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Abstract

Value signals in the brain are important for learning, decision-making, and orienting behavior 

toward relevant goals. Although they can play different roles in behavior and cognition, value 

representations are often considered to be uniform and static signals. Nonetheless, contextual and 

mixed representations of value have been widely reported. Here, we review the evidence for 

heterogeneity in value coding and dynamics in the orbitofrontal cortex. We argue that this diversity 

plays a key role in the representation of value itself and allows neurons to integrate value with 

other behaviorally relevant information. We also discuss modeling approaches that can dissociate 

potential functions of heterogeneous value codes and provide further insight into its importance in 

behavior and cognition.

Value

In psychology and neuroscience, value as a concept is often loosely defined. Something of 

value may be simple, like a chocolate donut, or complex like a job promotion; it may be 

concrete, like a bank note, or abstract like an idea; it may meet biological needs, like food 

and drink, or not, like art and music. Value can be something sought or something 

experienced. It can drive learning or be learned, and can alter attention, memory, and 

motivation. The field of economics quantifies “utility”, a concept that is similar to value but 

in many cases is unable to capture the full spectrum of behavior and psychology related to 

value itself (Camerer, 2014). Despite this intangibility, there is a common understanding that 

value exists on a continuum from bad to good, and for the purposes of this review we will 

largely rely on this intuitive definition. Departing from the traditional perspective, however, 

we propose that value representations in the brain should not be uniform, idealized signals 

that vary in direct relation to this continuum. Instead, our discussion will focus on the 

heterogeneity of value signals in neural circuits, and how this might reflect the myriad ways 

that representing value is critical for adaptive behavior and cognition. We also examine how 

this diversity of coding might emerge and what roles it might play in network computations. 

However, we start from the premise that value is a poorly constrained construct, compared, 

for instance, to concrete sensory or motor events, and encompasses broadly different 

ethological functions, types of information, and cognitive processes.
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Perhaps because value has varied qualities and roles, it is richly represented throughout the 

brain (Vickery et al., 2011). Across species, value signals can be resolved at the level of 

single neurons, local field potentials, population codes and large-scale network activity 

(Padoa-Schioppa & Assad, 2006; Rich & Wallis, 2017; Vickery et al., 2011; Wallis & Miller, 

2003). Subcortical regions including the amygdala and areas of the ventral and medial 

frontal cortex are most strongly associated with signaling value; however, different areas are 

believed to play distinct roles in learning and value-mediated behavior (Wallis & Kennerley, 

2010). For example, since the early demonstrations of intracranial self-stimulation, the 

ventral striatum (VS) and related circuits have been associated with positive reinforcement 

(Olds & Milner, 1954), and converging evidence indicates that value signals here underlie 

hedonic effects of reward (Berridge et al., 2009). In contrast, most frontal cortical regions do 

not support self-stimulation (Mora et al., 1980), or do so in a context-dependent manner 

(Mora et al., 1979), suggesting that value-related activity in these regions plays a different 

role.

Further insights into functional specificity across frontal cortex can similarly be gained 

through analysis of value-related activity in different regions. For instance, although value is 

encoded throughout the frontal cortex (e.g. (Matsumoto et al., 2003; Roesch & Olson, 2003; 

Wallis & Miller, 2003; Watanabe, 1996)), the orbitofrontal cortex (OFC) and anterior 

cingulate cortex (ACC) have been most strongly implicated in value-related behavior 

(Amiez et al., 2005; Knutson et al., 2003; Knutson et al., 2005; Sallet et al., 2007). Both 

regions encode value signals, but differences in response profiles have suggested distinct 

functions (Wallis & Kennerley, 2010). For instance, OFC neurons signal both pre- and post-

decision variables, including the value of available options (Padoa-Schioppa & Assad, 2006; 

Rich & Wallis, 2016), consistent with the idea that they causally contribute to decision 

formation (Padoa-Schioppa & Conen, 2017). On the other hand, ACC encodes the value of a 

reward chosen by the subject but not the value of each individual option, suggesting that 

these areas are involved in processing that occurs after a choice is made (Cai & Padoa-

Schioppa, 2012). ACC value coding also tends to lag that of OFC, relates actions to their 

associated outcomes, and encodes prediction error signals (Kennerley et al., 2011; Luk & 

Wallis, 2013; Wallis & Kennerley, 2010; Wallis & Rich, 2011), so that in comparison to 

OFC, ACC value signals appear to be downstream and therefore more proximal to the 

behavioral execution of a choice. As such, the ACC has been linked to a variety of evaluative 

functions including updating of beliefs and models of the environment, committing to a 

course of action, determining the benefits and costs of an action, and exploring or searching 

for alternatives (Amemori & Graybiel, 2012; Heilbronner & Hayden, 2016; Kolling et al., 

2016), whereas the OFC is believed to be critical for learning, expectation, and decision-

making functions, particularly when they rely on unobservable variables and task structures 

(Schoenbaum et al., 2011; Wilson et al., 2014).

Comparisons such as these illustrate how heterogeneity in value signals can underlie distinct 

functions of different brain regions. In the remainder, we expand on this perspective to 

suggest that value signals within a brain area are not uniform, but dynamic and 

heterogeneous, and this complexity plays important roles in network function. We take a 

particular focus on the OFC and first discuss recent experimental results demonstrating 

heterogeneity of OFC value signals and the roles these may play in cognitive processes. We 
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then suggest ways in which artificial network models that mimic these patterns could be 

used to provide additional insights into the origin and importance of diversity in value 

signaling.

Heterogeneous value signals in OFC

A wealth of evidence supports the notion that OFC function is critical for learning and 

updating value expectations (Rudebeck et al., 2013; Schoenbaum et al., 1998; Schoenbaum 

& Roesch, 2005), and this is reflected in the predominance of value coding neurons 

observed in OFC populations. Across neurons, however, value codes are not uniform. Now-

classic studies have shown that, in a simple decision task involving different amounts and 

types of reward, most responses in OFC can be classified as encoding the subjective value of 

the chosen reward (often referred to as “chosen value” or “goal value”), the type of reward 

that was chosen, or the value of one type of reward that was offered (“offer value”) (Padoa-

Schioppa, 2013; Padoa-Schioppa & Assad, 2006). Here, chosen value is associated with a 

subject’s choice in anticipation of receiving a reward, and is distinct from “outcome value,” 

or the value computed upon receiving the reward itself (Peters & Buchel, 2010). As task 

demands change, however, the types of value signals found in OFC become more complex. 

Human and rodent studies support the notion that many value signals in OFC are sensory-

specific, and therefore represent the combination of outcome identity and value (Howard et 

al., 2015; Stalnaker et al., 2014). For instance, even when valued the same, different food 

items like cupcakes or potato chips elicit distinguishable value responses in human OFC 

(Howard et al., 2015), and these change when the appeal of the food is altered by feeding the 

participant to satiety (Howard & Kahnt, 2017). We have also found sensory-specific value 

signals encoded in monkey OFC neurons, though they are relatively weak compared to 

nonspecific values (Rich & Wallis, 2016, 2017). Value information can also be mixed with 

other decision variables like choice, expected outcome and recent history (Kimmel et al., 

2020; Saez et al., 2018).

The neural signals that reflect the evaluation of different items or aspects of items can also 

exhibit nonrandom trial-by-trial variability, suggesting that they are more deeply entwined in 

cognitive processing than simply signaling value. For instance, chosen value neurons have 

slightly stronger signals when the competing offer is more valuable (Padoa-Schioppa, 2013). 

Although one possibility is that this stronger signal originates from variability in subjective 

evaluation that biases choices, the fact that chosen values are defined by the subject’s 

decision suggests that the variability may be more important to post-decision processing. 

Nonetheless, value signals such as these, that integrate aspects of the specific decision or 

task, may be important for specifying the particular goals of motivated behavior, while 

nonspecific value signals may serve more general roles in reward-based learning.

Beyond task-specific information, OFC value signals are also modulated by attention. For 

instance, OFC neurons that encode the value of a visual cue become more selective when 

visual fixations focus on the cue (McGinty et al., 2016). When there are two cues, visual 

perturbations that attract attention to one or the other influence the firing rate of value-

coding neurons (Xie et al., 2018). Moreover, value signals can interact in an attention-

dependent manner: in OFC they vary with the difference between the attended and 
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unattended options (Lim et al., 2011) indicating that attention influences which values are 

encoded, how these values relate to one another, and the magnitude of the value signal itself. 

Together, the impact of factors such as choice type, choice context, task structure, and 

attention on OFC value signals demonstrate that value representations are heterogeneous and 

dynamically modulated. In addition, in some cases this variability can be traced back to 

features of the task and behavior that are unrelated to value itself.

Non-canonical value coding

The canonical single neuron value representation described so far is a monotonic and 

approximately linear relationship between value and firing rate (Padoa-Schioppa & Assad, 

2006). Although this is the most prevalent form of value representation in OFC, we have 

also found that a non-negligible proportion of neurons robustly encode value with nonlinear 

and non-monotonic activities (Enel et al., 2020). In the task, monkeys were presented one of 

8 possible stimuli distributed among 4 discrete values, and received the corresponding 

reward after a delay. Approximately 13% of the recorded units were not linearly related to 

value, but significantly encoded value as measured with an ANOVA. Some neurons had a 

clear preference for a specific value, whereas others had highest firing rates for the extreme 

values, and others had profiles that could not be readily interpreted (Figure 1). This 

nonlinear encoding was not exclusive to the timing of stimulus presentation, and occurred at 

various times during the delay between cue presentation and outcome delivery. Because 

linear value coding was most prevalent and decoding value with linear neurons only did not 

decrease accuracy, the role of these nonlinear activities remains unclear. However, the 

presence of nonlinear and non-monotonic value representations is consistent with reported 

representations of other magnitude variables like duration, distance and numbers, all of 

which are represented with both monotonic and non-monotonic activities (Dehaene & 

Brannon, 2011; Eichenbaum, 2014; Funahashi, 2013; Moser & Moser, 2008; Nieder & 

Dehaene, 2009; Wittmann, 2013).

One possibility is that nonlinear value neurons reflect an extreme discretization of value 

information in an overlearned task. Monkeys were overtrained in this experiment, and this 

was reflected in their highly accurate and efficient behavioral performance. As a 

consequence, they were very familiar with the stimuli and the 4 different levels of value. It is 

therefore possible that the value scale of the task came to be represented more categorically 

than ordinally, and a subset of neurons developed unique responses to value categories. In 

the task, monkeys were also presented with choice trials in which two reward-predicting 

cues appeared, and the animal made a choice among the cues with a saccade. One potential 

benefit of discretizing value is that comparing simultaneously presented stimuli is more 

computationally straightforward when individual values have their own representations. For 

instance, when the number of options is small and consistent, subjects quickly learn which 

stimuli correspond to the highest or lowest possible rewards. This can make for an easy 

choice using a simple heuristic: choose the highest valued stimulus if available, and avoid 

the lowest valued. This hypothesis could explain the existence of OFC neurons encoding the 

lowest and highest values available in this task. Similarly, a small number of stimuli means 

that only a limited number of combinations of two-value choices exist. By representing 

individual values, another heuristic could potentially emerge with overtraining, in the form 
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of a direct mapping between value combinations and choice, bypassing a potentially costly 

and time-consuming value comparison.

Another perspective is that nonlinear coding increases the dimensionality of value signals in 

a neural population, and this could offer computational advantages to a value processing 

network. Nonlinear mixing of task variables has been shown to serve a similar function in 

other regions of prefrontal cortex (Fusi et al., 2016; Rigotti et al., 2013). In this case, 

prefrontal neurons were found to combine multiple task variables in nonlinear ways that at 

first appeared to be random, but actually served to increase the dimensionality of the task 

representations the network could generate, which facilitates efficient and flexible read-outs 

with simple linear methods. The proportion of neurons with nonlinear mixed selectivity also 

increases with learning, supporting the view that this is an efficient means of coding 

information (Dang et al., 2020). Similarly, nonlinear coding should facilitate value decoding 

from a population of neurons, and future studies could investigate whether such coding also 

increases with learning.

To demonstrate that nonlinear coding improves decodability, we created synthetic neural 

data sets with defined properties (Figure 2). Our goal was to hold all aspects of the simulated 

populations constant while systematically varying the mapping between mean firing rate and 

value to create populations that vary monotonically or non-monotonically. Thus, each 

“neuron” was characterized by a firing rate on each of 1200 trials, with trials randomly 

assigned an ordinal value (1 to 4). One group of neurons had average firing rates that 

increased or decreased monotonically with value. These were simulated by defining a mean 

firing rate between 0 and 20 Hz for each neuron responding to each value, and drawing the 

neuron’s response on a given trial from a Gaussian distribution centered on that value. Two 

sources of noise were added to these firing rates. The first was neuron-specific noise that 

defined the standard deviation of the Gaussians from which the trial-wise firing rates were 

drawn. This varied by neuron between 15 and 30. The second was shared noise that varied 

by trial but was the same across all neurons in our simulated populations. Shared noise was 

drawn from a Gaussian with 0 mean and standard deviation ranging between 1.5 and 3. Non-

monotonic neurons were identical to monotonic value neurons, except that the order of the 

value-to-mean firing rate assignments were shuffled pseudorandomly, with the constraint 

that the mapping could not be constantly increasing or decreasing. A third group of 

nonselective neurons was created by following the same procedure, except the response on 

each trial was drawn from any of the four value distributions. Examples of each type of 

neuron are shown in Figure 2A. To ensure each group had the characteristics we aimed for, 

we used a general linear model to predict each neuron’s firing rate from trial-wise value, and 

showed that monotonic neurons were linearly related to value, with either positive or 

negative regression coefficients. Non-monotonic neurons were less linearly related to value 

with regression coefficients widely distributed around zero, and nonselective neurons had 

regression coefficients tightly grouped around zero.

With these simulated neurons, we next tested our ability to decode trial-wise value from 

different populations using linear discriminant analysis with 10-fold cross validation. To do 

this, we created populations of 100 neurons, where 50% were non-selective and 50% were 

value-coding. We compared these populations when all value-coding neurons were 
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monotonic, and as the proportion of non-monotonic neurons increased one neuron at a time, 

until there were equal proportions of each type. We found that decoding accuracy increased 

asymptotically as more non-monotonic neurons were added to the population (Figure 2B). 

This demonstrates that, although the non-monotonic codes may not be intuitively related to 

values, when present in a population they increase decodability at a network level, 

effectively making the value signal more robust. Similar to the demonstration that nonlinear 

mixed selectivity offers computational advantages to a network encoding multiple types of 

information (Fusi et al., 2016; Rigotti et al., 2013), nonlinear coding of value increases 

dimensionality of neural population activity, which can enhance algorithmic readout by 

simple linear classifiers.

Dynamic value signals in OFC

So far, we have described multiple facets of heterogeneity in OFC value signals, including 

those reflecting non-value information relevant to the decision process. Incorporating such 

information into value-related signals may be a critical mechanism for coping with changing 

cognitive or behavioral demands that arise across the course of a decision. In many cases, 

there are gaps of time between a predictive event or cue and the valuable outcome it signals, 

and unrelated cognitive demands may intervene between the two. In order for value 

expectations to be updated effectively, there must be a neural mechanism that either 

maintains these expectations across time or retrieves them at the time an outcome is 

experienced. Behavioral evidence indicates that value expectations are likely maintained 

across these delays when they are relatively short. In the time following a predictive cue, 

attention is oriented to rewarding stimuli, and higher value stimuli more effectively attract 

attention (McGinty et al., 2016). Similarly, motor responses are faster, memory performance 

is more accurate, and task completion is more consistent when subjects expect a higher 

value outcome (Kennerley & Wallis, 2009; Rich & Wallis, 2016), all suggesting the presence 

of value information during cue-outcome delays. Using value representations held in mind to 

organize processing like attention and motor preparation is evolutionarily advantageous, 

because it increases the likelihood that a potential reward will be obtained. Thus, beyond 

neural signals that could serve the role of a “value eligibility trace” by holding an expected 

value online to facilitate subsequent updating, value expectations maintained across delays 

can also influence behavior to prepare the animal to obtain a reward.

In other cognitive tasks, holding information across delays is a key function of working 

memory (WM), which is known to depend on the dorsolateral prefrontal cortex (dlPFC) in 

primates (Barbey et al., 2013; Butters & Pandya, 1969; Levy & Goldman-Rakic, 1999). In 

dlPFC, different neural dynamics have been found to represent information stored in 

working memory, and these proposed mechanisms of WM can provide a framework for 

investigating how value representations are maintained across delays. On one hand, trial-

averaged data shows persistent spiking, supporting the view that there is a stable neural 

representation of the information held in WM (Constantinidis et al., 2018). However, 

individual neurons can exhibit great variability in firing rate across cell groups, within 

individual cells, and across the duration of the trial (Brody et al., 2003; Shafi et al., 2007), 

suggesting a more dynamic signal and raising the question of how stable representations 

might be stored in changing neural activity. Recent work has found stable subspaces in 
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dlPFC activity, such that WM signals are maintained in an unchanging format across delays 

(Murray et al., 2017; Spaak et al., 2017). These appear to be embedded in time varying 

coding of task variables, in which selectivity is transiently present within individual neurons. 

In this case, stable coding may permit consistent readout of WM information, while dynamic 

coding provides time-relevant information (Lee et al., 2020). Given these perspectives on 

maintenance of cognitive information in WM, we reasoned that similar insights into the 

cause and function of heterogeneous value signals in OFC might be gained by examining 

their dynamics across delays.

To investigate the dynamics of value representations, we recorded populations of neurons 

from OFC while monkeys performed a value-based decision-making task in which a visual 

cue predicted a delayed reward (Enel et al., 2020). Because stable but not dynamic codes 

should generalize across time, we used a cross-temporal decoding method (Meyers et al., 

2008) to assess the similarity of value representations between two time points during the 

delay (Figure 3). A stable signal would result in equally high decoding accuracy at all pairs 

of time points (i.e., a decoder trained on one time point can generalize to distant time 

points), whereas high accuracy restricted to pairs of data points that are close in time is an 

indication that the value signal evolves across the delay, and is therefore dynamic.

Our results did not strictly conform to either stable or dynamic pictures. Instead, OFC neural 

populations showed an intermediate level of stability. The most reliable value signals were 

extracted when the same time windows were used to train and test the decoder, consistent 

with a dynamic signal that evolved over time. However, we could also decode weaker but 

significant value signals when the decoder was trained and tested on more distant time 

points, suggesting the existence of a stable signal in the same neural population. Using 

further analysis methods developed to isolate each type of signal, we confirmed that stable 

and dynamic value representations were dissociable. To do this, we combined recent 

population methods to select an ensemble of neurons with stable value coding and then 

extract a stable value subspace from this population activity. In this way, we could identify a 

very stable representation of value across the delay, consistent with what is typically 

described as a persistent representation (Constantinidis et al., 2018). Conversely, temporally 

local representations of value could be isolated with an ensemble selection method targeting 

dynamic value encoding. This yielded a representation that evolved throughout the delay via 

reliably sequenced encoding within the population (Figure 3B). Interestingly, the ensembles 

that yielded the most stable or local dynamics comprised on average only 13% and 28% of 

the full OFC population respectively. The population in dynamic ensembles was larger, most 

likely because covering the delay with successive local representations required more units 

than a stable representation, which can rely on the same units covering longer portions of the 

delay.

Thus, we demonstrated that opposite dynamics coexist within the same population of OFC 

neurons coding expected values. These two dynamical regimes have unique benefits in terms 

of information processing for specific behavioral demands, and are both able to represent 

value information over a delay. On one hand, stable value representations are relevant for 

robust and time-independent maintenance of value information. Such stability allows any 

local or downstream neurons to access the expected value information in a time independent 
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manner, making this encoding more robust because a single set of connections is able to 

extract value information in a reliable format across the duration of the delay. In other 

words, the downstream network does not have to expect value information at a particular 

time, as it is always available with a single set of readout connections.

On the other hand, dynamic representations are likely to participate in the temporal 

organization of behavior. This is because temporal information can be extracted in addition 

to value itself, and since most experiences and cognitive tasks are organized in time, this 

allows a network to be prepared to process incoming stimuli and generate behaviors. As 

noted above, expected values can influence attentional, motor, and sensory processes, and 

dynamic value representations may allow these influences to be organized in time. This 

organization may be key for both optimal processing (a network receiving an unexpected 

input is not as likely to process it optimally or even correctly) and faster behavioral output. 

Although temporal and value information could have separate and largely independent 

representations, i.e. a stable value representation and a context independent representation of 

time, this would require that a downstream network perform the extra step of integrating 

time and value. Conversely, a mixed representation means that time dependent value signals 

are readily available. Our results show that these mixed representations are robust across 

trials (Enel et al., 2020), suggesting they have been strengthened through learning, likely due 

to their relevance to performing the task. These results have notable similarity to the 

dynamic and stable WM representations reported in the dlPFC, and similar interpretations 

have been drawn regarding their relevance to behavior (Meyers, 2018). The OFC recordings 

were taken from a broad region of central OFC, including targets in Walker’s areas 11 and 

13. These were grouped into one population based on previous results that found only minor 

differences in value encoding among neurons within the recorded field (Rich & Wallis, 

2017). However other data have suggested subregional differences that could manifest in 

different value dynamics. Specifically, inactivations of the more posterior area 13 disrupted 

value updating in a devaluation paradigm but left subsequent decisions intact, while 

inactivation of anterior area 11 showed it is necessary for selections based on a devalued 

state but not during the updating process (Murray et al., 2015). Further work is needed to 

investigate whether and how different dynamics might support these proposed roles in 

behavior. Regardless, in the case of WM or evaluation, stable representations may provide a 

robust signal that can be read out by a single set of synapses, whereas dynamic 

representations could enable the concurrent encoding of time to support temporally-

organized information processing.

Insights from artificial networks

The example of artificial neurons above suggests ways that nonlinear coding might be 

computationally advantageous. Similarly, simulations of interconnected neurons that form 

artificial neural networks (ANN) can help us gain insights and test hypotheses about 

populations of neurons in general, and about value coding dynamics specifically. As 

simulations of biological networks, ANNs have many parameters like training schedules and 

network architectures that can be systematically manipulated in isolation to test effects on 

coding, dynamics and behavior (for example, as in (Barak et al., 2013)). A key benefit to this 

approach is that it allows experiments that are not possible in vivo, such as precisely and 
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repeatedly manipulating inputs or selectively lesioning neurons with particular coding 

properties. By permitting us to “edit” and examine different aspects, artificial networks 

allow us to identify and test principles that may underlie neural systems at large. Successful 

ANN models also point to potential directions of investigation in biological systems, and in 

particular, reveal ways to test theories developed with models.

Given our results that show mixed dynamics in OFC value representations, we hypothesized 

that stable attractor-like representations and temporally local ones associated with dynamical 

activities each have their own potential benefits. One of the surprising features of our study 

was the concurrent existence of both of these dynamical regimes in the same neural 

population. Traditional models of working memory are associated with attractors, whether 

they are sets of fixed points of the neural dynamics that represent discrete items (Compte et 

al., 2000) or one-dimensional manifolds in the form of linear/ring attractors that represent 

the continuous/cyclical dimension of a stimulus feature (Wang, 2001; Wimmer et al., 2014). 

In these models, the entire population of units is involved in the attractor, as if to freeze the 

network’s dynamics in a state that is specific to the information that must be remembered 

until it can be used. As a consequence, these models cannot include dynamical activities. 

Although a small proportion of persistently firing neurons recorded in prefrontal regions do 

indicate the presence of an attracting dynamic of this sort (Constantinidis et al., 2018; Fuster 

& Alexander, 1971; Goldman-Rakic, 1995), many more neurons display dynamic or 

transient patterns of activity (Barak et al., 2010; Goldman-Rakic, 1995; Lundqvist et al., 

2016). Our study indicates that, in OFC, the representation of value follows both of these 

patterns as well. Consistent with a recent studies (Murray et al., 2017; Parthasarathy et al., 

2019) our results hint at the possibility that attracting and dynamical patterns of activity 

representing task-relevant information are concurrently present throughout the PFC. 

Although pure attractor networks are very efficient for holding information “online”, they 

are not biologically plausible. That is, attracting dynamics cannot involve the entire 

population activity of a brain region, as this would leave the network unresponsive to 

incoming inputs. Mixing stable and dynamic regimes may offer the advantage of allowing 

the circuit to process new inputs while maintaining a stable representation. A future 

challenge will be to assess whether these stable representations arise from attractors in 

neural populations or stable read-outs of attractor-less dynamics.

In addition, concurrent attracting and dynamic activities might have a larger role, as 

suggested by other modeling studies that successfully combined attractors and dynamic 

processing. Artificial neural networks with different architectures can display mixed 

dynamical regimes similar to those described here. These are most commonly random 

recurrent networks of the reservoir type, in which units are connected with randomly 

generated weights that remain fixed. Trained readout units feed back to the recurrent layer to 

allow for the emergence of attractors (Enel et al., 2016; Maass et al., 2007; Pascanu & 

Jaeger, 2011). In these networks, attractors involve only a fraction of the total dynamics of 

the population, which leaves room for concurrent dynamic activity. The PFC might use 

similar mechanisms to represent different types of information across time, such that the 

network represents memoranda over long periods while still processing incoming inputs. In 

the case of expected values, an attractor could stably maintain the information, while the rest 

of the network processes incoming stimuli in a way that is biased by the value being 
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represented in the attractor. These dynamics could provide a mechanism by which attention 

is enhanced by sustained value representation, resulting in lower rates of errors and shorter 

reaction times with higher predicted rewards (Anderson et al., 2011; Roesch & Olson, 

2007). In this type of mixed dynamical network, stimulus processing and behavioral output 

may both be influenced by the expected value represented by an attractor state.

In addition to the existence of attractors as part of network dynamics, the degree of their 

involvement in the representation of value may directly reflect the amount of training on the 

task that includes these values (Barak et al., 2010). Upon first exposure, the association 

between a stimulus and its outcome is expected to be weak, so representations of stimulus 

values are unlikely to be stable and carried by persistent activity. Consequently, initial 

representations are likely to be less organized and more dynamic. With training, more 

efficient schemes of value encoding might emerge and tend towards the stable and persistent 

activities. To illustrate this, three models of working memory, trained with increasingly 

stable dynamics, were developed in the context of a delayed discrimination task in which 

monkeys compared the frequency of two tactile stimulations separated by a delay (Barak et 

al., 2010). A highly dynamic random network with fixed recurrent connections (known as 

reservoir computing, described above (Jaeger, 2001; Maass et al., 2002)) was the most 

dynamic network, and a stable, hand tuned line attractor network (sometimes referred to as a 

bump attractor, (Amit, 1995; Machens et al., 2005; Wang, 2001) was the most stable 

network. An intermediate network was also created, with recurrent connections that were 

initially random but modified through training and exhibited dynamics that were a mix of 

the first two models. This intermediate network best reproduced several aspects of the 

electrophysiological recordings of macaque monkeys performing this task, suggesting that 

cortical dynamics may result from partial training of somewhat random neuronal 

connections. The authors suggest that the three models potentially represent the successive 

dynamical states visited by the PFC through learning, from unstructured and dynamic to 

more structured and stable. Future experiments could explore this challenging question with 

neural recordings obtained during the course of learning.

The degree of attracting dynamics may also depend on the task demands. A recent study 

showed that among models trained on different WM tasks, those exposed to tasks requiring 

manipulation of the remembered information were more likely to develop persistent 

activities with training (Masse et al., 2019). Similarly, neural networks trained to perform 

different WM tasks demonstrated that tasks with variable delays elicited more persistent 

activity, while those with greater temporal complexity generated more dynamic activities 

(Orhan & Ma, 2019). Supporting this theory, existing literature suggests that the structure of 

WM tasks influences representation dynamics in the PFC (Cavanagh et al., 2018; 

Parthasarathy et al., 2017; Spaak et al., 2017). This further supports the notion that stable 

and dynamic value signals arise to serve specific roles in task performance, and the existence 

of both types of signals allows the network to flexibly support a variety of cognitive 

demands.
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Summary

Here we have outlined the many ways that OFC exhibits heterogeneity in value coding. 

Value signals are frequently mixed with task-relevant information and modified by ongoing 

attentional or cognitive processes; they also take on different dynamics and non-canonical 

coding patterns. Through converging examples drawn from modeling and experimental 

work, we have proposed that this variety may be a hallmark of value representations that are 

adaptively integrated into cognitive processes. For instance, different dynamics could 

underlie different roles for value signals in integrated networks (Enel et al., 2020), and 

mixing of value with other task-relevant information could serve to increase the efficiency of 

neural coding (Fusi et al., 2016).

We close with a final observation that flexibility in value scales could explain the generality 

of value as a concept, which we alluded to in the beginning of this paper. Because the 

dynamic range of neural firing rates is limited, OFC neurons rescale their responses to 

accommodate current contexts, for example reflecting the range of values of recently 

available options (Kobayashi et al., 2010; Padoa-Schioppa, 2009). Similar scaling effects 

have been observed on EEG recordings from humans when they encounter numbers in 

blocks with different ranges (Sheahan et al., 2020). Using ANNs to model humans’ ability to 

grade numbers as lower or higher than the previous number in a sequence, numbers of the 

same relative magnitude within a block became aligned across different contexts. It was 

found that divisive normalization ensured that number scales had the same size in the neural 

representation space across contexts, and subtractive normalization registered these scales to 

align them.

The effects of these normalization steps on number scales are strikingly similar to the 

relative representation of value in OFC, suggesting an underlying mechanism for range 

adaptation. This simple explanation drawn from network modeling could have broad impacts 

on our understanding of value. It provides a potential mechanism by which disparate 

concepts and experiences can be placed on a generalizable scale from bad to good. In effect, 

this may give traction for understanding how we can have an intuitive, but poorly 

constrained concept of value. Insights such as these illustrate the importance of embracing 

variability in data as apparently simple as value codes, and the promise of combining 

experimental and theoretical approaches to interpret them.
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Figure 1. 
Nonlinear value coding in OFC neurons. Z-scored firing rates of six example neurons 

recorded from monkeys performing a reward expectation task. Green and black lines show 

neurons’ responses to cues that predict different types of rewards. Amounts of each reward 

were titrated so that outcomes assigned the same ordinal value (1 to 4) were chosen with 

similar probabilities. To be labeled as nonlinear, (1) the coefficient for value in a linear 

regression must not be significant, (2) the interaction between value and type in an ANOVA 

is not significant (to avoid cue confound) (3) and the value coefficient is significant in the 

same ANOVA. Reproduced from Enel et al. (Enel et al., 2020).
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Figure 2. 
Non-monotonic codes improve value decoding from artificial neuron populations. A. Left 

panels show examples of artificial units designed to monotonically or non-monotonically 

encode value, as well as nonselective units with the same noise statistics. Each plot shows 

the mean +/− SEM response across trials of the same ordinal value (1 to 4). Right panels 

show histograms of regression coefficients for value from 1000 generated units, 

corresponding to each unit type to the left. B. Value decoding increases asymptotically with 

the percent of non-monotonic value coding neurons in the population. Each point is 

decoding accuracy (with 10-fold cross validation), averaged across 500 different synthetic 

populations. Chance decoding of the four simulated values is 25%. Error bars = SEM.
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Figure 3. 
Similarities between spatial and value information maintained across delays. In two studies, 

cross-temporal analyses compared representations of remembered information across time to 

determine the extent of generalization. Each pixel is a score resulting from the comparison 

of representations at two time points, such that the diagonal compares a time point with 

itself, and higher scores (warmer colors) indicate greater similarity. A. Data from Spaak et 

al. (Spaak et al., 2017), showing dlPFC neurons recorded from monkeys performing a spatial 

working memory task. Colors represent discriminability scores, which are pairwise 

correlations of condition differences between time points. Panels show the same scores. 

White contours on the left indicate significant cross-temporal correlations, and those on the 

right outline significant reductions in generalizations (i.e. more dynamic signals), suggesting 

the presence of both stable and dynamic representations in the same dlPFC population. 

Black = non-significant correlations. B. Data from Enel et al. (Enel et al., 2020), showing 

OFC neurons recorded from monkeys performing a value-based choice task. Colors 

represent decoding accuracies, where the decoding algorithm was trained and tested on all 

pairwise combinations of time points. The first panel shows decoding from the original 

population of firing rates that suggests the presence of both stable and dynamic 
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representations in the population. The second shows decoding from the population found to 

have the most stable encoding subspace, and the last shows decoding from the population 

with the most dynamic encoding. White lines indicate task events. Gray = non-significant 

decoding.
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