Skip to main content
. Author manuscript; available in PMC: 2021 Jun 3.
Published in final edited form as: R J. 2020 Jun;12(1):105–117. doi: 10.32614/rj-2020-018

Table 5:

Functions available in SurvBoost package. Every function accepts a boosting object input to generate the corresponding result.

Function Result
summary.boosting() prints summary of variable selection and estimation
plot.boosting() plots variable selection frequency
predict.boosting() generates predicted hazard ratio for each observation or new data
post.selection.fitting.boosting() refits model with only subset of selected covariates