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Abstract

In this paper, we present a new diffeomorphic registration algorithm for the registration of 3D 

models to 3D points. A biventricular template is iteratively fitted to the data by a series of 

implicitly constrained diffeomorphic linear least squares fits with decreasing regularization 

weights before performing an explicitly constrained diffeomorphic fit. The algorithm has been 

tested on a set of manual contours from 20 patients with a variety of congenital heart disease. 

Registration accuracy was assessed by calculating the mean point-to-point distance and the Dice 

overlap metric. Results showed that the method was able to accurately fit the biventricular model 

to 3D points and that the deformable model was able to fit all the pathologies while being 

diffeomorphic. The algorithm took approximately 5 minutes to fit each case, with an average of 

52,580 points per case.

I. Introduction

Evaluation of cardiac function is indispensable for the diagnosis and treatment of any 

cardiovascular disease. Both left ventricular (LV) and right ventricular (RV) function are 

important to maintaining overall cardiovascular function. Using model-driven or model-
based analysis, a prior or template is registered to the patient images by minimizing an 

objective function defined between the model parameters and the patient image. The 

segmentation process is therefore constrained by the model, avoiding errors due to the sparse 

nature of the image data. Both the LV and RV models can be expressed as a small number of 

parameters allowing simultaneous image processing and shape modelling. One such 

parameterization is called a subdivision surface introduced by Catmull and Clark [2], which 

has received increasing attention for cardiac modelling [15, 10, 12].

Subdivision surfaces are a mathematical tool for generating smooth surfaces by means of 

polygonal meshes. Legget et al. [10] and Sheehan et al. [15] developed a piecewise smooth 

subdivision surface algorithm to reconstruct both LV and RV geometries from manually 

traced contours in 3D ultrasound images. Shape-prior and physical constraints were 

integrated to allow sharp edges, which are commonly found at the mitral annulus and apex 

[9]. Stebbing et al. [17] have developed a morphable model of the RV using Loop 
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subdivision surfaces. The model was expressed as a linear combination of a set of basis 

shapes and was able to model the RV by only using a four-parameter statistical model.

A key challenge when fitting a 3D model to a patient’s data, such as magnetic resonance 

images (MRI), is to satisfy a diffeomorphic constraint where the mapping between the 

model and the data is invertible, continuous and differentiable. Diffeomorphism preserves 

the topology of the model and prevents surface folding. A penalty function can be used to 

avoid surface folding [10, 15, 1], but it does not ensure a diffeomorphic transformation. 

Large Deformation Diffeomorphic Metric Mapping (LDDMM) [6] and Demons algorithm 

[18] are two popular diffeomorphic registration algorithms for medical images. In cardiac 

imaging, Mansi et al. [11] incorporated the information of incompressibility of the 

myocardium as a constraint within the diffeomorphic demon algorithm. De Craene et al. [4] 

also proposed a temporal diffeomorphic free form deformation framework incorporating 

incompressibility of the myocardium. The main drawback of LDDMM and Demon is a high 

computational time to complete the registration process. Another approach to diffeomorphic 

registration is based on B-splines control point displacements [3], which was applied to 

medical images by [14].

We have developed a registration framework by which 3D diffeomorphic displacement fields 

were generated, ensuring both anatomically realistic results and minimal registration error. 

This algorithm deforms a finite element model under the combination of implicit and 

explicit diffeomorphic constraints. Each transformation is guaranteed to be bijective by 

preventing the determinant of the Jacobian matrix of each element from falling below zero 

and by limiting the displacement of the coarse mesh within each iteration under explicit 

constraints. We validated the flexibility and accuracy of this algorithm on 20 patients with 

cyanotic and acyanotic congenital heart disease (CHD).

II. Methods

A. Template

Our biventricular model was comprised of the LV, the RV and four valves: aortic, mitral, 

tricuspid and pulmonary (see Fig. 1). At the coarse level, the model consisted of 388 vertices 

V 0 ∈ ℝ3, of which 22 were extraordinary [7]. We modified the model by adding 25 elements 

using Blender1 to allow more flexibility around the tricuspid corner and the pulmonary 

valve. Specific knowledge of the final heart shape was incorporated in the coarse model with 

sharp edges around the valve and at the RV insertion points [9]. The final surface model was 

obtained after subdividing the coarse mesh twice using the Catmull-Clark subdivision 

method [2, 5, 16], resulting in 5,806 vertices.

Catmull-Clark surfaces are a generalization of uniform B-splines and each surface point can 

be expressed as a linear combination of the coarse mesh, weighted by cubic B-spline 

coefficients using Stam’s parameterization [16]. Let (u,v) ∈ [0,1] be a location on an 

element of the coarse mesh. The corresponding surface point is parameterized by

1https://www.blender.org/
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p u, v = ∑i = 1
16 bi u, v V i (1)

where bi(u,v) is a bicubic B-spline basis function evaluated at (u,v) and V i ∈ ℝ3 are the 

control points. The coarse points and subdivided points were used to generate a B-splines 

finite element mesh (FEM). The FEM consisted of 187 elements with the local coordinate 

system defined by (ξ1, ξ2,ξ3). Each element was defined using Bi-cubic spline interpolation 

along the circumferential ξ1 and longitudinal direction ξ2, and a linear interpolation along 

the transmural outward direction ξ3. These interpolation directions are shown in Figure 1. 

Each surface point with the Cartesian coordinates (x,y,z) was expressed as a linear 

combination of the coarse points V0 as:

pi x, y, z = Bi ξ1, ξ2, ξ3 V 0 (2)

B. Implicitly constrained linear least-squares optimization

Diffeomorphic registration is a time consuming process. To increase the speed of our 

algorithm, a series of implicitly constrained stiff linear least-square fits were first performed 

in order to provide a closer solution to the data before performing a constrained 

diffeomorphic fit. The model was fitted to the data by minimizing the following objective 

function:

E = Ereg + ∑g = 1
n wg x ξg − xg

2
(3)

where xg ∈ ℝn × 3 are the data points, x(ξg) are the surface points at element coordinates ξg 

corresponding to the closest point on the model. Ereg is a regularization term. In this work, a 

D-Affine regularization term [8] was used to penalize deviation in strain from affine 

transformation of the prior and to ensure smooth and physically plausible deformation fields. 

Hence, Ereg is defined as:

Ereg = ∑
k ∈ x, y, z

∫
Ω

ηk
∂J
∂ξk F

2
dΩ (4)

where ||·||F is the Frobenius norm, ηk the smoothing weight in the kth direction and J the 

Jacobian of the transformation. To discourage self-interaction and folding, the initial 

smoothing weights used were η1 = η2 = η3 = 1010. To make sure that an iteration does not 

lead to a nonbijective transformation, implicit constraints based on the determinant of the 

Jacobian matrix J were added. The sign of the determinant of J gives information about the 

mapping from the reference template shape (χ1, χ2, χ3) to the patient-shaped model. The 

deformation, or displacement, from the template’s shape is u = x − χ. Therefore, J is given 

by:
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Jij = ∂ xi = ui + χi
∂χj

= ∑
l = 1

3 ∂ui
∂ξl

δξl
δχj

+ δij

= ∑
l = 1

3 ∂∑k = 1
16 bkuk
∂ξl

δξl
δχj

+ δij

(5)

Where uk is the displacement of the B-spline patch point and can be expressed as a linear 

combination of the displacement of the coarse mesh and bk, the basis functions. At each 

iteration, a least-square fit was performed and the determinant of the Jacobian matrix on 

4×4×4 Gaussian quadrature points per element was calculated. If all values were positive, 

the subdivision surface was deformed by updating its control points, x(ξg) were recalculated 

and ηk were decreased. As long as the deformation is diffeomorphic, the smoothing weights 

are decreased. If one or more intersections were detected, the model was not updated and 

explicit diffeomorphic constraints were added.

C. Optimization with explicit diffeomorphic constraints

Minimizing (3) only with D-affine regularization does not lead to diffeomorphic 

transformations if ηk is too small, as seen Fig. 2. However, in order to fit a large variety of 

shapes, a highly deformable model and therefore a small ηk is required while keeping D-

Affine constraints. Rohde et al. [13] derived sufficient conditions for bijectivity based on the 

magnitude of the derivatives of displacement. The sufficient condition to guarantee positivity 

of the Jacobian determinant was derived from Neumann series arguments. They showed that 

the minimum Jacobian determinant is positive if the magnitude of each gradient is bounded 

by 1
3 . Therefore, the following equation assures the bijectivity of the transformation:

∂ui
∂χj

= ∑
l = 1

3 ∂ui
∂ξl

∂ξl
∂χj

= ∑
l = 1

3
Bi

(1) ∂ξl
∂χj

U0 < 1
3 (6)

where Bi
1 ∈ ℝn × 338 can be pre-calculated for each Gaussian quadrature point for which we 

want to check det(J). s =
∂ξl
∂χj

 is the scale factor between the template and the deformed 

model. Equation 3 can be then replaced by a quadratic programming problem with linear 

constraints. As the maximum displacement was constrained by Equation 6, an iterative 

process was used. At each iteration the optimization was performed and the model was 

updated. The scale factor s was then recalculated and the solution found was used as an 

initial guess for the next iteration. Weights along ξ1, ξ2 and ξ3 were set to 104. The 

optimization library IBM ILOG CPLEX Optimization Studio2 was used. Fig. 3 presents the 

overview of the algorithm.

2https://www.ibm.com/analytics/data-science/prescriptive-analytics/cplex-optimizer
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III. Results

A. Data

We validated the proposed algorithm on 3D MRI acquisition of 20 patients with congenital 

heart disease, including three transposition of the great arteries, five tetralogies of Fallot, one 

Ebstein’s anomaly, two Marfan’s Syndromes, three bicuspid aortic valves, four coarctations 

and two double outlet right ventricles. To get an accurate valve orientation, the 3D MR 

images were re-oriented using Syngo.via (Syngo MR 2004V, Siemens Healthcare, Erlangen, 

Germany), which produced a range of parallel images to the aortic and the pulmonary 

valves. Manual segmentation was performed using ITK-Snap [19]. These 3D segmentations 

were loaded into Blender and separated into surfaces to be projected onto the template. Fig. 

4 shows an example of the 3D segmentation image with surface labelling.

B. Accuracy of registration

Registration accuracy was assessed by using the mean point-to-point distance and the Dice 

overlap metric. The point-to-point distance was calculated as the distance between a data 

point and its closest vertex on the surface. Table I lists the mean point-to-point distances and 

the Dice metric for the RV chamber, the LV chamber and the epicardium. The Dice overlap 

metric was over 0.88 for each surface, demonstrating a good overlap after fitting. The mean 

point-to-point distance was smaller than 2 mm, similar to [17]. Fig. 5 shows the results of 

three different CHD patients.

IV. Discussion and conclusion

We have proposed a method for generating diffeomorphic deformation fields. This method is 

based on the decomposition of deformations, preventing the determinant of the Jacobian 

matrix falling below zero. Each transformation is guaranteed to be bijective by limiting the 

displacement of the coarse mesh within each iteration. Topology-preserving registration is a 

time consuming process. Furthermore, constraining the magnitude of the displacement does 

not necessarily allow large deformations. Although we added a series of least-square fits 

compared to the original diffeomorphic fit, the algorithm showed a fast convergence, with an 

average processing time of 4.8 ± 2.4 minutes (implemented with python programming 

language) and an average of 52,580 ± 1,463 points to fit. The succession of least-square fits 

has an important effect on the rate of convergence as it provided a good initialization at a 

lesser cost. Our results have shown that this technique was able to achieve good registration 

accuracy while generating diffeomorphic displacement fields. The surface modelling also 

achieved a good performance as it was able to fit all the CHD pathologies present in our 

dataset.
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Figure 1. 
Biventricular coarse mesh (left: basal-apex view and middle: longitudinal view) and its 

Catmull Clark subdivision (right) with an element extracted showing interpolation directions 

(ξ1, ξ2, ξ3). Green surface: LV endocardium, blue surface: RV endocardium, red surface: 

epicardium. The mitral valve is shown in cyan, the aortic valve in yellow, the tricuspid valve 

in magenta and the pulmonary valve in green.
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Figure 2. 
Linear least squares optimization without diffeomorphic constraints for two cases. Surface 

intersections are circled in red
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Figure 3. 
Algorithm overview. LV chamber: green, RV chamber: yellow, epicardium: blue. The mitral 

valve is shown in red, the aortic valve in black, the tricuspid valve in magenta and the 

pulmonary valve in cyan
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Figure 4. 
3D segmentation of a heart. The epicardium is shown in blue, RV cavity in yellow, LV cavity 

in green, pulmonary valve in light blue, tricuspid valve in pink, mitral valve in red and aorta 

in black
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Figure 5. 
Fit to CHD patient anatomy. Left: Tetralogy of Fallot. Middle: Marfan’s Syndrome, Right: 

Ebstein’s anomaly
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TABLE I.

Evaluation of the registration accuracy

Mean point-to-point distance (mm) Dice metric

LV chamber 1.38 ± 0.18 0.95 ± 0.014

RV chamber 1.55 ± 0.22 0.92 ± 0.014

Epicardium 1.66 ± 0.18 0.88 ± 0.024
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