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RNA modifications, in particular N6-methyladenosine (m6A), participate in every stages of RNA metabo-
lism and play diverse roles in essential biological processes and disease pathogenesis. Thanks to the
advances in sequencing technology, tens of thousands of RNA modification sites can be identified in a
typical high-throughput experiment; however, it remains a major challenge to decipher the functional
relevance of these sites, such as, affecting alternative splicing, regulation circuit in essential biological
processes or association to diseases. As the focus of RNA epigenetics gradually shifts from site discovery
to functional studies, we review here recent progress in functional annotation and prediction of RNA
modification sites from a bioinformatics perspective. The review covers naïve annotation with associated
biological events, e.g., single nucleotide polymorphism (SNP), RNA binding protein (RBP) and alternative
splicing, prediction of key sites and their regulatory functions, inference of disease association, and min-
ing the diagnosis and prognosis value of RNA modification regulators. We further discussed the limita-
tions of existing approaches and some future perspectives.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

RNA modifications, in particular N6-methyladenosine (m6A),
post-transcriptionally regulate many aspects of RNA metabolism,
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including its degradation [1,2], protein translation [3,4] and alter-
native splicing [5,6]. More than 170 kinds of RNA modifications
[7] have been identified on mRNA, tRNAs, rRNAs, lncRNAs and
other noncoding RNAs [8,9], and most of them are methylation
modifications. The functional significance of RNA modifications
was not fully aware of until the discovery of human fat mass gene
FTO as an m6A demethylase [10] and the invention of
transcriptome-wide m6A profiling technology, MeRIP-seq (or
m6A-seq) [11,12], which identified m6A in more than 25% human
mRNA and indicates the influence of m6A in gene expression. Since
then, the study of whole transcriptome RNA modifications became
blooming and known as the ’epitranscriptome’ [13]. Thanks to the
advances of high-throughput techniques, whole-transcriptome-
wide maps of at least 12 modifications were profiled, including
N6-methyladenosine (m6A), Pseudouridine (w), N4-acetylcytidine
(ac4C), N1-methyladenosine (m1A), N7-methylguanosine (m7G),
20O-methylations (Cm, Am, Gm, Um), 5-methylcytidine (m5C), 5-
hydroxymethylcytidine Cytidine (hm5C) and Inosine (I) [8,9].

N6-methyladenosine (m6A) is the most abundant and the most
well studied chemical modification on eukaryotic mRNA [14],
which has been known to play important roles in gene expression
regulation [15] and translation mediation [3,16]. The dynamic RNA
m6A methylation can be added by m6A methyltransferases (writ-
ers), removed by demethylases (erasers) and recognized by corre-
sponding RNA binding proteins (readers) [17]. The
methyltransferase compoundmainly consists of METTL3, METTL14
and WTAP, as well as later discovered regulatory components
KIAA1429, RBM15 and RBM15B; the demethylases mainly include
FTO [18] and ALKBH5 [19]. The reader protein complexes, which
can specifically recognize m6A, mainly include YTH family proteins
(YTHDF1-3, YTHDC1) , transcription initiation complex eIF3 [3],
ribonucleoprotein HNRNPA2B1 [20] and HNRNPC [21]. The
dynamic m6A modification mediated by these regulators has been
shown to play significant roles in many vital biological processes,
e.g., embryonic development [22], stem cell differentiation [23–
25], cell death and cell proliferation [26], circadian clock cycle
[27] and viral life cycle [28,29]. The m6A perturbations also con-
tribute to pathogenesis of cancers [26,30–32], viral infection [33]
and other human diseases [34–36]. Besides m6A, 5-
Fig. 1. Functional annotation and prediction of the epitranscriptome. A. Functional a
Diagnosis and prognosis analysis of RNA modification regulators.
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methylcytosine (m5C) is another wide spread RNA modification,
which is primarily mediated by RNA methyltransferase DNMT2
and NSUN2 along with its homologs [37–39] and its reader pro-
teins YBX1 [40] and ALYREF [39]. m5C can influence mRNA stability
[40,41] and regulate viral gene expression [6]. Adenosine-inosine
(A-to-I) RNA editing, as the main form of RNA editing in mammals
[42], is mediated by the members of the adenosine deaminase act-
ing on RNA (ADAR) enzyme family. A-to-I RNA editing plays key
role in innate immunity [43,44] and contributes to the pathogene-
sis of some diseases, including amyotrophic lateral sclerosis (ALS)
[45] and rheumatoid arthritis (RA) [46]. N7-methylguanosine
(m7G) is the most ubiquitous RNA cap modification [47], which
also plays significant roles in RNA metabolism including transcrip-
tion, mRNA splicing and translation [48–50]. We briefly summa-
rized here some well-studied modifications. Please refer to recent
reviews [8,9] for more comprehensive background of RNA
modifications.

With recent development in high-throughput sequencing tech-
niques and bioinformatics approaches, it becomes increasingly
easy to obtain the locations of RNA modifications. Millions of
RNA modification sites have been identified in more than 10 spe-
cies [7,51–54], posing a major challenge in charting the ’functional
epitranscriptome’, i.e., identifying the functional components out
of tens of thousands of RNAmodification sites and elucidating their
functions and disease association. As the focus of RNA epigenetics
gradually shifts from site discovery to functional studies, we
review here some recently developments in computational
approaches for deciphering the functional relevance of RNA modi-
fication sites.

The very first step of functional epitranscriptome analysis is to
identify the RNA modification sites. Then, there exist two paths to
annotate the functions of RNA modification sites: 1) The naïve idea
is to annotate the associated functional event according to their
proximity to the RNA modification sites on the genome, e.g.,
miRNA target sites located within 100 bp of the RNA modification
sites, which may be potentially mediated by the modification (see
Fig. 1A). 2) The more sophisticated annotation approach is to
identify key sites and genes based on the functional annotations
and the interactions of the genes modified at RNA level, and then
nnotation of RNA modification; B. Functional prediction of RNA modification; C.
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further predict RNA modification-mediated functional circuits and
associated diseases using complex network theories (see Fig. 1B).
Moreover, for the most prevalent RNA methylation, some studies
have predicted the diagnosis- and prognosis-related methylation
regulators, which start from genetic mutations and expression dys-
regulation of m6A regulators in cancers via integrated analysis and
predict the potential diagnostic and prognostic methylation mark-
ers via survival and clinical analysis (see Fig. 1C).

2. Identification of RNA modification site

The first step of functional epitranscriptome prediction is to
identify modification sites, either directly from high-throughput
sequencing data or by using sequenced-based computational pre-
diction tools. There exist a large number of sequencing technolo-
gies and software tools that can serve this purpose, including but
not limited to those based on reverse transcription signature
[55–59], bisulfite treatment [39,60–66], antibody [11,12] and the
primary sequences of RNA molecules [67–84]. In the following
paragraph, we cover primarily two most widely used approaches,
including site detection from MeRIP-Seq data and sequence-
based in silico prediction methods.

2.1. Site detection from MeRIP-Seq data

MeRIP-Seq (or m6A-seq) [11,85] is the first and the most widely
adopted approach for profiling transcriptome-wide distribution of
m6A methylation. With MeRIP-seq, the m6A sites can be identified
in a process called ‘‘peak calling”, inwhich the regions enrichedwith
m6A signals (shown as peaks in tag density) are identified by com-
paring to the input control samples. A number of peak calling tools
have been developed for this analysis.MACS [86] has been a popular
peak calling tool for ChIP-Seq data and is also applied to analyze
MeRIP-Seq data [87]. However, MACS was developed for DNA-Seq,
which failed to address some intrinsic properties ofMeRIP-Seq, such
as, the impact of differential RNA expression, alternative splicing
[88]. exomePeak is another popular peak calling tools designed
specifically for epitranscriptome peak calling of MeRIP-Seq data
[89]. exomePeak supports both site detection and differential
methylation analysis, but it doesn’t model the variance among bio-
logical replicates. MeTPeak [90] captures the variances by introduc-
ing a hierarchical layer of Beta variables and characterizes the reads
dependency across a site using a Hidden Markov model.

MACS2, exomePeak and MeTPeak have been widely used to
detect m6A peaks from MeRIP-seq data. Developing for DNA-Seq
data, MACS2 can detect peaks located in intron and none gene
region, while it failed to address some intrinsic properties of
MeRIP-Seq data. exomePeak and MeTPeak are specifically designed
for epitranscriptome peak calling of MeRIP-Seq data. MeTPeak out-
performs exomePeak in robustness against data variance and can
detect less enriched peaks [90] and exomePeak achieves better
motif enrichment than MeTPeak in some cases [91]. Recently, an
updated version of exomePeak has been released officially on Bio-

conductor (http://www.bioconductor.org/packages/release/bioc/

html/exomePeak2.html), which corrects the GC content bias gener-
ated by PCR amplification during the library preparation, a com-
mon bias among MeRIP-Seq samples. exomePeak2 should be
another promising peak calling tool for MeRIP-Seq data.

2.2. Sequence-based in silico prediction methods

By directly learning the RNA modification sites reported from
high-throughput sequencing approaches, a large number of predic-
tionmodels have been established for the computational identifica-
tion of RNA modification sites from the primary sequences of the
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RNA molecule as well as by taking advantage of other information
[71,92,93]. Thanks to the development of sequencing technology
such as miCLIP and PA-m6A-seq for m6A, it becomes possible to
train m6A site prediction models using machine learning
approaches, which extract features from the primary sequences
centered around the m6A sites to predict the probability of another
nucleotide being a methylation site or not. The sequence features
mainly contain nucleotide chemical and physiochemical property,
K-mer frequency, nucleotide encoding (including one-hot, spec-
trum encoding, word embedding, Gene2vec, et.al), and various
genomic features (including nucleotide position, i.e., the relative
position on 30UTR, 50UTR and whole transcript, the length of the
transcript region containing the modification site, the evolutionary
conservation score, et.al). The adoptedmachine learning algorithms
may range from support vectormachine, random forest, XGBoost to
more advanced deep learning models such as CNN, LSTM and GRU.
For example, iRNA-Methyl [94] extracted ‘‘pseudo dinucleotide
composition” feature where three RNA physiochemical properties
were incorporated and trained a SVM model; SRAMP [68] encoded
the RNA and DNA sequence using one-hot binary encoding, spec-
trum encoding and K-nearest neighbor encoding (KNN encoding),
and trained 10 RF models using balanced training dataset; Deep-
M6ASeq [95] encoded the nucleotide using one-hot and trained a
CNN + BLSTM model; WHISTLE extracted the most comprehensive
features including nucleotide chemical property and 35 additional
genomic features, and achieved state-of-the-art performance with
SVM classifier. These approaches consider only the sequence fea-
tures while ignore the methylation levels under specific context.
Considering this, Deep-m6A [96] was proposed to predict
context-specific m6A sites using a CNN model which encode the
RNA sequence together with context-specific MeRIP-Seq reads
count. Song et al. has developed pseudouridine site identification
and functional annotation webserver (named PIANO), which
trained a high-accuracy predictor that takes input of both conven-
tional sequence features and 42 additional genomic features [97].

2.3. Differential methylation analysis from MeRIP-Seq data

Differential methylation analysis is aimed to detect the dynam-
ics of epitranscriptome in a case-control study. Since these methy-
lation sites are differentially between two biological conditions,
they are more likely to be functionally related to the perturbation
factor of the samples, which can be disease association or
responses to a particular treatment of samples. A number of com-
putational approaches have been developed to identify differential
methylation sites from MeRIP-Seq data by comparing samples
under two different biological conditions based on different
assumption of reads count distribution and statistical models. exo-
mePeak [89] takes the hypothesis that read counts arising from a
particular genomic region follows Poisson distributions and adopts
a rescaled version of Fisher’s exact test to detect differential
methylation peaks. exomePeak2 uses a generalized linear model
to handle the over-dispersion of reads count and GC content bias.
MeTDiff [98] models biological variation with beta-binomial model
and applies a likelihood ratio test to test differential methylation
peaks. DRME [99] and QNB [100] both adopt negative binomial dis-
tributions to model the reads count fall into the methylation
region. DRME considers the variance is smooth function of the
reads abundance, while QNB assumes it also depends on the per-
centage of methylation. RADAR [101] models the reads count dis-
tribution using a Poisson random effect model and adopts
generalized linear model framework to detect differential methyla-
tion peaks. Limited to the resolution of MeRIP-Seq, these
approaches can only identify differential methylation regions of
50–100 bps. To infer the real altered methylation sites, DMDeep-
m6A [102] was proposed to predict differential methylation sites

http://www.bioconductor.org/packages/release/bioc/html/exomePeak2.html
http://www.bioconductor.org/packages/release/bioc/html/exomePeak2.html
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at single-base resolution from MeRIP-Seq data. Moreover, to iden-
tify RNA editing sites, RNA-editing tests (REDITs) was developed
based on a suite of tests that employ beta-binomial models [103].

In general, different approaches behave differently on the same
dataset, while the top differential peaks are often consistent. This is
adopted by DEQ [104], which believes the consensus result of
DESeq2 GLM, edgeR GLM and QNB should be real differential
methylation peaks. In this way, the detected differential peaks
are supposed to have lower false positive rate meanwhile lose
much sensitivity. exomePeak has been widely used for differential
m6A peak calling with high sensitivity. MeTDiff, DRME and QNB
aim to detect more accurate differential peaks when sample size
is small and have achieved lower false positive rate than exome-
Peak, while losing some sensitivities for more rigorous statistical
test. RADAR can achieve lower false positive rate and higher sensi-
tivity when the replication sample size is greater than 6 (not avail-
able for most published MeRIP-Seq data) and when the available
samples are no more than 2, RADA gets similar false positive rate
but lower sensitivity comparing with exomePeak [101]. Generally,
researchers can choose different approaches based on their
requirement and MeRIP-Seq sample size. They may use exomePeak
when a high sensitivity is required and there are some subsequen-
tial strategies to control the false positive rate; MeTDiff, DRME or
QNB is suitable when less differential peaks with relatively higher
degree of differential methylation are required; RADAR performs
better when there are more replication samples; and DMDeep-
m6A works well when the inference of single-base differential
methylation sites from MeRIP-seq data is required.

Recently, some longitudinal or time course MeRIP-seq datasets
have been produced to depict the regulation process of m6A
methylation during different context, such as virus infect and cell
differentiation process [105]. It is necessary to develop some
approaches to reveal whether and how the methylation levels
are changed in different time point and whether the m6A regulated
genes’ expression could be changed according to contexts. Gener-
alized linear mixed model is a popular model to analyze variance
in gene expression for time-course RNA-seq data. However, limited
to the small sample size of MeRIP-seq data, the methods for RNA-
seq data can’t be directly applied for MeRIP-seq data. Then, it is
necessary to develop new methods to solve the small sample issue
for time-course, longitudinal or clustered MeRIP-seq data.

3. Functional annotation of RNA methylation sites

3.1. Distance-based functional annotation of RNA methylation sites

The most straightforward and also the simplest way to predict
the functional relevance of an RNA modification site is to consider-
Table 1
Summary of naïve annotation of RNA modification provided from existing databases and

Database/
Tools

# of
Modifications

Chemical
Description

Genomic
Features

Genome
Browser

GO/
Pathw

RNAMDB 109
p

MODOMICS 172
p

RMBase >100
p p

MeT-DB 1 (m6A)
p p

m6AVar 1 (m6A)
p p

CVm6A 1 (m6A)
p p

m6A-Atlas 1 (m6A)
p p p

REPIC 1 (m6A)
p p

M6A2Target 1 (m6A)
p p

M7GHub 1 (m7G)
p p

RADAR 1 (A-to-I)
p p

REDIportal 1 (A-to-I)
p p

RCAS NA (Tool)
p p

RNAmod NA (Tool)
p p p
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ing the functional events closely next to it (usually within round
100 bp distance in the genome). Conceivably, closely adjacent bio-
logical events are likely to interact with each other or functionally
related. Most popular databases and annotation tools support this
type of naïve annotation for RNA modification. We summarize in
Table 1 these type of annotations related to chemical description
of the modifications (Chemical Description), genomic features
near the modification sites (Genomic Features), visualization of
modification sites in a genome browser (Genome Browser), GO
and signaling pathway enrichment of modification sites carrying
genes (GO/Pathway), epigenomic modifications around the RNA
modification sites (Epigenomic Data), post-transcriptional regula-
tions (Post-Transcription) including RNA binding protein (RBP)
binding (RBP), micro RNA targeting (miRNA) and alternative splic-
ing (Splicing), genetic mutations such as SNP next to the modifica-
tion sites (SNP), and diseases associations (Disease).

RNAMDB [106], MODOMICS [7] and RMBase [53] are databases
that collected multiple RNA modifications. RNAMDB collected
basic description of 109 RNA modifications, including chemical
structure of the nucleoside, common chemical name, symbol, ele-
mental composition, et.al. MODOMICS has collected currently the
most comprehensive RNA modification pathway sources. It has
collected 172 RNA modifications and provides comprehensive
information concerning the chemical structures, biosynthetic path-
ways, the location in RNA sequences of RNA modifications, and
RNA-modifying enzymes. RMBase is currently the most compre-
hensive database for RNA modification sites, which collected more
than 100 RNA modifications and provides epitranscriptome
sequencing data of different modifications on RNAs, their relation-
ships with microRNA binding events, disease-related SNPs and
RNA-binding proteins (RBP), and the visualization of this informa-
tion in a genome browser.

MeT-DB [54], REPIC [91], CVm6A [108], M6A2Target [109],
m6Avar [107] and m6A-Atlas [51] are databases for m6A RNA
methylation. MeT-DB [54] is the first database for transcriptome
m6A modification, which collected context-specific m6A sites and
annotated the target sites of m6A readers, writers and erasers as
well as RBP, miRNA target and splicing sites. Moreover, MeT-DB
provides visualization and functional prediction tools including
GuitarPlot [114] and m6A-Driver [115] for investigating the distri-
bution and functions of m6A methyltranscriptome. MeT-DB v2.0
provided a wealth of information related to m6A, which makes it
a valuable resource for researchers to understand the biological
mechanisms and functions of m6A [116]. REPIC [91] records more
than 10 million m6A peaks from 11 species. It integrated 1418 his-
tone ChIP-seq and 118 DNase-seq data tracks from the ENCODE
project to visualize m6A sites, histone modification sites, and chro-
matin accessibility regions in the genome browser. CVm6A [108]
web tools.

ay
Epigenomic
data

Post-Transcription SNP Disease Last
update

Ref.

RBP miRNA Splicing

2012 [106]
2017 [7]p p p p
2017 [53]p p p
2017 [54]p p p p p
2018 [107]p
2019 [108]p p p p p
2020 [51]p
2020 [91]p p
2020 [109]p p p p p
2020 [74]p
2014 [110]p
2017 [111]
2017 [112]p
2019 [113]
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was aimed to visualize and explore global m6A patterns across cell
lines. It identified 340,950 and 179,201 m6A peaks from public
MeRIP-Seq and m6A-CLIP-Seq datasets on 23 human and eight
mouse cell lines, respectively, and then mapped them in different
subcellular components and gene regions. For human, 190,050
and 150,900 peaks were identified in cancer and non-cancer cells,
respectively, which may predict putative associations between
m6A and cancer pathology.

M6A2Target [109] has collected the target gene of writers, era-
sers and readers of m6A modification. M6A2Target contains both
’Validated Targets’ which were validated by low-throughput
experiments of human and mouse and ’Potential Targets’ which
were evaluated by high-throughput experiments, such as CLIP-
Seq, RIP-seq and ChIP-seq. It also provides the genome browser
of m6A sites and the ’Binding’ (including protein-RNA, protein-
DNA and protein–protein binding) and ’Perturbation’ (including
changes of gene expression, m6A level, translation efficiency and
alternative splicing) information of m6A targets.

m6AVar [107] is the first database of m6A-assocoated genetic
mutations (including SNP from dbSNP and cancer somatic muta-
tions from TCGA), which may potentially destroy m6A modifica-
tion. Starting from m6A-assocoated mutations, m6AVar provides
disease related m6A-associated variants from GWAS and ClinVar.
It also provides various information related to post-
transcriptional regulation such as splicing sites, RNA binding pro-
tein and miRNA targeting, which may be affected by m6A-
associated variants.

m6A-Atlas [51] is the first quantitative knowledgebase of m6A
methylation, which contains annotation of 442,162 reliable m6A
sites reported from base-resolution technology together with their
methylation level under various experimental conditions. It also
provides the putative GO biological functions of individual m6A
sites and the annotation of RBP, miRNA binding, alternative splic-
ing and genetic mutation sites next to m6A sites and visualize them
in a genome browser. Moreover, m6A-Atlas also provides m6A-
related disease information inferred from disease-associated
genetic mutations that can directly destroy m6A sequence motifs.

M7GHub [74] is a database of m7G methylation, which consists
of 2 sub-databases and 2 web tools: 1) m7GDB, a database which
collected 44,058 experimentally-validated internal mRNA m7G
sites; 2) m7GFinder, a web server to predict m7G sites from
sequences; 3) m7GSNPer, a web server to evaluate whether a
genetic mutation can alter m7G RNA methylation; and 4) m7GDi-
seaseDB, a database which collected disease-associated genetic
variants that may lead to the gain or loss of an internal m7G site.

RADAR [110] and REDIportal [111] are databases for A-to-I RNA
editing. RADAR [110] is a rigorously annotated database of A-to-I
RNA editing, which includes a comprehensive collection of A-to-I
RNA editing sites identified in humans, mice and flies, together
with extensive manually curated annotations for each editing site.
The annotation includes genomic features (strand, associated gene,
coding sequence, untranslated region, intron, associated repetitive
element, et.al) and annotation of overlapping gene annotations,
genomic nucleotide conservation, overlapping SNP database
entries and overlapping repetitive elements that can be visualized
in UCSC genome browser. REDIportal contains the largest and com-
prehensive collection of RNA editing in humans and mice including
more than 4.5 million of A-to-I events detected in 55 body sites
from thousands of RNAseq experiments. REDIportal embeds
RADAR database and designed its own browser (JBrowse) that
show A-to-I changes and the neighboring annotations in user
defined genomic context. For each RNA editing site, REDIportal
provide different info such as: 1) genomic features, including the
genomic position, the reference and edited nucleotide, the strand,
the editing location, the gene symbol according to Gencode v19
and the genic region; 2) editing level, including the number of edi-
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ted samples, the potential amino acid change, the PhastCons con-
servation score across 46 organisms and a flag indicating in
which database (ATLAS [117], RADAR [110] or DARNED [118]) is
reported; and 3) neighboring annotations, including the dbSNP
accession and the repeated element.

RNAmod [113] is an integrated webserver to annotate and visu-
alize mRNA modifications, especially for m6A. It provides the dis-
tributions, the GO and signaling pathway enrichment and the
genome browser of the input modification sites and their neigh-
boring RBPs.

RCAS [112] was developed to ease the process of creating gene-
centric annotations and analysis for the genomic regions of interest
obtained from various RNA-based omics technologies. The RCAS R
package and webserver can provide summary of genomic annota-
tions, coverage profiles of query regions, motif analysis, GO term
analysis and Gene set enrichment analysis.

ANNOVAR [119] and SnpEff [120] were developed for functional
annotation of variants and can be used to achieve functional char-
acterization of mutations arising due to A-to-I editing especially in
the coding sequence of genes. The PIANO webserver [97] can sys-
tematically annotate the predicted pseudouridine sites with post-
transcriptional regulatory mechanisms (miRNA-targets, RBP-
binding regions, and splicing sites), which can help explore the
potential machinery of pseudouridine.

RNAMDB, MODOMICS and RMBase were developed for multi
kinds of RNA modifications, where RMBase is more functional rel-
evance based on its comprehensive integration of microRNA bind-
ing events, disease-related SNPs and RBPs. MeT-DB, REPIC, CVm6A,
M6A2Target, m6Avar and m6A-Atlas concentrated on m6A only,
where MeT-DB is the first database; M6A2Target concentrated
more in m6A binding proteins; REPIC integrated the epigenetic
information; and m6Avar and m6A-Atlas annotated more in dis-
ease associated m6A-SNP co-occurrence. Moreover, m6AVar is
the first database of m6A-assocoated genetic mutations and m6A-
Atlas annotated the putative GO biological functions of individual
m6A sites. M7GHub is a comprehensive database specific for m7G
methylation. RADAR and REDIportal were both developed for A-
to-I editing, where REDIportal embeds RADAR database.

3.2. Annotating with genetic variants that may affect RNA
modification status

Besides directly annotating RNA modification sites, enormous
efforts have been made to annotate the genetic variants that may
affects RNA methylation status. It is well established that many
kinds of cancers are evoked by different kinds of cancer-causing
variants of different genes and dysregulation of m6A has been
implicated in cancer progression [121,122]. Therefore, it is impor-
tant to explore the effect of variants on m6A modification and
understand how these variations influence the biological function
during cancer process and disease.

To solve this issue, some researchers are devoted to uncover
how the gene variants (e.g. SNP) influence the status of m6A mod-
ification and identify the potential roles of m6A-associated variants
in various RNA-related processes and diseases. m6ASNP is the first
tool that developed to predict whether the methylation status of an
m6A site can altered by genetic variants close to it [123]. The
m6ASNP collected two kinds of datasets: 1) SNP from dbSNP for
human and mouse [124]; and 2) m6A modification sites from
two miCLIP-seq studies [125,126], two PA-m6A-seq experiments
[127] and 244 MeRIP-seq samples. m6ASNP firstly trained a ran-
dom forest (RF) model to predict m6A site in single-base resolution
using the primary RNA sequence and secondary structure features.
Based on the RF model, m6ASNP mapped the genetic variants to
known methylated transcript and checked whether the methyla-
tion status was changed by their neighboring sequence variants



Song-Yao Zhang, Shao-Wu Zhang, T. Zhang et al. Computational and Structural Biotechnology Journal 19 (2021) 3015–3026
comparing to the wild-type transcript. If an m6A site occurred in
the wild-type transcript and disrupted in the mutant transcript,
m6ASNP defined it as an m6A-associated loss variant and vice
versa. m6ASNP constructed three confidence levels of m6A-
associated variants annotation. The high-confidence-level annota-
tion contains m6A sites derived from miCLIP-seq and PA-m6A-seq
dataset; the medium-confidence-level annotation contains m6A
sites obtained from MeRIP-seq detected methylation peak where
the DRACH motifs were significantly altered by SNP; the low-
confidence-level annotation contains m6A sites that predicted by
m6ASNP whole transcriptome widely. To further mine the function
of m6A-associated variants, m6ASNP annotated the m6A-
associated variants by their neighboring RBP sites [128], miRNA
target sites [128] and canonical splicing sites, and conducted
GWAS analysis to infer disease-association for m6A-associated
SNPs [129]. Using the same analysis pipeline defined in m6ASNP,
m6AVar [107] was developed as the first comprehensive database
of m6A-associated variants. m6AVar is a powerful resource for
investigating the relationship between m6A-associated variants
and diseases.

RMVar [130] was developed to extend the analysis to 9 kinds of
RNA modifications [130]. m6A-Atlas is another database of m6A-
associated variants, which can be used to further detect the poten-
tial pathogenesis of m6A sites inferred from disease-associated
genetic mutations that directly destroy the m6A forming DRACH
motif [51]. m6A-Atlas is a comprehensive knowledgebase for
high-confidence collection of m6A sites covering seven species
and including virus infection epitranscriptomes. Similar to
m6AVar, m6A-Atlas also annotated the potential involvement of
m6A sites in pathogenesis by integrating GWAS information. Simi-
lar to RMVar, RMDisease [131] collected eight types of RNA modi-
fications and their disease-associated variants. Importantly,
RMDisease integrated multiple algorithms and used more informa-
tion and provides quantitatively the impact of the genetic variants
on RNA modification.

The above researches mainly study the influence of SNP on RNA
modification based on the disturbed modification sites nearby SNP
using RNA sequence analysis. Moreover, some researchers tried to
build the relationship between SNPs and methylation level of m6A
sites, and further tested cis-associations between methylation
peaks and SNPs within specific region. Zhang et al have applied a
linear model implemented in FastQTL [132] to detect the associa-
tions between SNPs and m6A sites within 100 kb from m6A-seq
data in lymphoblastoid cell lines derived from 60 Yoruba (YRI)
individuals [133]. This pipeline is similar to eQTLs or sQTLs and
they defined the significant associations as m6A QTL. To account
for multiple genetic variants tested for each peak, a permutation
strategy adopted by FastQTL software [132] was performed. m6A
QTLs are found to be largely independent of eQTLs and enriched
with binding sites of RBPs [134], RNA structure-changing variants
[135] and transcriptional features. Andm6A QTLs are more likely to
Table 2
Summary of advanced approaches for functional prediction of epitranscriptome.

Approaches Modification type Function prediction Disea

m6A-Driver m6A
p

Hot-m6A m6A
p p

FunDMDeep-m6A m6A
p

Funm6AViewer m6A
p

m6Acomet m6A
p

ConsRM m6A
p

DRUM m6A
p

HN-CNN m7G
p

m7GDisAI m7G
p

Lin et al. m6A
p

Qiu et al. m6A
p
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be other kind of QTLs than random SNP-gene pairs, suggesting
functional associations between m6A and other molecular pheno-
types based on five downstream traits analysis: mRNA expression;
ribosome binding; protein level; mRNA decay rate; and alternative
polyadenylation (APA). Similar with the previous m6A-associated
SNP studies, m6A QTLs are found to contribute to the heritability
of various immune and blood-related traits by GWAS analysis.
The TWAS/FUSION [136,137] was also applied treating m6A as a
molecular-level trait to determine the correlations of m6A levels
and specific phenotype.

4. Advanced approaches for functional prediction

RNA m6A methylation is reported to mediate mRNA turn-over
and translational efficiency of genes such as MYC [138], TGFb
[139], and FOXM1 [140] to regulate pathways such as cell apopto-
sis, proliferation, migration and self-renewal in both normal and
disease conditions [141]. Therefore, the behaviors of functional
m6A sites and their carrying genes are supposed orchestrated in
complex networks. Based on this hypothesis, some computational
methods in particular network-based approaches have been devel-
oped to predict the key RNA methylation sites and their mediated
functions and disease-association (Table 2). The approaches were
summarized based on the modification type it is developed for
(Modification Type), whether it is developed for RNA methylation
function prediction (Function Prediction) or disease association
prediction (Disease Association) and whether the predicted
results are for methylation sites (Site-based) or their carrying
genes (Gene-based).

4.1. Prediction of RNA methylation-mediated functions

m6A-Driver is the first network-based computational algorithm
for predicting m6A-driven genes and associated networks, whose
functional interactions are likely to be actively modulated by
m6A methylation under a specific condition with respect to a refer-
ence condition (e.g., disease vs. normal, differentiated cells vs. stem
cells or gene knockdown cells vs. wild type cells) [115]. m6A-
Driver integrates the protein–protein interaction (PPI) network
and the predicted differential methylation sites from MeRIP-Seq
data using a RandomWalk with Restart (RWR) algorithm, and then
builds a consensus m6A-driven network of m6A-driven genes. The
m6A-driven genes refer to genes whose mRNAs harbor differential
RNA methylation sites, thus may be under dynamic epitranscrip-
tomic regulation, and be functionally significant to the biological
contexts of interest. m6A-driven genes were identified in four steps
by the m6A-Driver algorithm: 1) replicate-specific prediction of
differential methylation carrying genes using exomePeak; 2)
replicate-specific prediction of candidate differential methylation
site carrying genes with RWR algorithm; 3) topological and func-
tional significance-based evaluation of the candidate differential
se Association Gene- based Site- based Last Ref.
p

2016 [115]p
2018 [96]p
2019 [102]p
2021 [142]p
2019 [143]p
2021 [144]p
2019 [145]p
2021 [146]p
2021 [147]p
2020 [148]p
2020 [149]
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methylation carrying genes; 4) construction of a consensus m6A-
driven gene network from edges across all replicates. Starting from
MeRIP-Seq data, m6A-Driver can predict functional methylation
sites carrying genes and their mediated functional circuit. A major
limitation of m6A-Driver method is that, it only models the func-
tional interactions between differential methylation carrying genes
but ignores the functional interaction of differential methylation
carrying genes with known signaling pathways and their up- and
down-stream genes in the pathways.

The FunDMDeep-m6A method was proposed to help reveal the
dynamics of m6A level under a specific context and identify the
genes, functions and pathways mediated by the dynamic m6A
methylation using data from MeRIP-seq [102]. FunDMDeep-m6A
develops, at the first step, DMDeep-m6A to identify differential
m6A methylation sites from MeRIP-Seq data at a single-base reso-
lution, and then identifies and prioritizes functional differential
methylation carrying genes by combing differential methylation
with differential expression analysis using a network-based
method. A novel m6A-signaling bridge (MSB) score was devised
to quantify the functional significance of differential methylated
genes by assessing functional interaction of these genes with their
signaling pathways via a heat diffusion process in PPI networks.
FunDMDeep-m6A can identify more context-specific and function-
ally significant functional methylation genes than m6A-Driver.
Taking FunDMDeep-m6A as prediction engine, Funm6AViewer
webserver and R package were developed to prioritize context-
specific functional m6A-carrying genes, characterize and visualize
the differential m6A sites, and construct and functionally interpre-
tate the gene interaction networks mediated by RNA methylation,
including its functionality, relation to gene expression, and net-
work topology [142].

Different from gene-based network algorithms, m6Acomet con-
structed a network of co-methylated m6A sites from 109 experi-
mental conditions and predict biological functions of individual
m6A sites based on the significantly enrichment GO functions of
its neighboring sites carrying genes [143]. The co-methylation net-
work was constructed based on the Pearson’s correlation of methy-
lation level of m6A sites and the co-methylated sites in the network
are speculated to share some common regulators at the epitran-
scriptome layer and have related biological functions. The GO pre-
diction for individual m6A site was achieved by mapping its
neighboring sites to genes and applying GO enrichment analysis
for their carrying genes, and thus can only predict GO functions
of specific m6A site instead of the entire gene. m6A-Atlas adopted
the same analysis and collected the GO function annotation of each
m6A sites in the database [51]. Song et.al. constructed a centralized
platform, ConsRM, to achieve conservation analysis and functional
prioritization of individual RNA methylation sites [144].

4.2. Inference of disease-association

To conduct a comprehensive prediction of m6A mediated func-
tions and associated diseases, Zhang et al proposed a pipeline that
carries out global analysis of m6A regulated genes using 75 human
methylated MeRIP-seq samples curated by MeT-DB V2.0 [54]. The
pipeline is mainly consisting of three parts: 1) Deep-m6A, the first
deep learning model for detecting condition-specific m6A sites
from MeRIP-Seq data with base resolution; 2) Hot-m6A, a new
network-based algorithm that prioritizes functional significant
m6A genes and their regulated networks; and 3) Random Walk
with Restart (RWR) in a heterogeneous gene-disease networks to
infer m6A regulated gene-disease associations. Consistent with
current researches, Hot-m6A reveals that m6A targets key genes
of many important biological processes (e.g., transcription, cell
organization and transport, and cell proliferation) and cancer
related pathways (e.g., Wnt pathway, Ras signaling, and PI3K-Akt
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signaling pathway). The disease-association analysis prioritized
five diseases including leukemia and renal cell carcinoma along
with the corresponding m6A regulated marker genes. This pipeline
provided new leads for understanding m6A regulatory functions
and its roles in disease pathogenesis. However, the analysis was
conducted in gene level, and only the m6A site with the highest
methylation level of a gene was considered, which may lead to
the loss of some information.

To capture the site-specific information, the DRUM method
[145] constructed a multi-layered heterogeneous network for pre-
diction m6A site and disease association, in which, the methylation
sites and genes were linked via the association of expression and
methylation levels, and the genes and diseases were linked accord-
ing to existing gene-disease association database. Then a RWR
approach was adopted to predict associations between individual
m6A sites and diseases. Nevertheless, the co-expression network
cannot well establish the gene functional interactionmodule in dis-
ease gene prediction problems and straight-forward linking of m6A
sites and their carrying genes may not quantify the regulation level
of RNAmethylation to genes. The HN-CNNmethod trained a convo-
lutional neural network (CNN) to predict m7G site disease associa-
tions [146] and the m7GDisAI predicted the potential disease-
associated m7G sites based on a matrix decomposition method on
heterogeneous networks of m7G sites and diseases [147].

Another way to investigate m6A clinical relevance is to find
functional methylation-associated SNPs using genome-wide asso-
ciation studies in patients. From published GWAS summary statis-
tics through a public database, Lin et al have identified a large
number of BMI (body mass index)-associated m6A-SNPs and estab-
lished an m6A-SNP/gene expression/adiposity triplet, where the
SNP located next to the m6A site on 30UTR of IPO9 gene was pre-
dicted to affect the m6A modification site and regulate the expres-
sion of the IPO9 gene to participate in the pathogenesis of adiposity
[148]. Using GWAS in Parkinson’s disease (PD) patients, Qiu et al
have investigated potential functional variants of m6A-SNPs [149]
and identified 12 m6A-SNPs that were significantly associated with
PD risk using expression quantitative trait loci (eQTL) analysis and
differential gene expression analysis.
4.3. Clustering of epitranscriptome data

Clustering of RNAmodification data can discover co-methylation
patterns and contributes to explain the specific regulatory mecha-
nismsofRNAmodification. Liu et al. havedeveloped thefirst cluster-
ing approach, which adopted K-means, hierarchical clustering (HC),
Bayesian factor regression model (BFRM) and nonnegative matrix
factorization (NMF) to unveil the co-methylation patterns of m6A
MeRIP-Seq datasets collected from10 different experimental condi-
tions [150]. Chen et al. developed a convenient measurement
weighting strategy to tolerate the artifacts of high-throughput
sequencing data and improve performance in epitranscriptome
module discovery [151]. A weighted Plaid bi-clustering model
(FBCwPlaid) [152] and an RNA ExpressionWeighted Iterative Signa-
ture Algorithm (REW-ISA) [153]were also developed to discover the
potential functional patterns fromMeRIP-seq data of 69,446methy-
lation sites under 32 experimental conditions. Recently, a bicluster-
ing algorithmbasedon thebeta distribution (BDBB)wasproposed to
mine local co-methylation patterns (LCPs) of m6A epitranscriptome
data andBDBBunveiled two functional LCPs fromMeRIP-Seq data of
32 experimental conditions from 10 human cell lines [154].
5. Diagnosis and prognosis analysis

Perturbation of m6A regulators including writers, erasers and
readers in cancer, has revealed their critical roles in regulating cel-
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lular proliferation, migration, invasion, apoptosis, and metastasis
[155–158] and unveiled the critical insights into the role of m6A
regulators in cancer pathogenesis [159]. Starting from methylation
regulators, some studies have investigated the diagnostic and
prognostic roles of methylation in cancers and some common dis-
eases using correlation and survival analysis from large-scale can-
cer genomic data, such as those from TCGA or ENCODE.

Kandimalla et al have comprehensively analyzed gene expres-
sion profiles of 9770 cancer cell lines and clinical specimens from
13 human cancers [159] to establish RNAMethyPro, a gene expres-
sion signature of seven m6A regulators, which robustly predicted
patient survival in multiple human cancers. RNAMethyPro was
built based on a multivariate Cox regression model, which was
trained using the corresponding training dataset for each cancer
type. Then, the derived formula, i.e., RNAMethyPro, was subse-
quently used to calculate the risk scores predictive of overall sur-
vival or relapse-free survival. Patients in each cohort were
stratified into low-, intermediate-, and high-risk groups based on
the risk scores predicted by RNAMethyPro and the performance
of RNAMethyPro is validated by survival analysis, gene set enrich-
ment analysis, ESTIMATE [160] analysis of stromal and immune
content and network analysis for different risk groups.

Meanwhile, Li et al have conducted another pan-cancer analy-
sis, which investigated the clinical relevance of m6A regulators
across more than 10,000 subjects representing across 33 cancer
types [161]. They firstly profiled the widespread genetic and
expression alterations to 20 m6A regulators across cancer types;
then implemented correlation analysis, showing that the m6A reg-
ulators’ expression levels are significantly correlated with the
activity of cancer hallmark-related pathways; and finally, built sur-
vival landscape for 20 m6A regulator in 33 cancers and identified
survival-related subgroups of cancer patients based on the global
expression pattern of m6A regulators. According to their results,
m6A regulators were found to be potentially useful for prognostic
stratification, and IGF2BP3 was identified as a potential oncogene
across multiple cancer types.

Using similar pipeline, many studies have revealed the diagnos-
tic and prognostic roles of m6A or other methylation (e.g., m1A)
regulators in specific cancer including but not limited to hepatocel-
lular carcinoma [162,163], uveal melanoma [164], prostate cancer
[165], gynecological cancers [166], esophageal cancer [167], thy-
roid carcinoma [168] and renal carcinoma [169]. Moreover, Meng
et al have built the m6A-related mRNA signature to predict the
prognosis of pancreatic cancer patients [170] and predicted that
PAH, ZPLD1, PPFIA3, and TNNT1 genes exhibited an independent
prognostic value using correlation and survival analysis. Tu et al
have investigated the prognostic value of m6A-related long non-
coding RNAs in 646 lower-grade glioma (LGG) samples from The
Cancer Genome Atlas (TCGA) and the Chinese Glioma Genome
Atlas (CGGA) datasets [171] using gene co-expression analysis
and univariate Cox regression analysis for survival.
6. Conclusion and future perspective

The dynamic RNA modifications, especially m6A, have been
identified to play regulatory roles in many essential biological pro-
cesses, and the dysregulation of their regulators has been shown to
mediate the pathogenesis, diagnosis and prognosis of many can-
cers and other human diseases. In the last decade, the epitranscrip-
tome profiling approaches have been well established for a dozen
of RNA modifications, and the epitranscriptome of many species
under various biological contexts have bene collected and publi-
cally available from existing bioinformatics databases. Neverthe-
less, the functional epitranscriptome, which consists of the
functional modification sites along with their mediated functions
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and disease association, remains unclear. We have summarized
here the current bioinformatics approaches for functional annota-
tion and prediction of RNA modifications, including the prediction
of functional RNA modification sites and their hosting genes, along
with RNA modification-mediated functions, disease association
and diagnosis/prognosis.

Started from the successfully identified RNA modification sites,
there are mainly two ways of functional analysis of RNA modifica-
tions: 1) the distance-based path that associate various biological
events with RNA modification sites based on their proximity on
the genome. 2) the omics-based path that predicts functional
methylation sites/genes with their mediated functions and associ-
ated diseases using complex network-based methods from large-
scale omic data.

Existing functional analysis approaches have unveiled partially
the landscape of functional epitranscriptome, while there are still
some shortages and limitations. The annotation-based approach
associates the functions of RNA modification sites to other biolog-
ical events based on simply the co-localization. There exists cer-
tainly a large number of false positive association and the
potential regulatory mechanism is not clear. Though some works
such as m6Var and m6A-Atlas have defined m6A-associated SNPs
as SNPs that can alter m6A methylation sites according to machine
learning analysis, it is difficult to validate those predictions directly
with experimental data due to the lack of paired epitranscriptome
profiles from the wild type and mutated samples.

The network-based approaches directly mapped methylation
sites to genes, and then predict their mediated function circuits
based on the hypothesis that the closely interacted nodes (module)
in a network tends to be regulated by the same regulator or medi-
ate common functions using the complex network theories. The
straight-forward mapping of methylation sites to genes presumes
the dynamic sites can disturb gene functions but ignores the
site-specific regulation mechanism when there exist multiple
RNA methylation sites on the same transcript. For m6A methyla-
tion, the m6A sites located on 30UTR and CDS near the stop codon
of mRNA are more likely to mediate mRNA stability and degrada-
tion, which is correlated with gene expression level, while the
m6A sites located on 50UTR and caps of mRNA are more likely to
mediate mRNA translation efficiency, which is correlated with
the protein expression level. Different locations and characteristics
of methylation sites may lead to different mechanisms and levels
of regulation, then it is important to quantify the regulation of
methylation sites rather than the whole genes. Some approaches
such as FunDMDeep-m6A have simply quantified the regulation
level of methylation sites by combing the differential gene expres-
sion with differential methylation under specific biological context
(e.g., stem cell differentiation), while only the gene expression
level is considered with the location information ignored. Conceiv-
ably, it may be more convictive if the network-based approach
considers the detailed regulatory mechanism of every individual
sites in the future.

A perspective way to predict RNA methylation-mediated func-
tions could be mining key genes, whose expression, splicing state
or translation efficiency is regulated by RNA methylation under
specific context. The primary mode of m6A post-transcriptional
regulation is mRNA stability regulation, where YTHDF1-3 selec-
tively bind to m6A sites to promote mRNA decay [172]. The methy-
lation level of specific m6A sites and gene expression may have
tightly correlation under specific condition. A common challenge
in studying condition-specific m6A regulatory functions is the lim-
ited MeRIP-seq replicates. Some efficient approaches such as
DESeq2 [173] have been developed to process small samples of
RNA-seq data, which can inspire the solution for limited MeRIP-
seq replicates. Xiao et al. provided the first transcriptome-wide
analysis of splicing changes induced by YTHDC1 knockdown [5]
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and some researchers also revealed the m6A erasers, such as FTO,
could influence RNA alternative splicing [174]. Due to the limited
sequencing depth, it is difficult to identify alternative splicing sites
from input samples of MeRIP-Seq data, while it is still interesting if
the distribution of m6A sites and splicing sites can be compared to
find some patterns for further correlation analysis. m6A can affect
the efficiency of mRNA translation via m6A-binding protein
YTHDF1 or directly recruiting some translation initial factors
depending on m6A in specific biological context [3,175]. The regu-
lation pattern may be different depends on the distribution of m6A
sites, the binding of translation factor recruited by m6A readers or
writers and different contexts (e.g., cell lines, treated conditions).
Some regression or correlation analysis methods can be adopted
to uncover the RNA sequence-based or gene-specific m6A regu-
lated translation patterns under specific condition.

Moreover, METTL14- or METTL3-mediated m6A methylation
could influence the stability or translation of histone methyltrans-
ferase, such as Ezh2 and SETD, which further advances the level of
H3K27ac, H3K4me3 and H3K27me3 modification during the cell
development [176–178]. The m6A-mediated histone mark may
be context-specific during transcription process. Some specific
sequence patterns or histone marker binding motifs may help
uncover the relationship between m6A methylation and specific
histone mark. Integrated analysis of paired MeRIP-seq and ChIP-
seq data for histone markers should contribute to uncovering some
interesting m6A-mediated histone mark patterns.

Meanwhile, current diagnosis and prognosis analysis pipelines
for RNA methylation are mainly activated by two engines: methy-
lation regulators-powered analysis where the diagnostic and prog-
nostic roles of RNA methylation regulators in cancers are
investigated using correlation analysis and survival analysis from
large scale cancer genomic data; and methylation-associated
SNPs-powered analysis where the diagnostic and prognostic roles
of RNA methylation in specific disease are investigated using gen-
ome wide association analysis for methylation-associated SNPs.
The RNA modification regulators-powered diagnosis and prognosis
analysis focused on the genetic mutations and dysregulation in the
expression of methylation regulators in cancers from large-scale
cancer data. The involvement of big data can surely improve our
understanding of the diagnostic and prognostic roles of these reg-
ulators; however, the absence of methylation profile data in these
studies may lead to missing of further epitranscriptome mecha-
nisms. To date, the value of epitranscriptome profile (rather than
the regulators of the epitranscriptome) in diagnostic and prognos-
tic analysis has not been fully explored, which is primary due to
the data availability. To the best of our knowledge, none of existing
large consortium projects, such as TCGA, has covered the epitran-
scriptome of patients, which is a major limitation for large-scale
and in-depth studies of the pathogenic relevance of epitranscrip-
tome mechanisms.

Additional perspectives for functional annotating RNA modifi-
cations may include: (1) Association to virus. Recent studies have
unveiled the critical role of RNA modifications during virus infec-
tion [179]. Although m6A-Atlas provided the viral epitranscrip-
tome of ten different viruses, it should be interesting to further
label host m6A sites that may regulate the fate of endogenous
retroviruses [180] or functions during virus infection. (2) Relevance
to RNA structure. A number of studies have shown that RNA mod-
ifications may affect RNA structure [181–185]. Permeably, RNA
modification sites that can change its overall structure are likely
to be functionally critical. However, a systematic labeling of all
the RNA modification sites that can modify the structure is yet
available. (3) Isoform specificity. Most existing epitranscriptome
profiling approaches suffers from an isoform ambiguity problem,
i.e., it is unclear whether an RNA modification site is located on a
specific isoform transcript when there exist multiple isoform RNAs
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transcribed from the same DNA coordinate. As a result, isoform
specificity of RNA modification is not provided in any of the bioin-
formatics databases. Labeling isoform belonging clearly provides
more detailed information of the RNA modification. Recently, a
computational model MetaTX shed some light on this issue from
a statistical perspective by taking advantage of the overall distribu-
tion pattern of RNA modification [186] and a computational pack-
age Episo was also developed to quantify epitranscriptomal RNA
m5C at the transcript isoform level [187]. The Nanopore technology
provide a parallel experimental solution [188–194]. (4) Evolution-
ary conservation of individual RNA modification sites. Conserva-
tion has been a very powerful perspective to study the function
of protein and DNA sequences. Conceivably, conserved RNA modi-
fication sites, i.e., RNA modification occurs on the homologous
regions of different species, survived from nature selection, and
are thus likely to be functionally important for the organisms. Cur-
rently, the conservation information is only available for m6A RNA
methylation through the m6A-Atlas [51] database. It should be
interesting to further label the conservation status all other RNA
modification sites.
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