a dire outcome. (3) To 

statistically test for difference between two agreement rates that are derived from two sets of 

cases (e.g., actual vs. fabricated explanations, dire outcome vs. no dire outcome), we used 

the Chi-square test of independence.27

Results

We report the performance of the machine learning methods, briefly describe the prediction 

explanations, and provide the reviewers’ agreement scores.

Performance of Predictive Models

Table 4 shows the performance of five machine learning methods on the training set, as 

measured by F1 score, AUROC, PPV, sensitivity, and specificity. The two logistic regression 

models, LR-L1 and LR-L2, were trained with L1 and L2 regularization penalties, 

respectively. The LR-L1, LR-L2, NB, and SVM models have similar F1 scores, whereas RF 

has a lower F1 score despite having a similar AUROC to other models. The LR-L1 and LR-

L2 models had similar performance; however, we chose the LR-L1 model as the best-

performing model because it shrinks some of the regression coefficients to zero and provides 

a sparse solution.

Description of Explanations

We applied the LR-L1 model to all cases in the test set and selected 40 cases based on 

criteria described in Section Methods, “Evaluation of Explanations.” We used LIME to 

generate explanations for the selected cases. Tables 5 and 6 show the explanatory variables 

and their count of appearance in the actual and fabricated explanations respectively.

Evaluation of Explanations

Agreement among reviewers: Table 7 shows the agreement scores between pairs of 

reviewers and across all three reviewers. For both actual and fabricated explanations, 

Cohen’s kappa coefficients indicate strong agreement between reviewers 1 and 2, and fair to 

moderate agreement between reviewer 3 and the other two reviewers (according to the 

agreement levels proposed by McHugh28). The Fleiss’ kappa statistic shows moderate 

agreement across all reviewers when considering all explanatory features. Much of the 

disagreement between reviewer 3 and the others was due to differing opinions on headache 

as an explanatory feature. After excluding headache from the analysis, Cohen’s kappa 

coefficient for all explanatory features for reviewers 1 and 3 increased from 0.49 to 0.76, and 
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the corresponding Cohen’s kappa coefficient for reviewers 2 and 3 increased from 0.33 to 

0.58.

Agreement with LIME-generated explanations: Table 8 shows agreement rates for 

explanations as the proportion of explanatory features with which majority of reviewers 

agreed. The agreement rate was 0.78 (141/180) for actual explanations and 0.52 (31/60) for 

fabricated explanations; the difference between the two agreement rates was statistically 

significant (Chi-square = 19.76, p-value < 0.01). For actual explanations, agreement rates 

were 0.81 (73/90) for cases where the patients had a dire outcomes and 0.76 (68/90) for 

cases where the patients did not have a dire outcome; the difference between the two 

agreement rates was not statistically significant (Chi-square = 0.55, p-value = 0.53).

When headache was excluded from the analysis, the agreement rate increased from 0.78 to 

0.93 for actual explanations. The agreement rate for fabricated explanations did not change 

from 0.52 because headache did not occur in fabricated explanations.

Discussion

Computerized clinical decision-supporting systems that utilize predictive models for 

predicting clinical outcomes can be enhanced with explanations for predictions. Such 

explanations provide context for the predictions and guide physicians in better understanding 

supportive and contradictory evidence for the predictions. In this paper, we presented a 

method to augment clinical outcome predictions—obtained from a predictive model—with 

simple patient-specific explanations for each prediction. The method uses LIME that 

generates a patient-specific linear model which provides a weight for each feature. The 

weight provides insight about the relevance of each feature in terms of magnitude and 

direction of its contribution to a prediction. LIME has been shown to produce explanations 

that users find to be useful and trustworthy in general prediction problems.15

In this study, we developed and evaluated several machine learning methods and chose a 

logistic regression model since it had the best performance. In this scenario, the model could 

be used directly to provide explanations—the weight of a feature for an explanation can be 

computed by multiplying the feature level by the corresponding odds ratio. However, in 

general, as the size and dimensionality of the data increase, more complex, and less 

interpretable models, like deep neural networks, are likely to perform better and the use of a 

model-independent explanation method like LIME becomes necessary.

Using LIME, we generated explanations for 40 cases and evaluated the explanations with 

three physician reviewers. The reviewers agreed with 78% of LIME-generated explanatory 

features for actual explanations and agreed with only 52% of explanatory features for 

fabricated explanations. This result provides evidence that the reviewers are able to 

distinguish between valid and invalid explanations. The results also indicate that agreement 

on cases where the patients had a dire outcome is not statistically significantly different from 

agreement on cases where the patients did not have a dire outcome.

Headache was a feature that was provided as an explanatory feature in most of the cases 

where the patients experienced a dire outcome. Two of the reviewers deemed headache to be 
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mildly supportive, whereas the third reviewer did not consider headache to be a supportive 

feature. In support of the third reviewer’s judgment, commonly used scoring systems for 

assessment of severity of CAP, such as the pneumonia severity index13 and CURB-6529 do 

not include headache as a predictive feature. In the dataset, we used, almost all models 

included headache as a predictive feature; this may be because the Pittsburgh portion of the 

PORT data that we used in our experiments may have predictive features, such as headache, 

that are specific to the region. This indicates that predictive features in a model depend on 

the dataset that is used and explanations may uncover and inform physicians of features that 

are locally valid. More generally, this may suggest that predictive models should be derived 

from data that is from the location where the models will be deployed.

It is plausible that explanations of predictions are likely to be useful in clinical decision 

making,10,11 and model-independent methods like LIME provide a method to generate 

explanations from any type of model.15 However, it needs to be established that such 

explanations are valid, accurate, and easily grasped by physicians in the context of clinical 

predictive models. This study provides a first step toward that goal.

Limitations and Future Directions

This study has several limitations. Though LIME has the advantage that it can be used in 

conjunction with any predictive model, it has the limitation that internally it constructs a 

simple model. LIME constructs a local linear model from data in the neighborhood of the 

case of interest, and it seems reasonable to assume linearity in a small region even when the 

primary model is not linear. However, we and other investigators have noticed that the 

prediction of LIME’s local model is not always concordant with the prediction of the 

primary predictive model.30 Methods like LIME will need to be modified such that the 

predictions agree with those of the primary predictive model and work is ongoing in the 

research community to improve LIME.

This study used a single dataset that is relatively old (data collection occurred in the early 

1990s), measures only one medical condition, and is limited to patient visits at a single 

geographical location. Additionally, the number of physician evaluators was relatively small. 

To explore the generalizability of using LIME with predictive models, newer datasets are 

needed in which different outcomes are measured and samples are collected from diverse 

geographical locations. Higher numbers of physician evaluators can also yield more reliable 

evaluations.

Conclusion

This study demonstrated that it is possible to generate patient-specific explanations to 

augment predictions of clinical outcomes by using available machine learning methods for 

both model development and generation of explanations. Moreover, explanations that were 

generated for predicting dire outcomes in CAP were assessed to be valid by physician 

evaluators. Such explanations can engender trust in the predictions and enable physicians to 

interpret the predictions in the clinical context.
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Clinical Relevance Statement

This study demonstrated that there was good agreement among physicians on patient-

specific explanations that are generated to augment predictions from machine learning 

models of clinical outcomes. Such explanations will enable physicians to better 

understand the predictions and interpret them in the clinical context, and might even 

influence the clinical decisions they make. Computerized clinical decision-supporting 

systems that deliver predictions can be enhanced to provide explanations to increase their 

utility.
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Fig. 1. 
Example explanation obtained from LIME for a patient who was predicted to have a very 

high probability of dire outcome by a logistic regression model. The bar plot at the top left 

shows the predicted probability distribution for dire outcome. The bar plot on the right 

shows the explanation for the prediction. The explanation is limited to six top-ranked 

features by magnitude. The magnitude on the horizontal axis represents the weight of a 

feature in the LIME’s local regression model. Green bars represent the magnitude of 

predictors that support the predicted outcome, while red bars represent the magnitude of 

contradictory features. LIME, local interpretable model-agnostic explanations.
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Fig. 2. 
An example patient case that gives a description of the patient, followed by an explanation 

and the questions that were asked of reviewers.
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Table 3

Cases used for evaluation, stratified by type of explanations and outcomes

Type of explanations and outcomes Number of cases

Cases with actual explanations

 where patients had a dire outcome 15

 where patients did not have a dire outcome 15

Cases with fabricated explanations

 where patients had a dire outcome 5

 where patients did not have a dire outcome 5

Total 40
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Table 5

Variables and their count of appearance in the 30 actual explanations

Variable Count

Lungs status 30

Headache 30

pO2 (arterial blood gas) 23

RR (respiratory rate) 21

Prior episodes of pneumonia 18

Hgb (hemoglobin) 18

Glu (glucose) 17

BP systolic 16

Age 5

Sweating 1

Confusion 1
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Table 6

Variables and their count of appearance in the 10 fabricated explanations

Variable Count

Sex 10

Race 7

Cr (creatinine) 7

K (potassium) 6

HR (heart rate) 6

Plt (platelet count) 5

pCO2 (arterial blood gas) 4

WBC (white blood cell count) 4

BP (diastolic) 4

Ethnicity 3

Hct (hematocrit) 2

Liver disease 1

Infiltrate 1
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