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Long‑term stability 
of computational parameters 
during approach‑avoidance conflict 
in a transdiagnostic psychiatric 
patient sample
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Maladaptive behavior during approach-avoidance conflict (AAC) is common to multiple psychiatric 
disorders. Using computational modeling, we previously reported that individuals with depression, 
anxiety, and substance use disorders (DEP/ANX; SUDs) exhibited differences in decision uncertainty 
and sensitivity to negative outcomes versus reward (emotional conflict) relative to healthy controls 
(HCs). However, it remains unknown whether these computational parameters and group differences 
are stable over time. We analyzed 1-year follow-up data from a subset of the same participants 
(N = 325) to assess parameter stability and relationships to other clinical and task measures. We 
assessed group differences in the entire sample as well as a subset matched for age and IQ across HCs 
(N = 48), SUDs (N = 29), and DEP/ANX (N = 121). We also assessed 2–3 week reliability in a separate 
sample of 30 HCs. Emotional conflict and decision uncertainty parameters showed moderate 1-year 
intra-class correlations (.52 and .46, respectively) and moderate to excellent correlations over the 
shorter period (.84 and .54, respectively). Similar to previous baseline findings, parameters correlated 
with multiple response time measures (ps < .001) and self-reported anxiety (r = .30, p < .001) and 
decision difficulty (r = .44, p < .001). Linear mixed effects analyses revealed that patients remained 
higher in decision uncertainty (SUDs, p = .009) and lower in emotional conflict (SUDs, p = .004, DEP/
ANX, p = .02) relative to HCs. This computational modelling approach may therefore offer relatively 
stable markers of transdiagnostic psychopathology.

Situations eliciting conflict between approach and avoidance drives (approach-avoidance conflict; AAC) are often 
difficult to handle adaptively for individuals with affective psychopathology1. For example, maladaptive avoid-
ance behavior in depression and anxiety disorders (DEP/ANX) can lead individuals to sacrifice participation in 
rewarding activities due to fear of negative social consequences2. Substance use disorders (SUDs) are also char-
acterized by conflict between strong drug-taking drives and long-term negative outcomes (job loss, loss of close 
relationships), and decision-making impairments are often observed in substance users on tasks that involve AAC 
(reviewed in3,4). The ability to identify stable individual differences in cognition during AAC in these and other 
clinical populations could be an important step toward the development of individualized treatment selection5.

While there is a growing literature using multiple behavioral tasks to study AAC (6–18; for a review, see19), 
this work has not focused on longitudinal aspects of AAC behavior in clinical populations. It is also unclear 
whether repeated testing of participants with existing behavioral tasks would provide stable individual differ-
ence estimates in psychiatric patients. Yet, individual test–retest reliability and stability of group differences are 
essential components for any paradigm to be used in assessing the effects of treatment (e.g., to assess whether 
a clinical intervention reduces an objective measure of avoidance behavior). Behavioral paradigms capable of 
offering stable, clinically relevant measures would therefore be an important advance.

In a recent paper20, we used a computational modelling approach to analyze behavior on an AAC task 
developed by Aupperle and colleagues11 in a transdiagnostic sample of patients with DEP/ANX and SUDs. This 
dataset was part of the Tulsa 1000 (T1000) study21, a naturalistic longitudinal study recruiting subjects based 
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on the dimensional NIMH Research Domain Criteria framework22. Computational modelling in that study 
was able to tease apart two components of AAC: decision uncertainty and emotional conflict (aversiveness of 
negative stimuli relative to reward value). Relative to healthy controls (HCs), we found that all patient groups 
showed elevated decision uncertainty and also exhibited an unexpected trend toward reduced levels of emotional 
conflict. Behaviorally, this corresponded to greater choice variability, but less pronounced avoidance on average, 
in the patient groups. However, the stability of this difference in the patient groups over time, and the ability of 
the task and modelling approach to capture it, was not addressed.

A central aim in computational psychiatry is to find modeling measures that can be used as predictors of 
treatment outcome, to inform personalized medicine approaches, or to track progress in treatment. These aims 
require that such measures provide reliable estimates of functioning in the domain being assessed. In contrast, if 
changes with repeated testing reflect random influences, and not change in an underlying mechanism of interest, 
their use as assessment tools for tracking progress in treatment will be limited. To date there have been relatively 
few assessments of the test–retest reliability of computational psychiatry measures, with existing studies finding 
reliability levels ranging from poor to good23–29. This pattern of results suggests that either the cognitive processes 
engaged by these tasks differ with repeated performance or that there is significant measurement error. There 
is thus a need to more fully assess the longitudinal reliability of available task measures within computational 
psychiatry research.

In this paper, we perform identical analyses on data from participants in our previous report 20who performed 
the AAC task a second time at a 1-year follow-up. We tested the hypothesis that model parameter estimates would 
show at least fair reliability over the 1-year period [i.e., intra-class correlations greater than 0.40; criteria for ‘fair’ 
vs. ‘good’ (greater than 0.60) reliability are based on30] and that the same differences between healthy and clinical 
groups would be found as in the baseline visit. We also explored whether baseline parameter estimates could 
predict changes in symptoms between baseline and 1-year follow-up. Lastly, we also report test–retest reliability 
of parameters over a 2–3 week period for a separate sample of 30 healthy control participants.

Method
Participants.  Participants for this analysis were identified from the first 500 participants of the Tulsa 1000 
(T1000)21, a naturalistic longitudinal study that recruited participants based on the dimensional NIMH Research 
Domain Criteria framework. The T1000 study had a baseline visit and a 1-year follow up, and included a com-
munity-based sample of approximately 1000 individuals recruited through radio, electronic media, treatment 
center referrals, and word of mouth (this sample size was planned a priori; see21 for a detailed justification based 
on the aims of the larger study). The participants included in the analyses described here consisted of the subset 
of participants in our previous study20 that returned for the 1-year follow-up visit (see below). These partici-
pants were 18–55 years of age, and were screened on the basis of dimensional psychopathology scores: Patient 
Health Questionnaire (PHQ31) ≥ 10, Overall Anxiety Severity and Impairment Scale (OASIS32) ≥ 8, and/or Drug 
Abuse Screening Test (DAST-1033) score ≥ 3. HCs did not show elevated symptoms or psychiatric diagnoses. 
Participants were excluded if they (i) tested positive for drugs of abuse, (ii) met criteria for psychotic, bipolar, 
or obsessive–compulsive disorders, or reported (iii) history of moderate-to-severe traumatic brain injury, neu-
rological disorders, or severe or unstable medical conditions, (iv) active suicidal intent or plan, or (v) change in 
medication dose within 6 weeks. Full inclusion/exclusion criteria are described in21. The study was approved by 
the Western Institutional Review Board. All participants provided written informed consent prior to comple-
tion of the study protocol, in accordance with the Declaration of Helsinki, and were compensated for participa-
tion. ClinicalTrials.gov identifier: #NCT02450240. For previous papers published from the larger T1000 dataset, 
see34–44. With the exception of our previous paper20, none of these papers included analyses using the AAC task.

As in our original study20, given the heterogeneous clinical sample in the T1000 and its explicitly transdiag-
nostic focus, we divided participants into three groups consisting of HCs, those with SUDs (with low to moder-
ate DEP/ANX symptoms; see Table 1), and those with DEP/ANX who did not have SUDs. This maintained the 
transdiagnostic focus while also allowing us to account for potentially distinct effects of substance use. Diagnostic 
grouping was based on DSM-IV or DSM-5 criteria using the Mini International Neuropsychiatric Inventory 
(MINI)45 administered at the baseline visit. The DEP/ANX group consisted of individuals with major depres-
sion and/or co-morbid anxiety disorders (social anxiety, generalized anxiety, panic, and/or posttraumatic stress 
disorder; baseline: N = 260, 1-year follow-up: N = 192), SUDs (recreational drugs excluding alcohol and nicotine, 
with or without comorbid depression and anxiety disorders; baseline: N = 159, 1-year follow-up: N = 84), and 
HCs with no mental health diagnoses (baseline: N = 59, 1-year follow-up: N = 49). In total, 68% of participants 
completed the follow-up visit (for analyses of potential symptom differences between those that did versus did 
not complete the follow-up visit, see Supplementary Materials).

As further described in21, because the T1000 study was built around the NIMH Research Domain Criteria 
(RDoC) framework that describes dimensions of pathology22, it specifically aimed in advance to recruit partici-
pants with these symptom profiles, with the aim of identifying transdiagnostic behavioral and neural phenotypes 
related to threat/reward processing, interoceptive processing, and cognitive functioning. While symptoms can 
be observed dimensionally, as in the case of symptom scales, we found that diagnostic categories offered addi-
tional information in our previous study; they also allow more direct connection to previous diagnosis-based 
studies. The transdiagnostic categories used here (i.e., separating SUDs from DEP/ANX without SUDs) were 
developed prior to the current analyses and discussed in previous papers34. Note also that, while the T1000 
also included individuals with eating disorders, these were excluded in our original study (and here) due to 
small sample sizes. Depression and anxiety disorders were categorized together for our analyses due to the high 
rates of overlap in these diagnoses and due to there being very small sample sizes (N = 19) for individuals with 
anxiety disorders without depression. The lower number of HCs was included to maximize our ability to detect 



3

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11783  | https://doi.org/10.1038/s41598-021-91308-x

www.nature.com/scientificreports/

dimensional effects within patient populations in other planned analyses (in consideration of the total sample 
size that could be collected).

Data collection procedure.  Participants underwent an intensive assessment for demographic, clinical and 
psychiatric features, with a main focus on negative and positive affect, arousal, and cognitive functioning. From 
this assessment, several direct and derived variables were acquired, only some of which were used in the present 
analyses. The complete list of assessments and references supporting their validity and reliability are provided 
in21. For this study, we examined the following additional measures that were collected at both baseline and fol-
low-up: the Patient-Reported Outcomes Measurement Information System (PROMIS) depression and anxiety 
scales46, the Behavioral Activation/Inhibition (BIS/BAS) scales47, the PANAS positive and negative affect scales48, 
and the anxiety sensitivity index (ASI;49).

Approach‑avoidance conflict (AAC) task.  The AAC task was described in detail in our previous paper 
(and elsewhere10,11,20). For a more detailed description, see Supplementary Materials. Briefly, participants were 
shown an avatar on a runway which could be moved to 9 possible locations, with images of a sun, raincloud, and/
or a rectangle with partial red fill on either side (depending on the task condition; see Fig. 1). They could choose 
to approach the sun or clouds, where moving closer to one or the other increased the probability of exposure to a 
pleasant or unpleasant image/sound combination (respectively), with probabilities of p = 0.1 to 0.9 in increments 
of 0.1 (which was indicated to participants). The higher the red fill on a given side, the more points they could 
win if they approached that side.

There were five trial types: (1) ‘Avoid-threat’ (AV), in which 0 points were offered for both negative and 
positive stimulus outcomes; (2) ‘Approach-reward’ (APP), in which 2 versus 0 points were offered, each with 
positive affective stimuli. (3)–(5) Three levels of ‘Conflict’ in which the negative affective stimulus was presented 
in addition to winning either 2 (CONF2), 4 (CONF4), or 6 (CONF6) points, while 0 points were offered for 
the positive stimulus. The task consisted of a total of 60 trials, with 12 of each of the five trial types. Behavioral 
variables consisted of both chosen avatar position and response times (RTs; i.e., time to initial button press) 
during each trial. Participants were also asked to fill out the same post-task Likert scale questionnaire as in our 
previous study, which asked about their experience during the task (these questions are listed in Table 4 within 
the results section).

Computational modeling.  To model behavior on the AAC task described above, we used the same 
Markov decision process (MDP) model as in our previous study; for more details about this class of models, 
see51–54. For a detailed description of our model specification, which was identical to our previous study, see Sup-
plementary Materials. The model is also described in Table 2 and illustrated in Fig. 2. Briefly, the model included 
observable task stimuli (o; runway cues, trial type cues, affective stimuli, points), task states (s; runway position, 
trial type), and action policies ( π ; choice of runway position). Different matrices specified the probability that 
runway positions would lead to observing different task stimuli, P(ot |st) , depending on actions, P(st+1|st ,π) , 

Table 1.   Summary statistics (mean and SD) and group differences for demographic and clinical measures. 
*Based on ANOVAs testing for the presence of differences between groups.

Full sample
HCs
(N = 49)

DEP/ANX
(N = 192)

SUDs
(N = 84) p*

Age 32.71 (11.29) 37.17 (11.42) 36.28 (9.18) 0.039

Sex (% male) 24 (49.0%) 50 (26.0%) 34 (40.5%) 0.002

PHQ baseline 0.85 (1.27) 12.57 (5.19) 6.88 (6.10) < 0.001

PHQ 1-year follow-up 1.14 (1.84) 8.27 (6.10) 3.10 (4.57) < 0.001

OASIS baseline 1.38 (2.00) 9.74 (3.47) 5.98 (4.86) < 0.001

OASIS 1-year follow-up 1.47 (2.31) 7.56 (4.58) 3.54 (4.36) < 0.001

DAST-10 Baseline 0.12 (0.39) 0.56 (1.27) 7.46 (2.21) < 0.001

DAST-10 1-year follow-up 0.47 (0.56) 0.56 (1.05) 2.46 (2.89) < 0.001

WRAT baseline 63.89 (4.54) 63.03 (4.64) 58.49 (6.00) < 0.001

Matched sample
HCs
(N = 48)

DEP/ANX
(N = 121)

SUDs
(N = 29) p

Age 32.94 (11.29) 36.46 (11.13) 34.06 (9.93) 0.144

Sex (% male) 24 (50.0%) 31 (25.6%) 13 (44.8%) 0.005

PHQ baseline 0.85 (1.27) 12.57 (5.34) 8.69 (7.49) < 0.001

PHQ 1-year follow-up 1.14 (1.84) 8.10 (6.44) 4.03 (4.12) < 0.001

OASIS baseline 1.38 (2.00) 9.71 (3.44) 6.93 (5.52) < 0.001

OASIS 1-year follow-up 1.47 (2.31) 7.26 (4.53) 4.52 (4.40) < 0.001

DAST-10 Baseline 0.12 (0.39) 0.53 (1.18) 7.52 (2.69) < 0.001

DAST-10 1-year follow-up 0.47 (0.56) 0.56 (1.18) 2.69 (2.97) < 0.001

WRAT baseline 63.89 (4.54) 62.88 (4.60) 61.59 (5.34) 0.123
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and the subjective preference for (or aversion to) different task stimuli. An expected precision term (β) encoded 
decision uncertainty, and an “emotion conflict” (EC) term encoded how subjectively aversive negative stimuli 
were relative to point values. Higher values for the decision uncertainty term have the effect of increasing the 
variance of the distribution encoding the probability of selecting one action over others. This means that, all 
else being equal, individuals that make less consistent choices within each trial type will be assigned higher β 
values (e.g., choosing to approach the negative stimulus sometimes but not others when the same number of 
points could be won). Higher values for the EC term have the effect of increasing avoidance. This means that, all 
else being equal, individuals that choose to avoid the negative stimuli when more points could be won will have 
higher EC values (e.g., only choosing to approach the negative stimuli when 6 points could be won vs. choosing 
to approach when both 4 or 6 points could be won). For example simulations of behavior under different param-
eter values, see Figure S1 in Supplementary Materials.

All model simulations were implemented using standard routines (here spm_MDP_VB_X.m) that are avail-
able as Matlab code in the latest version (Jan 13th, 2020 update) of SPM12 academic software: http://​www.​fil.​ion.​
ucl.​ac.​uk/​spm/. Matlab code specifying the generative model of the AAC task is included as an appendix in our 
original paper20; additional code used to estimate parameters is also included as Supplementary Materials. As 
in our previous study, we used Variational Bayes (standard variational Laplace55) to estimate model parameters 
for each participant that maximized the likelihood of each participant’s responses, as described in17; see Supple-
mentary Materials for more details. To confirm that parameters were recoverable, we also generated simulated 
task behavior under 46 representative parameter value combinations present in our participant behavior; we then 
used Variational Bayes to estimate parameter values from this simulated behavior. Pearson correlations between 
the true and estimated parameter values were strong (decision uncertainty: r = 0.94; EC: r = 0.9), indicating that 
model parameters could be accurately estimated.

Analysis of model parameters.  Test–retest reliability of individual parameter estimates at baseline and 
1-year follow-up was estimated using single-measure consistency intraclass correlations [ICC(3, 1)], which 
account for fixed effects across time. This ICC measure was chosen due to the expectation that time and/or 

Figure 1.   (Left) The five trial types. The sun indicates a positive stimulus, the cloud indicates a negative 
stimulus, and the higher the red bar is filled the more points may be received. (Right) Example trial in the AAC 
task, in which the negative stimulus and two points were presented based on the probabilities associated with 
the chosen runway position. This figure is modified from our previous paper20.

http://www.fil.ion.ucl.ac.uk/spm/
http://www.fil.ion.ucl.ac.uk/spm/
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task familiarity could plausibly influence task behavior across all participants (although we note that the results 
reported below were nearly identical if assessing agreement instead of consistency). To further assess stability 
of results over time, we then re-performed the same analyses as in the original paper for the one year follow-up 
data. Specifically, we first calculated model accuracy metrics, reflecting (1) the average probability of partici-
pants’ actions under the model and (2) the average percentage of trials during which the action with the highest 
probability in the model matched the action chosen by participants (i.e., under the parameter values estimated 
for each participant). Next, we examined correlations between model parameters and RTs (i.e., time to initial 
button press; both across the whole task and within each condition). We also conducted correlation analyses to 
examine whether each parameter could predict subsequent self-reports on the post-task Likert scale questions.

We then conducted linear mixed effects analyses (LMEs) to confirm the effect of group in each parameter 
observed in our original study, and to assess potential effects of time (and their interaction). However, in our 
original study (and as shown in Table 1) the groups showed significant differences in age, sex, and Wide Range 
Achievement Test reading scores (WRAT; a common measure of premorbid IQ56), which prevented strong con-
clusions (i.e., even if controlling for these variables; see57 for discussion of limitations in the interpretability of 
results when controlling for effects of variables for which there are group differences). To more rigorously assess 
group differences, our previous study used the fullmatch function within the optmatch  R package (https://​www.​
rdocu​menta​tion.​org/​packa​ges/​optma​tch/​versi​ons/0.​9-​10/​topics/​fullm​atch; R version 4.0.2; originally developed 
by researchers at the Laureate Institute for Brain Research) to propensity match groups based on age and WRAT 
scores (propensity matching was not effective when including sex, given the differences between groups). Here, 
we similarly performed between-group analyses in the propensity matched groups used at baseline (i.e., the 
subset of participants in the original groups that returned for the follow-up visit; note that age and WRAT scores 
remained matched despite dropout, as shown in Table 1). Sample sizes for this matched sample (after drop-out 
between baseline and follow-up) were N = 48 (HCs), N = 121 (DEP/ANX), and N = 29 (SUDs). In Supplementary 
Materials, we present analogous results in the full sample, and we note below whether effects in the matched 
sample were also present in this larger sample. In these analyses, we expected to again observe greater β values 
(relative to HCs) in both patient groups at the 1-year follow up, as well as attenuated EC in SUDs. As these 
were a priori hypotheses focused specifically on confirming our prior results, we did not correct for multiple 
comparisons.

Excluding HCs, we next tested in exploratory analyses whether baseline parameter estimates could predict 
changes in clinical presentation between baseline and 1-year follow-up. Specifically, we used linear regressions 

Table 2.   Markov decision process model of the AAC task. *Note that t here refers to a timepoint in each 
trial about which participants have beliefs. Before a participant makes a choice (i.e., when still in the “start” 
state), they have prior beliefs about the state at time t = 2, and these beliefs are then updated after a subsequent 
observed outcome. In the active inference literature these beliefs about timepoints are often instead denoted 
with the Greek letter tau (τ) in order to distinguish them from the times (t) at which new observations are 
presented (for details, see54).

Model variable General definition Model-specific specification

ot Observable outcomes at time t*

Outcome modalities
 1. Observed position on the runway (10 possible observations, including a 
“starting” position and the nine final positions on the runway that could be 
chosen)
 2. Cues indicating trial type (five possible observations, corresponding to the 
five trial types)
 3. Stimuli observed at the end of each trial. This included seven possible obser-
vations corresponding to a “starting” observation, the positive stimulus with 0 
or 2 points, and the negative affective stimulus with 0, 2, 4, or 6 points

st Beliefs about hidden states at time t
Hidden state factors
 1. Beliefs about position on the runway (10 possible belief states with an iden-
tity mapping to the observations in outcome modality #1)
 2. Beliefs about the trial type (corresponding to the five trial types)

π A distribution over action policies encoding the probability of choosing each 
policy

Allowable policies included the decision to transition from the starting state to 
each of the nine possible positions on the runway

β
The prior on expected policy precision ( β ) is the ’rate’ parameter of a gamma 
distribution, which is a standard distribution to use as a prior for expected 
precision ( γ ). This latter term modulates the influence of expected free energy 
on policy selection

When β is high (reflecting low confidence about the best decision), policy selec-
tion becomes less deteriministic. Higher β values therefore encode participants’ 
decision uncertainty during the task (c.f., the temperature parameter in a 
conventional softmax response function)

A matrix
P(ot |st )

A matrix encoding beliefs about the relationship between hidden states and 
observable outcomes (i.e., the likelihood that specific outcomes will be observed 
given specific hidden states)

Encodes beliefs about the relationship between position on the runway and the 
probability of observing each outcome, conditional on beliefs about the task 
condition

B matrix
P(st+1|st )

A matrix encoding beliefs about how hidden states will evolve over time (transi-
tion probabilities)

Encodes beliefs about the way participants could choose to move the avatar, as 
well as the belief that the task condition will not change within a trial

C matrix
lnP(ot )

A matrix encoding the degree to which some observed outcomes are preferred 
over others (technically modeled as prior expectations over outcomes). The 
values for each column in this matrix are passed through a softmax function to 
generate a proper probability distribution, which is then log-transformed

Encodes stronger positive preferences for receiving higher amounts of points, 
and negative preferences for the aversive stimuli (both relative to an anchor 
value of 0 for the “safe” positive stimulus). The EC parameter in our model 
encodes the value of participants’ preferences against observing the aversive 
stimuli

D matrix
P(s1)

A matrix encoding beliefs about (a probability distribution over) initial hidden 
states

The simulated agent always begins in an initial starting state, and believes each 
task condition is stable across each trial

https://www.rdocumentation.org/packages/optmatch/versions/0.9-10/topics/fullmatch
https://www.rdocumentation.org/packages/optmatch/versions/0.9-10/topics/fullmatch
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to test whether changes in dimensional measures could be predicted (PHQ, OASIS, DAST, PROMIS depression/
anxiety, BIS/BAS, PANAS positive/negative affect, ASI), after accounting for scores at baseline as well as age, sex, 
and WRAT scores. For purposes of hypothesis generation, in Supplementary Materials we also describe further 
exploratory analyses of potential predictive relationships between other task measures and a number of clinical 
measures available in the T1000 dataset.

Analysis of descriptive task measures.  We performed analogous analyses on descriptive task measures, 
including RTs and mean chosen runway positions. Test–retest reliability of these measures at baseline and 1-year 
follow-up was estimated using single-measure consistency intraclass correlations [ICC(3, 1)]. To assess group 
differences, we conducted analogous LMEs with these measures as the dependent variables.

Follow‑up analysis of short‑term test–retest reliability.  To further clarify test–retest reliability for 
the computational parameters, we estimated model parameters from a second test–retest dataset previously 
acquired to assess descriptive measures of the AAC task (described in58; also see Supplementary Materials). This 
dataset included 30 healthy participants (age: mean = 28.9, SD = 8.14; 19 female) who completed the task two 
times, approximately 2–3 weeks apart. Identical computational and ICC analyses as described above were car-
ried out on this second sample.

Ethical approval.  All experimental protocols were approved by the Laureate Institute for Brain Research 
and the Western Institutional Review Board. All methods were carried out in accordance with relevant guide-
lines and regulations in accordance with the 1964 Helsinki declaration and its later amendments.

Figure 2.   Simplified visual depiction of relevant dependencies in the computational (generative) model of the 
approach-avoidance conflict task. Beliefs about trial type and beliefs about runway positions were generated 
by (and inferred based on) trial type cues and runway position cues, respectively. Observed outcome stimuli 
were probabilistically generated by an interaction between trial type and runway position. Beliefs about this 
interaction were used to infer the action (state transition) most likely to produce the most preferred outcome 
stimuli. Trial Types: AV = Avoid; APP = Approach; CONF2, CONF4, and CONF6 indicate Conflict + 2 Points, 4 
Points, or 6 Points, respectively. This figure is modified from our previous paper20.
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Informed consent
Informed consent was obtained from all individual participants included in the study.

Results
Descriptive statistics for demographic and clinical measures are shown in Table 1. The descriptive statistics for 
each of the parameters are shown in Table 3. The EC and β parameters were correlated at r = 0.19, p < 0.001. 
Because the parameters were not normally distributed, they were log-transformed for all subsequent analyses 
using the R package optLog (https://​github.​com/​kfort​hman/​optLog) to find the optimal log transform that 
minimizes skew.

Intraclass correlations.  Across all participants, the ICC between baseline and 1-year follow-up was fair for 
both β (ICC = 0.46; F(323, 323) = 2.68, p < 0.001) and EC values (ICC = 0.52 (F(323, 323) = 3.2, p < 0.001). Similar 
results were found when examining groups separately (see Supplementary Materials).

As detailed in Supplementary Materials, ICCs across participants, and by group, also showed fair to good 
reliability in each of the five task conditions for both RTs (ICCs between 0.5 and 0.61) and mean chosen runway 
position (ICCs between 0.4 and 0.56); with the exception that, in HCs, reliability of mean chosen runway posi-
tion in the AV and APP conditions was poor (ICC = 0.23 and − 0.03, respectively). ICCs for dimensional clini-
cal measures also showed fair to good reliability over the 1-year period (ICCs between 0.56 and 0.70; with the 
exception of the DAST, with ICC = 0.43; see Supplementary Materials).

Face validity: task‑related self‑report and behavior.  Averaging across participants, model accuracy 
at 1-year follow-up was 81% (SE = 1.3%; note: chance accuracy is 1/9 = 11%). The average probability of partici-
pants’ actions under the model was p = 0.68 (SE = 0.02). Confirming our prior result at baseline, individuals with 
slower RTs in each trial type exhibited higher β values (r = 0.33 for the AV condition; r = 0.55–0.58 for the other 
four conditions, p < 0.001 each). Higher EC values were associated with slower RTs in the three conflict condi-
tions (r = 0.17–0.20, p < 0.001 each) and faster RTs in the AV condition (i.e., individuals with greater sensitivity 
to the unpleasant stimuli, as indicated by higher EC, responded faster during AV trials; r = − 0.28, p < 0.001).

Table 4 shows the relationships between model parameters and self-report metrics on the post-AAC task ques-
tionnaire items at 1-year follow-up, and also compares mean scale scores pre-to-post. Notably, all significant 
correlations found at baseline were replicated at 1-year follow-up. EC again correlated most strongly with self-
reported motivations to move toward reward (r = − 0.83, p < 0.001) and away from negative outcomes (r = 0.75, 
p < 0.001). Higher EC also corresponded to higher self-reported anxiety during the task (r = 0.30, p < 0.001); β 
again correlated most strongly with self-reported difficulty making decisions on the task (r = 0.44, p < 0.001) and 
(reduced) motivations to move toward reward (r = − 0.37, p < 0.001).

Clinical validity: diagnostic effects.  Here, we present group difference results for the matched sample 
(see Fig. 3). Results in the full sample are provided in Supplementary Materials, and showed a highly similar 
pattern (as we note more specifically below).

An LME revealed main effects of group (F(2, 274) = 3.5, p = 0.03) and time (F(1, 230) = 14.1, p < 0.001) on 
β values. Post-hoc contrasts revealed that the group main effect reflected higher values in SUDs than in HCs 
(p = 0.009, Cohen’s d = 0.29) and the time main effect indexed lower values at 1-year follow up than at baseline 
(p < 0.001); effects of sex, and interactions between group and sex or time were non-significant. A similar pattern 
was observed in the full sample (see Supplementary Materials).

There was a main effect of group (F(2, 275) = 4.6, p = 0.01) and sex on EC (F(1, 277) = 249.1, p < 0.001). Post-
hoc contrasts revealed that these effects reflected higher EC in females and greater EC in HCs than in both DEP/
ANX (p = 0.02, d = 0.21) and SUDs (p = 0.004, d = 0.63). A similar pattern was observed in the full sample (see 
Supplementary Materials); however, in the full sample there was also a group by sex interaction suggesting that 
group effects were driven by females.

Table 3.   Summary statistics (mean and SD) and group differences for computational measures.

Full sample
HCs
(N = 49)

DEP/ANX
(N = 192)

SUDs
(N = 84)

Decision uncertainty (β) Baseline 2.80 (2.56) 4.71 (4.95) 5.01 (4.63)

Decision uncertainty (β) 1-year follow-up 2.33 (2.48) 3.46 (3.92) 4.60 (5.29)

Emotional conflict (EC) Baseline 3.28 (2.76) 3.08 (2.85) 2.06 (2.14)

Emotional conflict (EC) 1-year follow-up 4.47 (3.66) 3.30 (3.42) 1.99 (2.16)

Matched sample
HCs
(N = 48)

DEP/ANX
(N = 121)

SUDs
(N = 29)

Decision uncertainty (β) Baseline 2.80 (2.56) 4.73 (5.22) 4.71 (5.66)

Decision uncertainty (β) 1-year follow-up 2.36 (2.49) 3.35 (4.00) 3.74 (5.03)

Emotional conflict (EC) Baseline 3.28 (2.76) 3.23 (3.07) 2.18 (2.39)

Emotional conflict (EC) 1-year follow-up 4.43 (3.68) 3.27 (3.37) 2.35 (2.75)

https://github.com/kforthman/optLog
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Table 4.   Post-task self-report questionnaire items at baseline and follow-up, and correlations with 
computational model parameters at follow-up. Statistically significent results are highlighted in bold. 
††  = p < .01; † = p < .05 (pre-post differences). ** = p < .01; * = p < .05 (correlations at follow-up).

Post-Task Self-Report Questions 
(Likert Scale: 1 = not at all; 
7 = very much) Mean (SD) Baseline (N = 478)

Mean (SD) 1-Year follow-up 
(N = 325)

Emotional conflict Paramater 
(EC)

Decision uncertainty parameter 
(β)

1. I found the POSITIVE pictures 
enjoyable 5.04 (1.69) 5.04 (1.54) .04 − .01

2. The NEGATIVE pictures made 
me feel anxious Or uncomfortable 4.43 (1.99) 4.25 (1.96) .30** .16*

3. I often found it difficult to decide 
which outcome I wanted 2.51 (1.73)†† 2.00 (1.57)†† − .08 .44**

4. I always tried to move ALL THE 
WAY TOWARDS the outcome with 
the LARGEST REWARD POINTS

4.76 (2.30) 4.83 (2.48) − .83** − .37**

5. I always tried to move ALL THE 
WAY AWAY FROM the outcome 
with the NEGATIVE PICTURE/
SOUNDS

2.98 (2.17) 3.17 (2.39) .75** .24**

6. When a NEGATIVE picture and 
sound were displayed, I kept my 
eyes open and looked at the picture

5.49 (1.83)† 5.17 (2.02)† − .47** − .19**

7. When a NEGATIVE picture and 
sound were displayed, I tried to 
think about something unrelated to 
the picture to distract myself

2.96 (1.94)†† 3.34 (2.08)†† .28** .09

8. When a NEGATIVE picture and 
sound were displayed, I tried other 
strategies to manage emotions trig-
gered by the pictures

3.26 (1.99)† 3.61 (2.07)† .24** .11*

Figure 3.   Means and standard errors for model parameters by clinical group and time in both the propensity 
matched and full samples. Bar graphs include baseline participant values both with and without follow-up 
data. Spaghetti plots only include participants with both baseline and follow-up data (thick lines indicate group 
means, surrounding shading indicates standard error). Comparison of bar graphs and spaghetti plots illustrates 
that relative differences between groups were somewhat more consistent between baseline and follow-up when 
including all baseline data.



9

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11783  | https://doi.org/10.1038/s41598-021-91308-x

www.nature.com/scientificreports/

Clinical prediction.  When accounting for baseline scores, age, sex, and WRAT, exploratory linear regres-
sions (excluding HCs, full sample) revealed a significant relationship between EC at baseline and change in 
BIS scores from baseline to follow-up (t(6, 242) = 2.03, p = 0.04), indicating that higher EC values at baseline 
predicted larger increases (or smaller decreases) in behavioral inhibition over time. For descriptive statistics 
and group difference analyses for BIS scores (motivated by these results), see Supplementary Materials. No 
other effects were found supporting the ability of baseline parameter values to predict changes over time in 
PHQ, OASIS, DAST, BAS, ASI, PROMIS depression/anxiety scales, or PANAS positive and negative affect scales 
(all ps > 0.05). Additional exploratory analyses also did not find any significant associations between pre-post 
changes in parameter estimates and pre-post changes in any of these measures.

Descriptive analyses.  To help interpret computational modelling results and allow comparability with 
previous ACC studies, we also performed secondary LMEs on traditional behavioral task variables. These analy-
ses and descriptive statistics for task-related self-report and traditional performance variables (RT, approach 
behavior) are provided in Supplementary Materials. Among other effects, these revealed that RTs were faster in 
HCs than both clinical groups in the AV condition. HCs showed greater avoidance than the clinical groups for 
all but the APP trials. Greater within-subject choice variability was seen in SUDs than in the other groups. Both 
patient groups reported greater decision difficulty than HCs, and HCs reported less approach motivation and 
greater avoidance motivation than the patient groups.

Short‑term test–retest reliability.  Descriptive statistics for behavior in the second sample of healthy 
participants, with a test–retest interval of approximately 2–3 weeks apart, are shown in Supplementary Materials. 
Analysis of this data showed excellent reliability for the EC parameter (ICC = 0.84 (F(29, 29) = 11.3, p < 0.001) 
and fair reliability for the β parameter (ICC = 0.54; F(29, 29) = 3.32, p < 0.001).

Discussion
In this paper, we have demonstrated that a computational modelling approach to studying AAC task behavior is 
able to capture moderately stable individual differences—and stable psychiatric group differences—over a period 
of 1 year between a baseline and follow-up visit. Despite the lengthy one year time period between visits, ICCs 
were moderate. At this 1-year follow-up, relationships between model parameter estimates and task-related RTs, 
self-reported motivations, and descriptive behavioral measures were consistent with what we previously found 
at baseline. Of particular interest, greater decision uncertainty (β) in the model remained associated with greater 
self-reported decision difficulty and slower RTs, while greater emotion conflict (EC) in the model remained 
associated with greater self-reported anxiety and avoidance motivation. Further, differences between diagnostic 
groups in model parameters were also stable between baseline and 1-year follow-up. Namely, the SUD group 
showed greater β values than HCs at both timepoints (with DEP/ANX taking intermediate values between the 
two), and both patient groups showed lower EC (see Fig. 3).

When reliability was assessed in a second healthy sample with a shorter test–retest interval (approximately 
2–3 weeks), ICCs were excellent for EC but remained fair for β. This suggests that the lower ICCs for EC over 
the 1-year period in the main sample may reflect true underlying changes in participants’ decision processes (as 
opposed to measurement error). This parameter therefore shows promise as a repeatable assessment tool at the 
individual level. In contrast, results for β may suggest greater measurement error at the individual level. This may 
also be due in part to task familiarity effects, in which participants become more confident in a decision strategy 
with repeated task performance (i.e., consistent with the reduced mean and variability in β values at retest in 
this second sample; see Supplementary Materials). These findings complement previous work reporting fair to 
excellent reliability for descriptive behavioral measures and for activation in some brain regions of interest to 
the same AAC task during functional MRI (e.g., dorsal anterior cingulate during decision-making; amygdala 
during processing of affective outcomes;58).

Together, these results (1) support the validity of the model/task in being able to provide moderately consist-
ent results with repeated use over a relatively long period of time, and (2) support the ability of model parameters 
to act as stable markers of clinical group differences. The moderate ICCs suggest relatively consistent individual 
differences (accounting for the stable group differences) that may have also been influenced by heterogeneous 
experiences over the 1-year period. However, we were unable to identify other variables that could account for 
variability in pre-post changes (e.g., no relationships with symptom changes).

The diagnostic group differences increased confidence in the somewhat unexpected findings in our previous 
report20. Specifically, the finding that HCs show greater EC values than the patient groups appears reliable. This 
is consistent with HCs exhibiting greater avoidance during CONF and AV conditions, and greater approach 
during APP conditions (i.e., in the full sample) in descriptive analyses (see Supplementary Materials). It is also 
consistent with the findings that HCs exhibited faster RTs in the AV condition and greater self-reported avoid-
ance (and reduced approach) motivations during the task (i.e., marginal in the matched sample, but significant 
in the full sample; see Supplementary Materials). In other words, HCs exhibited behavior consistently driven by 
the potential affective outcomes in expected directions (e.g., avoiding more in response to negative outcomes; 
approaching more when there was only reward), whereas the behavior of the DEP/ANX and SUD groups was less 
expected. This could be related to reduced reward-seeking in depression, which is consistent with our observation 
that those with lower EC values at baseline tended to have reduced levels of behavioral inhibition (BIS scores) 
over time. Lower EC (and less avoidance) in patients might also suggest a decreased sensitivity or reactivity to 
negative stimuli (consistent with a previous body of work in SUDs; see59–63). One additional possibility is that the 
patients’ experience of greater ambiguity or uncertainty when judging the appropriate response under different 
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conflict conditions may lead them to place the avatar near the middle of the runway rather than fully committing 
to an approach or avoidance strategy (as HCs tended to do; see histograms within Supplementary Materials).

Our results also lend added confidence to our prior result demonstrating greater β values in SUDs. This was 
part of a larger consistent pattern involving greater self-reported decision difficulty in SUDs (and DEP/ANX) 
than HCs, and slower RTs in the AV condition (i.e., suggesting less confidence in what choice to make; see Sup-
plementary Materials). They also provide added support for the possibility that elevated decision uncertainty 
during AAC may be an important aspect of psychopathology, which previous behavioral analyses have not 
distinguished from emotional conflict10,64. Notably, there were stable reductions in β values for all three groups. 
Due to the generality of this effect across all participants, it is most plausibly an effect of task familiarity at the 
1-year follow-up, as participants may have become more confident in their decision strategy (as also mentioned 
above with respect to the smaller test–retest sample).

Our exploratory finding that EC values at baseline could predict behavioral inhibition at follow-up suggests 
the possibility that this measure could have predictive clinical utility. However, this will need to be confirmed 
in an independent sample. Dissapointingly, we did not find evidence that parameter estimates at baseline could 
predict changes in other dimensional or symptom measures over the following year, suggesting that our para-
digm may be better thought of as providing a stable marker of membership to one or more diagnostic categories. 
However, predictive utility in this sample may have been limited due to the heterogeneity in experiences over 
the 1-year period (e.g., with some participants seeking various forms of treatment while others did not). It may 
still be beneficial to determine whether these AAC parameters could be useful for predicting outcomes of spe-
cific pharmacological or behavioral treatments targeting threat or reward responsivity and/or decision-making.

Limitations and conclusions
While our findings offer strong support for the validity of the model and its ability to provide moderately stable 
individual difference estimates in clinical populations with repeated testing, it is important to highlight persist-
ing limitations. First, while the group differences were remarkably stable, ICCs were only moderate, and the 
factors leading to pre-post differences remain to be identified. Results in the small follow-up sample of healthy 
participants indicated that the EC parameter had excellent reliability when retested after a shorter period of 
2–3 weeks, which suggested that changes in this parameter over the 1-year period could reflect genuine changes 
in underlying decision processes. However, an important question to be addressed in future research is whether 
ICCs are also higher in patient populations when the task is repeated over shorter intervals of time, and whether 
larger samples would confirm the effect in healthy subjects. If so, this would provide stronger support for the 
use of these model parameters as stable individual difference measures, whereas our lengthy 1-year follow-up 
period may have involved meaningful changes in underlying mechanisms of interest. It is also worth highlight-
ing that ICCs could be limited by parameter estimation itself. Specifically, while simulations indicated strong 
recoverability, any variability in estimation accuracy between baseline and follow-up would reduce ICCs. Next, 
while our results replicate previous effects observed in the same sample, they do not replicate our initial results 
in a new sample of participants. Replication in a new sample will be necessary to support the ability of the task/
model to highlight differences that generalize to broader psychiatric populations. The second 500 participants 
of the T1000 are set aside specifically for pre-registered replication analyses and we plan to next replicate these 
results in this confirmatory sample.

Another limitation stems from the fact that 32% of participants did not complete the follow-up visit. We can 
therefore not rule out that selection effects contributed to our results. While supplementary analyses did not 
reveal differences in baseline depression/anxiety symptoms between completers and non-completers, those who 
did not complete the follow-up visit did have higher substance use severity at baseline (i.e., corresponding to the 
fact that a smaller proportion of individuals in the SUDs group [53%] returned for the follow-up visit relative to 
the other groups; note that these differences in substance use severity between completers and non-completers 
were not present when restricting analyses to the SUDs group alone). A final limitation concerns our inability 
to match the proportion of males and females across groups, where there were a greater number of females in 
the DEP/ANX group than the other two groups. As in our previous study on the baseline data, females also had 
greater EC values. This allows for the possibility that greater EC values in the DEP/ANX group could be explained 
in part by including a greater number of females. Although not the focus of this study (as this effect was stable 
over time), this sex difference may relate to other work showing that reduced reward motivation plays a larger 
role in avoidance behavior in females (12)—raising the possibility that different targets of intervention may be 
most effective for females versus males or depending on the relative role of reward and avoidance motivations.

With these limitations in mind, our results demonstrate that AAC behavior shows consistent patterns of 
individual and group differences over a 1-year period and that the present task and model may act as a stable 
and reliable marker of these differences over repeated performance—a necessary feature for many practical 
uses in computational psychiatry. Future research should replicate these findings in a new sample and further 
investigate their potential clinical relevance.

Data availability
The data used in the analyses reported in this study and the code for running the AAC paradigm are available 
upon request. The Matlab code used to build the task model and estimate parameters is included in Supplemen-
tary Materials.

Received: 3 December 2020; Accepted: 17 May 2021



11

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11783  | https://doi.org/10.1038/s41598-021-91308-x

www.nature.com/scientificreports/

References
	 1.	 Aupperle, R. & Paulus, M. Neural systems underlying approach and avoidance in anxiety disorders. Dialogues Clin. Neurosci. 12, 

517 (2010).
	 2.	 Barlow, D., Allen, L. & Choate, M. Toward a unified treatment for emotional disorders—Republished article. Behav. Ther. 47, 

838–853. https://​doi.​org/​10.​1016/j.​beth.​2016.​11.​005 (2016).
	 3.	 Ekhtiari, H., Victor, T. A. & Paulus, M. P. Aberrant decision-making and drug addiction—How strong is the evidence?. Curr. Opin. 

Behav. Sci. 13, 25–33 (2017).
	 4.	 Guttman, Z., Moeller, S. J. & London, E. D. Neural underpinnings of maladaptive decision-making in addictions. Pharmacol. 

Biochem. Behav. 164, 84–98 (2018).
	 5.	 Paulus, M. P. Evidence-based pragmatic psychiatry—A call to action. JAMA Psychiat. 74, 1185–1186. https://​doi.​org/​10.​1001/​

jamap​sychi​atry.​2017.​2439 (2017).
	 6.	 Lejuez, C. et al. Evaluation of a behavioral measure of risk taking: The Balloon Analogue Risk Task (BART). J. Exp. Psychol. Appl. 

8, 75–84. https://​doi.​org/​10.​1037//​1076-​898X.8.​2.​75 (2002).
	 7.	 Bechara, A., Damasio, H., Tranel, D. & Damasio, A. Deciding advantageously before knowing the advantageous strategy. Science 

275, 1293–1295 (1997).
	 8.	 Talmi, D., Dayan, P., Kiebel, S. J., Frith, C. D. & Dolan, R. J. How humans integrate the prospects of pain and reward during choice. 

J. Neurosci. 29, 14617–14626. https://​doi.​org/​10.​1523/​JNEUR​OSCI.​2026-​09.​2009 (2009).
	 9.	 Schlund, M. W. et al. The tipping point: Value differences and parallel dorsal-ventral frontal circuits gating human approach-

avoidance behavior. Neuroimage 136, 94–105. https://​doi.​org/​10.​1016/j.​neuro​image.​2016.​04.​070 (2016).
	10.	 Aupperle, R. L., Melrose, A. J., Francisco, A., Paulus, M. P. & Stein, M. B. Neural substrates of approach-avoidance conflict decision-

making. Hum. Brain Mapp. 36, 449–462. https://​doi.​org/​10.​1002/​hbm.​22639 (2015).
	11.	 Aupperle, R. L., Sullivan, S., Melrose, A. J., Paulus, M. P. & Stein, M. B. A reverse translational approach to quantify approach-

avoidance conflict in humans. Behav. Brain Res. 225, 455–463. https://​doi.​org/​10.​1016/j.​bbr.​2011.​08.​003 (2011).
	12.	 Rinck, M. & Becker, E. S. Approach and avoidance in fear of spiders. J. Behav. Ther. Exp. Psychiatry 38, 105–120. https://​doi.​org/​

10.​1016/j.​jbtep.​2006.​10.​001 (2007).
	13.	 Friston, K., Stephan, K., Montague, R. & Dolan, R. Computational psychiatry: The brain as a phantastic organ. The Lancet Psychiatry 

1, 148–158. https://​doi.​org/​10.​1016/​S2215-​0366(14)​70275-5 (2014).
	14.	 Huys, Q., Maia, T. & Frank, M. Computational psychiatry as a bridge from neuroscience to clinical applications. Nat. Neurosci. 

19, 404–413. https://​doi.​org/​10.​1038/​nn.​4238 (2016).
	15.	 Montague, P., Dolan, R., Friston, K. & Dayan, P. Computational psychiatry. Trends Cogn. Sci. 16, 72–80. https://​doi.​org/​10.​1016/j.​

tics.​2011.​11.​018 (2012).
	16.	 Petzschner, F., Weber, L., Gard, T. & Stephan, K. Computational psychosomatics and computational psychiatry: Toward a joint 

framework for differential diagnosis. Biol. Psychiatry 82, 421–430. https://​doi.​org/​10.​1016/j.​biops​ych.​2017.​05.​012 (2017).
	17.	 Schwartenbeck, P. & Friston, K. J. Computational phenotyping in psychiatry: A worked example. eNeuro 3, 

ENEURO.0049-0016.2016. https://​doi.​org/​10.​1523/​ENEURO.​0049-​16.​2016 (2016).
	18.	 Krypotos, A. M., Beckers, T., Kindt, M. & Wagenmakers, E. J. A Bayesian hierarchical diffusion model decomposition of perfor-

mance in Approach-Avoidance Tasks. Cogn. Emot. 29, 1424–1444. https://​doi.​org/​10.​1080/​02699​931.​2014.​985635 (2015).
	19.	 Kirlic, N., Young, J. & Aupperle, R. L. Animal to human translational paradigms relevant for approach avoidance conflict decision 

making. Behav. Res. Ther. 96, 14–29. https://​doi.​org/​10.​1016/j.​brat.​2017.​04.​010 (2017).
	20.	 Smith, R. et al. Greater decision uncertainty characterizes a transdiagnostic patient sample during approach-avoidance conflict: 

A computational modeling approach. J. Psychiatry Neurosci. 46, E74–E87. https://​doi.​org/​10.​1503/​jpn.​200032 (2021).
	21.	 Victor, T. A. et al. Tulsa 1000: a naturalistic study protocol for multilevel assessment and outcome prediction in a large psychiatric 

sample. BMJ Open 8, e016620. https://​doi.​org/​10.​1136/​bmjop​en-​2017-​016620 (2018).
	22.	 Insel, T. et al. Research domain criteria (RDoC): Toward a new classification framework for research on mental disorders. Am. J. 

Psychiatry 167, 748–751. https://​doi.​org/​10.​1176/​appi.​ajp.​2010.​09091​379 (2010).
	23.	 Hedge, C., Bompas, A. & Sumner, P. Task reliability considerations in computational psychiatry. Biol. Psychiatry Cogn. Neurosci. 

Neuroimaging 5, 837–839. https://​doi.​org/​10.​1016/j.​bpsc.​2020.​05.​004 (2020).
	24.	 Brown, V. M., Chen, J., Gillan, C. M. & Price, R. B. Improving the reliability of computational analyses: Model-based planning 

and its relationship with compulsivity. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 5, 601–609. https://​doi.​org/​10.​1016/j.​bpsc.​
2019.​12.​019 (2020).

	25.	 Shahar, N. et al. Improving the reliability of model-based decision-making estimates in the two-stage decision task with reaction-
times and drift-diffusion modeling. PLoS Comput. Biol. 15, e1006803. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10068​03 (2019).

	26.	 Price, R. B., Brown, V. & Siegle, G. J. Computational modeling applied to the dot-probe task yields improved reliability and mecha-
nistic insights. Biol. Psychiatry 85, 606–612. https://​doi.​org/​10.​1016/j.​biops​ych.​2018.​09.​022 (2019).

	27.	 Enkavi, A. Z. et al. Large-scale analysis of test-retest reliabilities of self-regulation measures. Proc. Natl. Acad. Sci. USA 116, 
5472–5477. https://​doi.​org/​10.​1073/​pnas.​18184​30116 (2019).

	28.	 Moutoussis, M. et al. Change, stability, and instability in the Pavlovian guidance of behaviour from adolescence to young adult-
hood. PLoS Comput. Biol. 14, e1006679. https://​doi.​org/​10.​1371/​journ​al.​pcbi.​10066​79 (2018).

	29.	 Chung, D. et al. Valuation in major depression is intact and stable in a non-learning environment. Sci. Rep. 7, 44374. https://​doi.​
org/​10.​1038/​srep4​4374 (2017).

	30.	 Cicchetti, D. V. Guidelines, criteria, and rules of thumb for evaluating normed and standardized assessment instruments in psy-
chology. Psychol. Assess. 6, 284–290 (1994).

	31.	 Kroenke, K., Spitzer, R. L. & Williams, J. B. The PHQ-9: validity of a brief depression severity measure. J. Gen. Intern. Med. 16, 
606–613. https://​doi.​org/​10.​1046/j.​1525-​1497.​2001.​01600​9606.x (2001).

	32.	 Norman, S. B., Hami Cissell, S., Means-Christensen, A. J. & Stein, M. B. Development and validation of an overall anxiety severity 
and impairment scale (OASIS). Depress. Anxiety 23, 245–249 (2006).

	33.	 Bohn, M., Babor, T. & Kranzler, H. Validity of the Drug Abuse Screening Test (DAST-10) in inpatient substance abusers. Probl. 
Drug Depend. 119, 233–235 (1991).

	34.	 Aupperle, R. L. et al. Web-based graphic representation of the life course of mental health: Cross-sectional study across the spec-
trum of mood, anxiety, eating, and substance use disorders. JMIR Ment. Health 7, e16919. https://​doi.​org/​10.​2196/​16919 (2020).

	35.	 Misaki, M. et al. Connectome-wide search for functional connectivity locus associated with pathological rumination as a target 
for real-time fMRI neurofeedback intervention. Neuroimage Clin. 26, 102244. https://​doi.​org/​10.​1016/j.​nicl.​2020.​102244 (2020).

	36.	 Ekhtiari, H., Kuplicki, R., Yeh, H. W. & Paulus, M. P. Physical characteristics not psychological state or trait characteristics predict 
motion during resting state fMRI. Sci. Rep. 9, 419. https://​doi.​org/​10.​1038/​s41598-​018-​36699-0 (2019).

	37.	 Stewart, J. L. et al. Interoceptive attention in opioid and stimulant use disorder. Addict. Biol. 25, e12831. https://​doi.​org/​10.​1111/​
adb.​12831 (2019).

	38.	 Feng, C. et al. Neighborhood affluence is not associated with positive and negative valence processing in adults with mood and 
anxiety disorders: A Bayesian inference approach. Neuroimage Clin. 22, 101738. https://​doi.​org/​10.​1016/j.​nicl.​2019.​101738 (2019).

	39.	 Le, T. T. et al. A nonlinear simulation framework supports adjusting for age when analyzing BrainAGE. Front. Aging Neurosci. 10, 
317. https://​doi.​org/​10.​3389/​fnagi.​2018.​00317 (2018).

https://doi.org/10.1016/j.beth.2016.11.005
https://doi.org/10.1001/jamapsychiatry.2017.2439
https://doi.org/10.1001/jamapsychiatry.2017.2439
https://doi.org/10.1037//1076-898X.8.2.75
https://doi.org/10.1523/JNEUROSCI.2026-09.2009
https://doi.org/10.1016/j.neuroimage.2016.04.070
https://doi.org/10.1002/hbm.22639
https://doi.org/10.1016/j.bbr.2011.08.003
https://doi.org/10.1016/j.jbtep.2006.10.001
https://doi.org/10.1016/j.jbtep.2006.10.001
https://doi.org/10.1016/S2215-0366(14)70275-5
https://doi.org/10.1038/nn.4238
https://doi.org/10.1016/j.tics.2011.11.018
https://doi.org/10.1016/j.tics.2011.11.018
https://doi.org/10.1016/j.biopsych.2017.05.012
https://doi.org/10.1523/ENEURO.0049-16.2016
https://doi.org/10.1080/02699931.2014.985635
https://doi.org/10.1016/j.brat.2017.04.010
https://doi.org/10.1503/jpn.200032
https://doi.org/10.1136/bmjopen-2017-016620
https://doi.org/10.1176/appi.ajp.2010.09091379
https://doi.org/10.1016/j.bpsc.2020.05.004
https://doi.org/10.1016/j.bpsc.2019.12.019
https://doi.org/10.1016/j.bpsc.2019.12.019
https://doi.org/10.1371/journal.pcbi.1006803
https://doi.org/10.1016/j.biopsych.2018.09.022
https://doi.org/10.1073/pnas.1818430116
https://doi.org/10.1371/journal.pcbi.1006679
https://doi.org/10.1038/srep44374
https://doi.org/10.1038/srep44374
https://doi.org/10.1046/j.1525-1497.2001.016009606.x
https://doi.org/10.2196/16919
https://doi.org/10.1016/j.nicl.2020.102244
https://doi.org/10.1038/s41598-018-36699-0
https://doi.org/10.1111/adb.12831
https://doi.org/10.1111/adb.12831
https://doi.org/10.1016/j.nicl.2019.101738
https://doi.org/10.3389/fnagi.2018.00317


12

Vol:.(1234567890)

Scientific Reports |        (2021) 11:11783  | https://doi.org/10.1038/s41598-021-91308-x

www.nature.com/scientificreports/

	40.	 Huang, H., Thompson, W. & Paulus, M. P. Computational dysfunctions in anxiety: Failure to differentiate signal from noise. Biol. 
Psychiatry 82, 440–446 (2017).

	41.	 Ford, B. N. et al. Association of early-life stress with cytomegalovirus infection in adults with major depressive disorder. JAMA 
Psychiat. 76, 545–547. https://​doi.​org/​10.​1001/​jamap​sychi​atry.​2018.​4543 (2019).

	42.	 Clausen, A. N. et al. Machine learning analysis of the relationships between gray matter volume and childhood trauma in a trans-
diagnostic community-based sample. Biol. Psychiatry Cogn. Neurosci. Neuroimaging 4, 734–742. https://​doi.​org/​10.​1016/j.​bpsc.​
2019.​03.​001 (2019).

	43.	 Al Zoubi, O. et al. EEG microstates temporal dynamics differentiate individuals with mood and anxiety disorders from healthy 
subjects. Front. Hum. Neurosci. 13, 56. https://​doi.​org/​10.​3389/​fnhum.​2019.​00056 (2019).

	44.	 Al Zoubi, O. et al. Predicting age from brain EEG signals—A machine learning approach. Front. Aging Neurosci. 10, 184. https://​
doi.​org/​10.​3389/​fnagi.​2018.​00184 (2018).

	45.	 Sheehan, D. V. et al. The Mini-International Neuropsychiatric Interview (M.I.N.I.): The development and validation of a structured 
diagnostic psychiatric interview for DSM-IV and ICD-10. J. Clin. Psychiatry 59(Suppl 20), 22–33 (1998) (quiz 34–57).

	46.	 Cella, D. et al. The Patient-Reported Outcomes Measurement Information System (PROMIS) developed and tested its first wave 
of adult self-reported health outcome item banks: 2005–2008. J. Clin. Epidemiol. 63, 1179–1194 (2010).

	47.	 Carver, C. S. & White, T. L. Behavioral inhibition, behavioral activation, and affective responses to impending reward and punish-
ment: The BIS/BAS scales. J. Pers. Soc. Psychol. 67, 319 (1994).

	48.	 Watson, D., Clark, L. A. & Tellegen, A. Development and validation of brief measures of positive and negative affect: the PANAS 
scales. J. Pers. Soc. Psychol. 54, 1063–1070. https://​doi.​org/​10.​1037//​0022-​3514.​54.6.​1063 (1988).

	49.	 Sandin, B., Chorot, P. & McNally, R. J. Anxiety sensitivity index: Normative data and its differentiation from trait anxiety. Behav 
Res Ther 39, 213–219 (2001).

	50.	 Lang, P., Bradley, M. & Cuthbert, B. International affective picture system (IAPS): Affective ratings of pictures and instruction 
manual. Technical Report A-8 (2008).

	51.	 Friston, K. J., FitzGerald, T., Rigoli, F., Schwartenbeck, P. & Pezzulo, G. Active inference: A process theory. Neural Comput. 29, 
1–49. https://​doi.​org/​10.​1162/​NECO_a_​00912 (2017).

	52.	 Friston, K. J., Parr, T. & de Vries, B. The graphical brain: Belief propagation and active inference. Netw. Neurosci. 1, 381–414. https://​
doi.​org/​10.​1162/​NETN_a_​00018 (2017).

	53.	 Parr, T. & Friston, K. J. Working memory, attention, and salience in active inference. Sci. Rep. 7, 14678. https://​doi.​org/​10.​1038/​
s41598-​017-​15249-0 (2017).

	54.	 Smith, R., Friston, K. & Whyte, C. A step-by-step tutorial on active inference and its application to empirical data. PsyArXiv https://​
doi.​org/​10.​31234/​osf.​io/​b3123​4jm31​236 (2021).

	55.	 Friston, K., Mattout, J., Trujillo-Barreto, N., Ashburner, J. & Penny, W. Variational free energy and the Laplace approximation. 
Neuroimage 34, 220–234. https://​doi.​org/​10.​1016/j.​neuro​image.​2006.​08.​035 (2007).

	56.	 Johnstone, B., Callahan, C. D., Kapila, C. J. & Bouman, D. E. The comparability of the WRAT-R reading test and NAART as esti-
mates of premorbid intelligence in neurologically impaired patients. Arch. Clin. Neuropsychol. 11, 513–519 (1996).

	57.	 Miller, G. A. & Chapman, J. P. Misunderstanding analysis of covariance. J. Abnorm. Psychol. 110, 40–48. https://​doi.​org/​10.​1037//​
0021-​843x.​110.1.​40 (2001).

	58.	 McDermott, T. J. et al. Test-retest reliability of approach-avoidance conflict decision making during functional magnetic resonance 
imaging in healthy adults. Hum. Brain Mapp. 42, 2347–2361 (2021).

	59.	 Stewart, J. L. et al. You are the danger: Attenuated insula response in methamphetamine users during aversive interoceptive 
decision-making. Drug Alcohol Depend. 142, 110–119. https://​doi.​org/​10.​1016/j.​druga​lcdep.​2014.​06.​003 (2014).

	60.	 Hester, R., Bell, R. P., Foxe, J. J. & Garavan, H. The influence of monetary punishment on cognitive control in abstinent cocaine-
users. Drug Alcohol Depend. 133, 86–93. https://​doi.​org/​10.​1016/j.​druga​lcdep.​2013.​05.​027 (2013).

	61.	 Simons, J. S., Dvorak, R. D. & Batien, B. D. Methamphetamine use in a rural college population: Associations with marijuana use, 
sensitivity to punishment, and sensitivity to reward. Psychol. Addict. Behav. 22, 444–449. https://​doi.​org/​10.​1037/​0893-​164X.​22.3.​
444 (2008).

	62.	 Simons, J. S. & Arens, A. M. Moderating effects of sensitivity to punishment and sensitivity to reward on associations between 
marijuana effect expectancies and use. Psychol. Addict. Behav. 21, 409–414. https://​doi.​org/​10.​1037/​0893-​164X.​21.3.​409 (2007).

	63.	 Smith, R. et al. Imprecise action selection in substance use disorder: Evidence for active learning impairments when solving the 
explore-exploit dilemma. Drug Alcohol Depend. 215, 108208 (2020).

	64.	 Chrysikou, E. G., Gorey, C. & Aupperle, R. L. Anodal transcranial direct current stimulation over right dorsolateral prefrontal 
cortex alters decision making during approach-avoidance conflict. Soc. Cogn. Affect. Neurosci. 12, 468–475. https://​doi.​org/​10.​
1093/​scan/​nsw140 (2017).

Acknowledgements
The authors would like to acknowledge the other investigators involved in the larger Tulsa 1000 study in which 
this data was collected: Jerzy Bodurka, Jonathan B. Savitz, and Teresa A. Victor.

Author contributions
R.S. performed the primary analyses, created the figures, and wrote the initial draft of the manuscript. All authors 
edited and revised the manuscript. J.T., R.K., and T.M. assisted with data preparation and analysis. S.T. assisted 
in computational modelling and creation of figures. R.L.A. designed the task and oversaw the project. M.P.P. 
oversaw the larger Tulsa 1000 study in which this data was collected.

Funding
This work was funded by the Stewart G. Wolf Fellowship (RS), the NIGMS (P20 GM121312; PI:MPP), the NIMH 
(K23-MH108707; R01 MH123691; PI: RLA), and the William K. Warren Foundation.

Competing interests 
The authors declare no competing interests.

Additional information
Supplementary Information The online version contains supplementary material available at https://​doi.​org/​
10.​1038/​s41598-​021-​91308-x.

Correspondence and requests for materials should be addressed to R.S.

https://doi.org/10.1001/jamapsychiatry.2018.4543
https://doi.org/10.1016/j.bpsc.2019.03.001
https://doi.org/10.1016/j.bpsc.2019.03.001
https://doi.org/10.3389/fnhum.2019.00056
https://doi.org/10.3389/fnagi.2018.00184
https://doi.org/10.3389/fnagi.2018.00184
https://doi.org/10.1037//0022-3514.54.6.1063
https://doi.org/10.1162/NECO_a_00912
https://doi.org/10.1162/NETN_a_00018
https://doi.org/10.1162/NETN_a_00018
https://doi.org/10.1038/s41598-017-15249-0
https://doi.org/10.1038/s41598-017-15249-0
https://doi.org/10.31234/osf.io/b31234jm31236
https://doi.org/10.31234/osf.io/b31234jm31236
https://doi.org/10.1016/j.neuroimage.2006.08.035
https://doi.org/10.1037//0021-843x.110.1.40
https://doi.org/10.1037//0021-843x.110.1.40
https://doi.org/10.1016/j.drugalcdep.2014.06.003
https://doi.org/10.1016/j.drugalcdep.2013.05.027
https://doi.org/10.1037/0893-164X.22.3.444
https://doi.org/10.1037/0893-164X.22.3.444
https://doi.org/10.1037/0893-164X.21.3.409
https://doi.org/10.1093/scan/nsw140
https://doi.org/10.1093/scan/nsw140
https://doi.org/10.1038/s41598-021-91308-x
https://doi.org/10.1038/s41598-021-91308-x


13

Vol.:(0123456789)

Scientific Reports |        (2021) 11:11783  | https://doi.org/10.1038/s41598-021-91308-x

www.nature.com/scientificreports/

Reprints and permissions information is available at www.nature.com/reprints.

Publisher’s note  Springer Nature remains neutral with regard to jurisdictional claims in published maps and 
institutional affiliations.

Open Access   This article is licensed under a Creative Commons Attribution 4.0 International 
License, which permits use, sharing, adaptation, distribution and reproduction in any medium or 

format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the 
Creative Commons licence, and indicate if changes were made. The images or other third party material in this 
article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the 
material. If material is not included in the article’s Creative Commons licence and your intended use is not 
permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from 
the copyright holder. To view a copy of this licence, visit http://​creat​iveco​mmons.​org/​licen​ses/​by/4.​0/.

© The Author(s) 2021

www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/

	Long-term stability of computational parameters during approach-avoidance conflict in a transdiagnostic psychiatric patient sample
	Method
	Participants. 
	Data collection procedure. 
	Approach-avoidance conflict (AAC) task. 
	Computational modeling. 
	Analysis of model parameters. 
	Analysis of descriptive task measures. 
	Follow-up analysis of short-term test–retest reliability. 
	Ethical approval. 

	Informed consent
	Results
	Intraclass correlations. 
	Face validity: task-related self-report and behavior. 
	Clinical validity: diagnostic effects. 
	Clinical prediction. 
	Descriptive analyses. 
	Short-term test–retest reliability. 

	Discussion
	Limitations and conclusions
	References
	Acknowledgements


