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Abstract

High-dimensional variable selection in the proportional hazards (PH) model has many successful 

applications in different areas. In practice, data may involve confounding variables that do not 

satisfy the PH assumption, in which case the stratified proportional hazards (SPH) model can be 

adopted to control the confounding effects by stratification without directly modeling the 

confounding effects. However, there is a lack of computationally efficient statistical software for 

high-dimensional variable selection in the SPH model. In this work an R package, SurvBoost, is 

developed to implement the gradient boosting algorithm for fitting the SPH model with high-

dimensional covariate variables. Simulation studies demonstrate that in many scenarios SurvBoost 
can achieve better selection accuracy and reduce computational time substantially compared to the 

existing R package that implements boosting algorithms without stratification. The proposed R 

package is also illustrated by an analysis of gene expression data with survival outcome in The 

Cancer Genome Atlas study. In addition, a detailed hands-on tutorial for SurvBoost is provided.

Introduction

Variable selection for high-dimensional survival data has become increasingly important in a 

variety of research areas. One of the most popular methods is based on the proportional 

hazards (PH) model. Many penalized regression methods including adaptive lasso and 

elastic net have been proposed for the PH model (Tibshirani, 1997; Simon et al., 2011; 

Goeman, 2010). Alternatively, boosting described by Bühlmann and Yu (2010) has been 

adopted for variable selection in regression models and the PH model via gradient descent 

techniques. It can have a better variable selection accuracy compared with other methods in 

many scenarios. The R package mboost has been developed and become a powerful tool for 

variable selection and parameter estimation in complex parametric and nonparametric 

models via the boosting methods (Hothorn et al., 2017). It has been widely used in many 

applications.

However, in many biomedical studies, the collected data may involve confounding variables 

that do not satisfy the PH assumption. For example, in cancer research you may argue that 
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gender effects are not proportional, but we are more interested in selecting genes as the 

important risk factors for cancer survival. The PH assumption can reasonably be imposed on 

modeling the gene effects but not for gender effects. In this case the stratified proportional 

hazards (SPH) models are needed. In particular, the data are often grouped into multiple 

strata according to confounding variables. The SPH model adjusts those confounding effects 

by fitting the Cox regression with different baseline hazards for different strata, while still 

assuming that the covariate effects of interest are the same across different strata and satisfy 

the proportional hazard assumption.

The SPH model has a wide range of applications for survival analysis, but no 

computationally efficient statistical software are available for high-dimensional variable 

selection in the SPH model. To fill this gap, we develop an R package, SurvBoost, to 

implement the gradient boosting algorithm for fitting the SPH model with high-dimensional 

covariates with adjusting confounding variables. SurvBoost implements the gradient descent 

algorithm for fitting both PH and SPH model. The algorithm for the PH model has been 

used for the additive Cox model in the mboost package, which cannot fit the SPH model to 

perform variable selection. The survival package is capable of performing model fitting for 

the SPH model, but does not implement variable selection desired in the high-dimensional 

setting. In our SurvBoost package, we optimize the implementations which can reduce 

30%–50% computational time. Additional options are available in the SurvBoost package to 

determine an appropriate stopping criteria for the algorithm. Another useful function assists 

in selecting stratification variables, which may improve model fitting results.

The rest of the paper is organized as follows: In Section 2, we will provide a brief overview 

of the gradient boosting method for the SPH model along with the algorithm stopping 

criteria. In Section 3, we show that SurvBoost can achieve a better selection accuracy and 

reduce computational time substantially compared with mboost. In Section 4, we provide a 

detailed hands-on tutorial for SurvBoost. In Section 5, we illustrate the proposed R package 

on an analysis of the gene expression data with survival outcome in The Cancer Genome 

Atlas (TCGA) study.

Methods

Stratified proportional hazards model

The Cox proportional hazards model is effective for modeling survival outcomes in many 

applications. An important assumption underlying this model is a constant hazard ratio, 

meaning that the hazard for one individual is proportional to that of any other individual. 

This is a strong assumption for many applications. Thus, one useful adaptation to this model 

is relaxing the strict proportional hazards assumption; one approach is to allow the baseline 

hazard to differ by group across the observations. This is known as the stratified proportional 

hazards (SPH) model.

Suppose the dataset consists of n subjects. For i = 1, … , n, denote by Ti the observed time 

of event or censoring for subject i, and δi indicates whether or not an event occurred for 

subject i. Denote by G the total number of strata and by ng the number of subjects in stratum 

g. Let gi be the strata indicator for subject i. Suppose there are p potential covariate variables 
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of our interest to select. For j = 1, … , p, let xij be the covariate j for subject i. For stratum g 
= 1, … , G, the hazard of subject i at time t in stratum g becomes

ℎg(t, Xi, g) = ℎ0, g(t) exp Xi, gT β ,

where h0,g(t) is the baseline hazard function, Xi,g is a vector of covariates and β is the 

regression coefficients of interest.

Allowing the baseline hazard to differ across strata allows flexibility often desired when 

proportional hazards is too strong. The SPH model can control effects of confounding 

variables through this stratification. The estimates of the effect of covariates remain constant 

across strata, so the model is still interpretable across all subjects.

Gradient boosting for SPH

The log partial likelihood of the SPH model is

ℓ(β) = ∑
i = 1

n
δi Xi, gT β − log ∑

ℓ ∈ Ri, g
exp{Xℓ, g

T β} ,

where β = (β1, … , βp)⊤, Xi = (Xi1, … , Xip)⊤ and Rig = {ℓ : Tℓ ≥ Ti,gl = g} for all i with gi = 

g representing the set of at risk subjects in group g. We adopt the following gradient 

boosting algorithm to find the maximum partial likelihood estimate (MPLE). Let 

Skg(i, j) = ∑ℓ ∈ RigXℓj
k exp Xℓg

T β  for k = 0,1,2.

Algorithm 1: 
Boosting gradient descent algorithm
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This algorithm updates variables one at a time, by selecting the variable which maximizes 

the first partial derivative. The number of iterations is important for ensuring a sufficient 

number of updates to the β estimates, in addition to selecting the true signals (He et al., 

2016). Note that this algorithm is slightly different than the one implemented in the mboost 
package even in the unstratified case, which we will use for comparison in the simulation 

setting. Buhlmann and Hothorn’s algorithm uses only the first derivative to update the 

estimated β values (Bühlmann and Hothorn, 2007).

Stopping criteria

Selection of the number of boosting iterations is important. Over-fitting can occur if the 

number of iterations is too large (Jiang, 2004). Additionally the stopping criteria is important 

for accuracy of the coefficient estimates, since each iteration contributes to updating the 

estimate of one coefficient. The algorithm is less sensitive to the step size (Bühlmann and 

Hothorn, 2007).

SurvBoost provides several options for optimizing the number of iterations including: k-fold 

cross validation, Bayesian information criteria, change in likelihood, or specifying the 

number of variables to select.

The Bayesian Information Criteria (BIC) is one approach for selecting the optimal number 

of boosting iterations.

BIC = − 2 {lj(θ j) − l0(θ0)} + (pj − p0) log(d), (1)

where lj(θ j) is the maximized likelihood for a model with pj selected variables and l0(θ0) is 

the maximized likelihood for the reference model with p0 selected variables. The number of 

uncensored events is d. Volinsky and Raftery (2000) argue that replacing the sample size, n, 

with d in the BIC calculation has better properties when dealing with censored survival 

models.

The extended BIC is also useful in high dimensional cases; this approach penalizes for 

greater complexity

EBIC = − 2 lj(θ j) + pj log(d) + 2 γ log
p
pj

, (2)

where (
p
pj

) is the size of the class of models that model j belongs to, p is the total number of 

variables. The value of γ is fixed between 0 and 1, selected to penalize at the appropriate 

rate. Selecting 0 will reduce this to the standard BIC; EBIC and BIC are implemented jointly 

in the package using this connection to reduce from EBIC to BIC. AIC is available as well 

as a stopping criteria, although this information might not be as effective in the high 

dimensional setting.

Cross validation is another approach which may be used to determine the stopping point. 

The goodness of fit function is calculated as suggested by Simon et al. (2011). It is the log-
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partial likelihood of all the data using the optimal β determined with data excluding fold k(β
−k) minus the log-partial likelihood excluding fold k(ℓ−k) of the data with the same β.

CV k(m) = − [ℓ{β−k(m)} − ℓ−k{β−k(m)}], (3)

Where m is the current number of iterations and k indicates the subset of data being 

excluded.

Change in likelihood is another approach incorporated in the package. This method stops 

iterating once a small change in likelihood, specified in the function, is reached.

Δℓ = − [ℓ(β(m)) − ℓ(β(m + 1))] < α, (4)

Where α is a small constant. Default change in likelihood, used in simulations, is a change 

of 0.001.

Simulation studies

This section compares the variable selection performance to a competing R package, 

mboost (Hofner et al., 2014).

Stratified Data

Stratified data was simulated such that censoring rates were relatively constant across groups 

and the expected survival time differed by group. These assumptions mimic realistic settings 

such as those encountered with data grouped by hospital or facility.

For this simulation 1,500 observations were generated into ten strata; each strata had a 

different baseline hazard following a Weibull distribution. The Weibull distribution shape 

parameter was 3 for all strata, and the scale parameter varied across strata from e−1 to e−15 

with ten evenly spaced intervals. There were 100 true signals among 4,000 variables with 

true magnitude of 2 or −2. There was uniform censoring from time 0 to 200. Fifty of these 

data sets were generated.

The following example demonstrates the importance of the stopping criteria. SurvBoost has 

five options for specifying the number of iterations as described in the methods section. 

Selecting an appropriate number of iterations depends on the goals of the analysis. For 

example, if the goal is to achieve high sensitivity cross validation or extended BIC may be 

the best approach.

The performance of different stopping criteria are compared based on several selection and 

estimation measures: sensitivity (Se), specificity (Sp), false discovery rate (FDR), and mean 

squared error (MSE). FDR is calculated as the ratio of false positives over the total number 

of selected variables. Sensitivity, specificity, and FDR aim to address the performance of the 

variable selection, while MSE aims to address the accuracy of the coefficient estimates.

This simulation presents the performance of SurvBoost compared to the R package mboost. 
The boosting algorithm implemented in mboost is very similar to that of SurvBoost but 

does not allow stratification. We will compare results between the two packages using only a 

Morris et al. Page 5

R J. Author manuscript; available in PMC 2021 June 03.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



fixed number of iterations as the stopping rule; mboost has K-fold cross validation available 

for some settings but no longer provides it for Cox PH models. All of the stopping methods 

implemented in SurvBoost are not available in mboost. The performance can be compared 

by measures such as sensitivity and mean squared error. Table 1 presents the results of 50 

simulated data sets, comparing the boosting algorithm using several different stopping 

procedures and to results from mboost. In this simulation, mboost selects fewer variables on 

average resulting in fewer false positives and more false negatives. Additionally the mean 

squared error is slightly higher than that of all the SurvBoost options.

Runtime is also an important factor with this algorithm. Stratification speeds up the 

algorithm as seen in the first simulation. All runtimes were generated on a MacBook with 

2.9GHz Intel Core i5 and 16GB memory.

To further demonstrate the importance of using the SPH model, we compared results of 

modeling with and without stratification for data simulated with ten strata. In this setting the 

true signal for all 100 variables is 0.75 to illustrate the performance with a smaller effect 

size.

From this example we can evaluate the importance of using the stratified model. This case 

demonstrates that when not stratifying by group the model is not as sensitive to the true 

signals, resulting in lower sensitivity. We also observe a larger or similar number of variables 

selected, meaning that there are a larger number of false positives when ignoring the 

stratification. Depending on the context, a larger number of false positives may be very 

undesirable. The algorithm implemented for the Cox PH model is slightly different than the 

one used in SurvBoost, which can be seen here by the difference in the two unstratified 

rows.

Unstratified Data

Another simulation was used to compare performance of our method to mboost when 

stratification is not necessary for appropriate modeling. Similarly to the stratified case, four 

thousand variables were generated for 1,500 observations but without stratification. The 

baseline hazard followed a Weibull distribution, with shape parameter equal to 5 and scale 

equal to exp−5. The true β contained 100 true signals of magnitude 2 or −2 out of 4,000 

variables.

We can observe in Table 2 that SurvBoost performs similarly to mboost under these 

conditions. mboost tends to select fewer variables than SurvBoost, so in this simulation 

mboost has fewer false positives and more false negatives compared to SurvBoost.

Illustration of package

This section provides a brief tutorial on how to use this package based on simulated data. In 

order to install the package, several other R packages must be installed. The code relies on 

Rcpp, RcppArmadillo, and RcppParallel in order to improve computational speed 

(Eddelbuettel et al., 2018a,b; Allaire et al., 2018). Additionally the survival package is used 

for simulation and post selection refitting for inference and will be required for installation 
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of SurvBoost (Therneau, 2017). If working on a Windows machine, installing Rtools is also 

necessary. The following line of R code installs the package from CRAN.

R > install.packages(“SurvBoost”)

Model fitting

The boosting_core() function requires similar inputs to the familiar coxph() function from 

the package survival.

boosting_core(formula, data = matrix(), rate = 0.01, num_iter = 500, …)

The input formula has the form Surv(time,death) ~ variable1 + variable2. The input data is 

in matrix form or a data frame. Two additional parameters must be specified for the boosting 

algorithm: rate and num_iter. Rate is the step size in the algorithm, although choice of this 

may not impact the performance too significantly (Bühlmann and Hothorn, 2007), default 

value is set to 0.01. Selecting an appropriate number of iterations to run the algorithm will, 

however, have a greater impact on the results. The last input num_iter is used to determine 

the number of iterations to run the algorithm, default value is 500.

Simple example

We present a simple example demonstrating the convenience of using the package for 

stratified data. We simulate survival data for five strata with different constant baseline 

hazards.

R > TrueBeta

 [1] 0.5 0.5 0.0 0.0 0.0 −0.5 0.5 0.5 0.0 0.0

R > set.seed(123)

R >  data_small <- simulate_survival_cox(true_beta=TrueBeta,

               base_hazard=“auto”,

               num_strata=5,

               input_strata_size=100, cov_structure=“ar”,

               block_size=5, rho=0.6, censor_dist=“unif”,

               censor_const=2, tau=Inf, normalized=F)

We have p = 10 and ∣βj∣ ranges from 0 to 0.5. There are five “facilities” with average size of 

100 each representing one stratum, and n is approximately 500. The covariance structure 

within the blocks is AR(1) with correlation 0.6. The censoring rate is about 33%. In this case 

the variable strata_idx indicates the variable to stratify on in the survival model; each 

“facility” in this simulated data has a different baseline hazard function.

Another feature of the package assists with determining variables to stratify on if this 

information is unknown. The function strata.boosting will print box plots and a summary 
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table of the survival time grouped by splits in the specified variable. The variable can be 

categorical or continuous; if continuous, the function will split on the median value to 

demonstrate whether there appears to be a difference in the survival time distribution for the 

two groups. This information alone does not suggest that stratification on this variable is 

necessary. It is intended to be a tool to confirm if there are differences seen across groups, 

when stratification is anticipated to be necessary.

R > strata.boosting(data_small$strata_idx, data_small$time)

  as.factor(x)          Min        Q1    Median      Q3       Max

1            1 0.0046772744 0.1163388 0.3108169 1.096236 1.693283

2            2 0.0005600448 0.1422992 0.5849665 1.270754 1.951286

3            3 0.0057943145 0.1371938 0.9125127 1.314191 1.989180

4            4 0.0042511208 0.1998902 0.5797646 1.437124 1.960646

5            5 0.0015349222 0.1283325 0.5896426 1.325094 1.873137

Simulated data includes a vector of survival or censoring time, time, indicator of an event, 

delta, and matrix of covariates, Z. Then generate the formula including all possible variables 

for selection.

R > time <- data_small$time

R > delta <- data_small$delta

R > Z <- as.matrix(data_small[,-c(1,2,3)])

R > covariates <- paste(“strata(strata_idx)+”, paste(colnames(Z),

    collapse = “+”))

R > formula <- as.formula(paste(“Surv(time,delta)~”, covariates))

Run the boosting_core() function to obtain the variables selected. This example uses the 

number of iterations control as a fixed input of 75 and update rate of 0.1.

R > test1 <- boosting_core(formula,

+              data=data_small,

+              rate=0.1,

+              num_iter=75)

R > summary.boosting(test1)

Call:

boosting_core(formula = formula, data = data_small, rate = 0.1,

    num_iter = 75)

 data: data_small
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 n = 506

 Number of events = 371

 Number of boosting iterations: mstop = 75

 Step size = 0.1

 Coefficients:

        V1         V2         V6         V7         V8

 0.4486589  0.3676104 −0.2150421  0.2384806  0.4728502

Function summary.boosting() displays the variables which are selected as well as the 

coefficient estimates and the number of boosting iterations performed. Set the argument 

all_beta = TRUE to see all the variables, not just those selected.

To use a different method for the number of boosting iterations use the arguments 

control_method and control_parameter. The value of control_parameter should be a list 

containing the value of the parameter(s) corresponding to the method specified by 

control_method. For example,

R > test2 <- boosting_core(formula, data=data_small, rate=0.1,

           control_method=“num_selected”, 

control_parameter=list(num_select=5))

R > summary.boosting(test2)

Call:

boosting_core(formula = formula, data = data_small, rate = 0.1,

    control_method = “num_selected”, control_parameter = list(num_select = 

5))

 data: data_small

 n = 506

 Number of events = 371

 Number of boosting iterations: mstop = 104

 Step size = 0.1

Coefficients:

        V1         V2         V6         V7         V8

0.11828718 0.11021464 −0.05292158 0.25561965 0.05199151

 Number of iterations:  10

This option iterates until the specified number of variables, 5 in this example, are selected. 

See methods for other stopping criteria. Note that in the package BIC and EBIC are 

available jointly in one option when control_method is set to "BIC". Setting the parameter γ 
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= 0 will reduce the EBIC penalty to the BIC penalty. In order to implement EBIC, a nonzero 

value of gamma should be specified in control_parameter.

The plot.boosting() function displays a plot of the selection frequency by the number of 

iterations. Another option of the plot.boosting() function is to plot the coefficient paths of 

each variable by the number of boosting iterations. See Figures 2 and 3.

The function predict.boosting() provides an estimate of the hazard ratio for each observation 

in the dataset provided, relative to the average of p predictors.

R > predict.boosting(test1)[1:6]

46.385476 1.823920 42.049932 16.427860 4.013200 2.243711

The model selected using boosting can be refit with coxph() for post selection inference. The 

function post.selection.fitting.boosting() will perform this refitting and output the coefficient 

estimates with corresponding standard errors and p-values. Note that the statistical 

inferences performed here are conditional on the variable selection results. The 

interpretation of p-values and standard errors are fundamentally different from the regular 

unconditional statistical inferences. The performance of conditional statistical inferences is 

highly dependent on the variable selection accuracy. In our case, it depends on the choice of 

stopping rule.

R > summary.test1 <- summary.boosting(test1)

R > fmla <- summary.test1$formula

R > post.selection.fitting.boosting(fmla, data=data_small)

Call:

coxph(formula = fmla, data = data)

  n = 506, number of events = 371

       coef exp(coef) se(coef)      z Pr(>∣z∣)

V1  0.59181   1.80726  0.07454  7.940 2.00e-15 ***

V2  0.48079   1.61736  0.06948  6.920 4.53e-12 ***

V6 −0.51830   0.59553  0.07145 −7.254 4.05e-13 ***

V7  0.51108   1.66709  0.08479  6.028 1.66e-09 ***

V8  0.54758   1.72907  0.07116  7.695 1.42e-14 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '*' 0.1 ' ' 1

   exp(coef) exp(-coef) lower .95 upper .95

V1    1.8073     0.5533    1.5616    2.0915

V2    1.6174     0.6183    1.4114    1.8533

V6    0.5955     1.6792    0.5177    0.6851

V7    1.6671     0.5998    1.4118    1.9685
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V8    1.7291     0.5783    1.5040    1.9879

Concordance= 0.762  (se = 0.036 )

Rsquare= 0.487   (max possible= 0.997 )

Likelihood ratio test= 338.1 on 5 df,   p=0

Wald test            =287.8 on 5 df,    p=0

Score (logrank) test = 299.1 on 5 df,   p=0

TCGA data example

Data from three breast cancer cohorts was used to demonstrate this method on data outside 

of the simulation framework. There were 578 patients included in the combined data, with 

8,864 variables measured for each patient: 8,859 genes and 5 phenotypic variables. The 

phenotype variables included age at diagnosis, tumor size, cancer stage, progesterone-

receptor status, and estrogen-receptor status. The data can be downloaded from The Cancer 

Genome Atlas (TCGA) (Naderi et al., 2006; Chin et al., 2006; Miller et al., 2005) or from 

GitHub using the following R code.

R > library(piggyback)

R > pb_download(“data.tcga.tsv.gz”,

            repo = “EmilyLMorris/survBoost”)

R > data <- read_tsv(“data.tcga.tsv”)

The patients were split into two cohorts depending on their cancer stage and tumor size. One 

cohort contained patients with a less severe prognosis, cancer stage of one and tumor size 

less than the median; the other cohort contained those with cancer stage greater than one 

and/or with a tumor larger than the median size.

R > fit.plot <- survfit(Surv(survival_time, survival_ind) ~ 

as.factor(severity), data=data)

R > ggsurvplot(fit.plot,

           conf.int = TRUE,

           risk.table = TRUE,

           risk.table.col=“strata”,

           ggtheme = theme_bw(), palette = “grey”)

This plot demonstrates that the proportional hazards assumption may not hold in this case. 

Stratifying based on this criteria generates the following results.

Using stability selection (Meinshausen and Bühlmann, 2010), 14 variables were identified 

with selection frequencies greater than 50% from 50 iterations of subsampling. Age and 

progesterone-receptor status were selected in addition to 12 genes. The boosting algorithm 

was performed with the number of iterations fixed at the sample size of 578.
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Several of the genes selected in this analysis have been previously identified as having an 

association with breast cancer. Psoriasin (S100A7) has been associated with breast cancer 

(Al-Haddad et al., 1999). Several studies have found COL2A1 to be part of gene signatures 

for predicting tumor recurrence (Yu et al., 2007; Wang et al., 2005). Other genes selected 

that have been identified as part of a gene signature or association with breast cancer tumor 

progression risk include: ZIC1 (Boersma et al., 2008), CYP2B6 (Tozlu et al., 2006), ELF5 

(Chakrabarti et al., 2012), IGJ (Boersma et al., 2008), DHRS2 (Krijgsman et al., 2012), and 

CEACAM5 (Blumenthal et al., 2007). Mboost using the same criteria but without a 

stratified model only identifies one gene of importance, MC2R, demonstrating the utility of 

the SPH model in this context.

Conclusion

In this article, we introduce a new R package SurvBoost which implements the gradient 

boosting algorithm for high-dimensional variable selection in the stratified proportional 

hazards (SPH) model, while most existing R packages, such as mboost only focus on the 

proportional hazards model. In the simulation studies, we show that SurvBoost can improve 

the model fitting and achieve better variable selection accuracy for the data with stratified 

structures. In addition, we optimize the implementations of the gradient boosting in both the 

SPH and the PH models. For the PH model fitting, SurvBoost can reduce about 30%-50% 

computational time compared to mboost. In the future, we plan to extend the package to 

handle more complex survival data such as left-truncation data and interval censoring data.
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Figure 1: 
Box plots of survival time by strata index in simulated data generated by the function 

strata.boosting.
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Figure 2: 
Plot generated by plot.boosting function, variable selection frequency by number of boosting 

iterations.
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Figure 3: 
Plot generated by plot.boosting function with option “coefficients,” coefficient paths for 

variables selected by number of boosting iterations.
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Figure 4: 
Survival curves for the two strata based on cancer stage and tumor size.
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Figure 5: 
Selection frequencies for genes or phenotype variables that were selected at least 50% of the 

time with stability selection.
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Table 1:

Results from simulation with approximately 1,500 observations in 10 strata and 4,000 variables to be selected. 

The table presents averages with the standard deviation, in parentheses, from 50 simulated datasets. Sensitivity 

(Se) is calculated as the proportion of true positives out of the total number of true signals. Specificity (Sp) is 

calculated as the proportion of true negatives out of the total number of variables that are not true signals. The 

false discovery rate (FDR) is the proportion of false positives in the total number of selected variables.

stopping
method

number
selected Se Sp FDR MSE number of

iterations
runtime

(seconds)

SurvBoost
fixed

111 (5) 0.90 (.02) 0.99 (.00) 0.19 (.04) 382 (1) 500 (0) 163 (20)

mboost 99 (4) 0.82 (.03) 1.00 (.00) 0.17 (.04) 387 (1) 500 (0) 396 (254)

SurvBoost cv 379 (24) 1.00 (.00) 0.93 (.01) 0.74 (.02) 333 (3) 3896 (275) 5742 (595)

SurvBoost # selected 101 (0) 0.84 (.03) 1.00 (.00) 0.17 (.03) 385 (2) 385 (40) 163 (24)

SurvBoost likelihood 121 (6) 0.95 (.02) 0.99 (.00) 0.21 (.04) 378 (1) 632 (15) 242 (33)

SurvBoost EBIC 140 (7) 0.99 (.01) 0.99 (.00) 0.29 (.04) 370 (1) 993 (10) 624 (60)

R J. Author manuscript; available in PMC 2021 June 03.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Morris et al. Page 21

Table 2:

Results from simulation with approximately 1,000 observations and 1,000 possible variables for selection with 

100 true signals. The table presents averages with the standard deviation from 50 simulated datasets. All 

methods in this table were run using the SurvBoost package except for the unstratified mboost row.

Stopping
Method

number
selected Se Sp FDR MSE number of

iterations
runtime

(seconds)

Stratified

fixed 116 (7) 0.71 (.04) 0.95 (.01) 0.39 (.04) 49 (0) 500 (0) 14 (1)

cv 198 (16) 0.90 (.04) 0.88 (.02) 0.54 (.03) 50 (2) 1585 (316) 263 (60)

# selected 100 (0) 0.65 (.04) 0.96 (.00) 0.36 (.04) 50 (1) 391 (42) 11 (2)

likelihood 112 (8) 0.69 (.04) 0.95 (.01) 0.38 (.03) 49 (1) 472 (33) 14 (2)

EBIC 161 (9) 0.84 (.03) 0.91 (.01) 0.48 (.04) 44 (1) 41 (45) 29 (3)

Unstratified
SB fixed 122 (7) 0.67 (.04) 0.94 (.01) 0.45 (.04) 49 (1) 500 (0) 13 (1)

mboost 58 (5) 0.41 (.03) 0.98 (.00) 0.30 (.06) 53 (0) 500 (0) 13 (1)
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Table 3:

Results from simulation with approximately 1,500 observations and 4,000 possible variables for selection with 

100 true signals. The table presents averages with the standard deviation from 50 simulated datasets.

stopping
method

number
selected Se Sp FDR MSE number of

iterations
runtime

(seconds)

SurvBoost
fixed

104 (3) 0.94 (.02) 1.00 (.00) 0.10 (.02) 381 (.45) 500 (0) 138 (11)

mboost 98 (4) 0.89 (.03) 1.00 (.00) 0.10 (.03) 384 (.36) 500 (0) 220 (198)

SurvBoost cv 141 (7) 1.00 (.00) 0.99 (.00) 0.29 (.04) 298 (1) 5010 (0) 6531 (18)

SurvBoost # selected 100 (0) 0.91 (.02) 1.00 (.00) 0.10 (.02) 382 (2) 452 (62) 151 (18)

SurvBoost likelihood 109 (3) 0.98 (.01) 1.00 (.00) 0.10 (.03) 382 (.54) 668 (14) 216 (18)

SurvBoost EBIC 112 (4) 0.99 (.01) 1.00 (.00) 0.11 (.03) 366 (1) 999 (.25) 530 (27)
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Table 4:

Stopping criteria options for boosting_core function.

Call Method

boosting_core(formula, data) fixed mstop = 500

boosting_core(formula, data, num_iter=1000) fixed mstop = specified value

boosting_core(formula, data, control_method="cv") 10-fold cross validation

boosting_core(formula, data, control_method="num_selected", control_parameter = 5) number selected, need to specify number of variables

boosting_core(formula, data, control_method="likelihood") change in likelihood

boosting_core(formula, data, control_method="BIC") minimum BIC or EBIC

boosting_core(formula, data, control_method="AIC") minimum AIC
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Table 5:

Functions available in SurvBoost package. Every function accepts a boosting object input to generate the 

corresponding result.

Function Result

summary.boosting() prints summary of variable selection and estimation

plot.boosting() plots variable selection frequency

predict.boosting() generates predicted hazard ratio for each observation or new data

post.selection.fitting.boosting() refits model with only subset of selected covariates
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