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Denosumab versus romosozumab 
for postmenopausal osteoporosis 
treatment
Tomonori Kobayakawa1, Akiko Miyazaki2, Makoto Saito3, Takako Suzuki2,4, Jun Takahashi2 & 
Yukio Nakamura2*

Denosumab and romosozumab, a recently approved new drug, are effective and widely known 
molecular-targeted drugs for postmenopausal osteoporosis treatment. However, no studies 
have directly compared their therapeutic effects or safety in postmenopausal osteoporosis. This 
retrospective observational registry study compared the efficacy of 12-month denosumab or 
romosozumab treatment in postmenopausal osteoporosis patients. The primary outcome was 
the change in bone mineral density (BMD) at the lumbar spine. Secondary outcomes included 
BMD changes at the total hip and femoral neck, changes in bone turnover markers, and adverse 
events. Propensity score matching was employed to assemble patient groups with similar 
baseline characteristics. Sixty-nine patients each received either denosumab or romosozumab for 
12 months. The mean 12-month percentage change from baseline in lumbar spine BMD was 7.2% 
in the denosumab group and 12.5% in the romosozumab group, indicating a significant difference 
between the groups. The percentage changes in BMD at both the total hip and femoral neck were 
also significantly higher at 12 months in the romosozumab group than in the denosumab group. 
In denosumab patients, bone formation and bone resorption markers were significantly decreased 
at 6 and 12 months from baseline. In the romosozumab group, the bone formation marker was 
significantly increased at 6 months and then returned to baseline, while the bone resorption marker 
was significantly decreased at both time points. Adverse events were few and predominantly 
minor in both groups, with no remarkable difference in the incidence of new vertebral fractures. 
Romosozumab showed a higher potential for improving BMD than denosumab in this clinical study of 
postmenopausal osteoporosis patient treatment.

At over 80 years, the average life expectancy in Japan is one of the highest in the world. However, healthy life 
expectancy remains in the early 70 s, indicating a period of approximately 10 years that may require some kind 
of medical care. One reason for this gap is a decrease in activities of daily living due to fragility fractures associ-
ated with osteoporosis1–3.

Approaches to osteoporosis treatment have become highly diversified, with clinicians now being able to offer 
tailor-made treatment options for each patient. As a new therapeutic goal, it is necessary to formulate osteo-
porosis treatments that elevate T-score to >  −2.5 within 5 years4, and so stronger therapeutic regimens may be 
required for patients with severely low bone mineral density (BMD).

In recent clinical practice, denosumab5–7 and romosozumab8–10 have become well-known molecular-targeted 
drugs with potent BMD-increasing effects. The drugs are considered especially important for osteoporosis man-
agement. However, no studies have directly compared the efficacy of denosumab and romosozumab in a clinical 
setting. The present study focused on comparisons of BMD improvement as an index of therapeutic efficacy since 
a greater increase in BMD would presumably lead to augmented prevention of fragility fractures11. Patients with 
a history of fragility fractures often exhibit a high rate of re-fracture occurrence within 1 year12,13. Therefore, 
it is considered clinically meaningful to investigate how denosumab and romosozumab work for improving 
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BMD in a 1-year study period. Such data on postmenopausal osteoporosis may assist clinicians in making more 
appropriate treatment proposals to patients with osteoporosis.

Methods
Study population.  From April 2015 to August 2020, this retrospective observational cohort study was con-
ducted at our clinic and 4 affiliated institutions. The subjects were postmenopausal osteoporosis patients who 
were administered denosumab or romosozumab for 12 months.

Propensity score matching14 was performed for drug comparisons to reduce the differences in baseline char-
acteristics between the groups. Propensity scores were estimated using a non-parsimonious multivariable logistic 
regression model. The variables considered for propensity score matching were age, body mass index (BMI), 
lumbar spine BMD, prevalent vertebral fracture, and prior non-vertebral fracture after 45 years of age. Deno-
sumab (60 mg, s.c. once every 6 months) and romosozumab (210 mg, s.c. once every month) were used to treat 
patients diagnosed as having postmenopausal osteoporosis. Under the diagnosis of osteoporosis, subjects with 
one or more existing vertebral, total hip, or femoral neck fracture, or evidence of osteoporosis based on BMD 
T-score <  −2.5 at the lumbar spine, total hip, or femoral neck as measured by dual-energy X-ray absorptiometry 
(DXA), were recruited in this study15. Romosozumab administration is typically limited to patients with severe 
osteoporosis and a high risk of further fractures in Japan16–20. As exclusion criteria, male patients, secondary 
osteoporosis patients, especially those with any disease or medication that could influence bone turnover, patients 
with any cardiovascular events within the previous year, and patients with hypocalcemia were excluded. Patients 
with lower 25OHD values were offered an active vitamin D3 analogue, and if not inclined, were recommended 
to take commercially available vitamin D3 and calcium supplements. The study protocol of this investigation 
was reviewed by the ethics committee of Shinshu University School of Medicine and Kobayakawa Orthopedic 
and Rheumatologic Clinic. Written informed consent was obtained from all participants prior to enrollment. 
This study was conducted following the tenets outlined in the Declaration of Helsinki.

Bone mineral density measurements.  To evaluate the effects of 12-month osteoporosis therapy on 
BMD as the primary and secondary outcomes of interest, a Prodigy Fuga DXA device (GE Healthcare, Madison, 
WI, USA) was uniformly used at all participating institutions. The minimum significant change for this model 
was 2%21. Lumbar vertebra DXA measured the lumbar 2–4 levels and excluded any vertebral body with a T-score 
of 1.0 higher than the vertebral body with the lowest T-score. DXA readings were taken at baseline and at 6 and 
12 months of treatment.

Primary and secondary outcomes of interest.  The primary outcome of interest was the percentage 
change from baseline in areal BMD by DXA at the lumbar spine during 12 months of treatment (mean values 
at 6 and 12 months). The secondary outcomes were the percentage changes in total hip and femoral neck BMD 
at 6 and 12 months as well as the percentage changes in the serum bone turnover markers procollagen type 
1 N-terminal propeptide 1 (P1NP) and tartrate-resistant acid phosphatase isoform 5b (TRACP-5b). A previ-
ous report demonstrated that TRACP-5b levels were useful bone resorption markers that demonstrated higher 
clinical sensitivity and signal-to-noise ratio as compared with serum CTX levels22. P1NP and TRACP-5b were 
measured by the enzyme immunoassay and chemiluminescent enzyme immunoassay methods, respectively, at 
the time of treatment introduction (baseline) and at 6 and 12 months afterwards.

Statistical analysis.  Patient background parameters are expressed as the mean ± standard deviation. P1NP 
and TRACP-5b are expressed as the median. Percentage changes from baseline to the 6- and 12-month time 
points for BMD, P1NP, and TRACP-5b were assessed using the Wilcoxon signed-rank test. The Wilcoxon rank-
sum test was employed to evaluate the differences between the groups with regards to the percentage changes 
from baseline for the primary and secondary outcomes. Differences between the study groups were determined 
by ANOVA or Fisher’s exact test. A two-tailed P-value of < 0.05 was considered statistically significant for all 
analyses. All statistical testing was conducted using R version 3.6.0 (R Core Team, 2019; http://​www.R-​proje​ct.​
org/).

Results
Study proportions.  Between April 2015 and August 2020, 571 osteoporosis patients received denosumab 
or romosozumab treatment for 12 months (Fig. 1). Seventy-seven male osteoporosis patients and 229 second-
ary osteoporosis patients were excluded, leaving 265 patients who met the inclusion criteria of this study. Of 
them, 131 received denosumab and 134 received romosozumab. Before propensity score matching, there were 
significant differences between the treatment groups for several baseline variables (Table 1), including a lower 
T-score and higher incidence of prior fragility fracture in the romosozumab group. These factors confirmed 
that romosozumab was used in patients with a higher risk of further fractures. After propensity score match-
ing, 69 patients each had received denosumab or romosozumab. No remarkable differences in patient back-
ground were detected between the groups (Table 2). Mean ± standard deviation age was 74.2 ± 11.3 years in the 
denosumab group and 75.8 ± 9.70 years in the romosozumab group. Respective mean T-scores for the deno-
sumab group and romosozumab group were − 2.50 ± 1.13 and − 2.62 ± 1.25 for the lumbar spine, − 2.55 ± 0.73 
and − 2.57 ± 0.84 for the total hip, and − 3.12 ± 0.62 and − 3.12 ± 0.82 for the femoral neck. Twenty-six (37.7%) 
subjects had a prevalent vertebral fracture in the denosumab group, as compared with 25 (36.2%) subjects in 
the romosozumab group. Twelve (17.4%) and 13 (18.8%) subjects had a history of prior non-vertebral fracture 
in the denosumab group and romosozumab group, respectively. Twenty-seven (39.1%) denosumab patients and 
20 (29.0%) romosozumab patients had some kind of osteoporosis treatment history and had been switched to 
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265 were included in study analysis

571 patients completed osteoporosis treatment in 
2015-2020 through 12 months period

306 were excluded
77 male  
229 secondary osteoporosis

134 received romosozumab131 received denosumab

69 were included in propensity 
score matched analysis

69 were included in propensity 
score matched analysis

Figure 1.   Subject flow diagram throughout the 12-month denosumab and romosozumab treatment period. 
Propensity score matching was employed to extract subjects.

Table 1.   Demographic and clinical characteristics of subjects at baseline before extraction by propensity 
score matching. Data are expressed as the mean ± standard deviation (SD) or the number (%) of all patients 
who completed 12 months of denosumab or romosozumab treatment. P1NP and TRACP-5b are expressed as 
median values. BMI body mass index, P1NP procollagen type 1 N-terminal propeptide, TRACP-5b tartrate-
resistant acid phosphatase isoform 5b, eGFR estimated glomerular filtration rate, 25OHD 25-hydroxyvitamin 
D; Differences between the groups were determined by ANOVA or Fisher’s exact test.

Denosumab (N = 134) Romosozumab (N = 131) P value

Age (years, mean ± SD) 73.1 ± 12.3 76.3 ± 8.7 0.017

BMI (kg/m2) 21.2 ± 3.2 21.6 ± 3.3 0.561

T-score

Lumbar spine  − 2.11 ± 1.22  − 2.89 ± 1.11  < 0.001

Total hip  − 2.48 ± 0.69  − 2.62 ± 0.81 0.247

Femoral neck  − 2.94 ± 0.64  − 3.19 ± 0.80 0.003

Prior vertebral fracture, n (%) 42 (31.3) 57 (43.5) 0.043

Prior non-vertebral fracture, n (%) 17 (12.7) 40 (30.5) 0.001

History of prior treatment, n (%)

Naïve 90 (67.2) 84 (64.1) 0.608

Switch 44 (32.8) 47 (35.9)

Concomitant use of active vitamin D, n (%) 22 (55.0) 62 (47.7) 0.472

PINP (µg/L, median) 56.8 [39.0, 75.1] 67.3 [41.3, 95.9] 0.062

TRACP-5b (mU/dL, median) 458.5 [365.0, 642.3] 522.0 [341.5, 665.0] 0.491

Serum albumin (g/dL) 4.1 ± 0.3 4.2 ± 0.3 0.031

Serum-corrected Ca (mg/dL) 9.4 ± 0.5 9.3 ± 0.4 0.006

eGFR (mL/min/1.73 m2) 69.8 ± 21.3 67.6 ± 19.7 0.491

25OHD (ng/mL) 15.6 ± 7.0 16.3 ± 6.3 0.226
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either denosumab or romosozumab without a set washout period. The number of subjects who were treatment 
naïve was 42 (60.9%) in the denosumab group and 49 (71.0%) in the romosozumab group.

Primary outcome.  Sixty-nine patients each in the denosumab group and romosozumab group were 
included in the primary outcome analysis. The respective percentage changes from baseline (mean ± 95%CI) 
in areal BMD tested by DXA at the lumbar spine at 6 and 12 months were 6.0% ± 4.1 (P < 0.001 versus baseline) 
and 7.2% ± 4.3 (P < 0.001 versus baseline) in the denosumab group and 7.4% ± 1.7 (P < 0.001 versus baseline) and 
12.5% ± 2.4 (P < 0.001 versus baseline) in the romosozumab group (Fig. 2a). The percentage change in lumbar 
spine BMD was significantly higher in the romosozumab group than in the denosumab group at 6 (P < 0.01) 
and 12 months (P < 0.001).

Secondary outcomes.  The respective percentage changes in total hip BMD from baseline at 6 and 
12 months were 2.4% and 3.6% in the denosumab group and 3.4% and 6.0% in the romosozumab group (Fig. 2b). 
Similar results of 2.0% and 2.6% in the denosumab group and 3.0% and 5.5% in the romosozumab group were 
observed for BMD at the femoral neck (Fig. 2c). All increases were significant (P < 0.01) versus baseline values 
for both drugs. There was no remarkable difference in percent increases between the denosumab group and 
romosozumab group at 6 months (total hip: P = 0.394, femoral neck: P = 0.331), although significant differences 
were noted at 12 months (total hip: P < 0.05, femoral neck: P < 0.01). Those data supported a possible advantage 
of romosozumab for elevating bone density over denosumab.

Next, as the other important factors for osteoporosis treatment, the changes in major serum bone turnover 
markers, P1NP and TRACP by the action of these treatment drugs were focused. Serum P1NP level was signifi-
cantly decreased at 6 months (− 63.1%; P < 0.001) and 12 months (− 68.2%; P < 0.001) compared with baseline in 
the denosumab group. In the romosozumab group, P1NP was significantly higher at 6 months (5.9%; P < 0.01), 
and then normalized at 12 months (− 5.6%; P = 0.705) (Fig. 3a). There were significant differences between the 
groups at 6 months (P < 0.001) and 12 months (P < 0.001). Serum TRACP-5b level in the denosumab group was 
significantly decreased at 6 months (− 56.0%; P < 0.001) and 12 months (− 60.5%; P < 0.001) versus baseline values 
(Fig. 3b). The romosozumab group displayed a similar trend at 6 months (− 32.1%; P < 0.001) and 12 months 
(− 42.9%; P < 0.001). A significant difference was observed between the groups both time points (both P < 0.001).

Adverse events and new fractures.  The adverse events recorded during the 12 months of treatment are 
listed in Table 3. Although injection site reactions occurred more frequently in the romosozumab group, they 
did not lead to drug discontinuation. Injection site reactions often occurred at the time of first administration. 
The presence of new vertebral fractures during the 12  months of treatment was evaluated by regular X-ray 
photographs. Two patients in each group (both 2.9%) suffered a new fracture, an incidence that was statistically 
comparable.

Table 2.   Demographic and clinical characteristics of subjects at baseline after extraction by propensity score 
matching. Data are expressed as the mean ± standard deviation (SD) or the number (%) of subjects. P1NP 
and TRACP-5b are expressed as median values. BMI body mass index, P1NP procollagen type 1 N-terminal 
propeptide, TRACP-5b tartrate-resistant acid phosphatase isoform 5b, eGFR estimated glomerular filtration 
rate, 25OHD 25-hydroxyvitamin D; Differences between the groups were determined by ANOVA or Fisher’s 
exact test.

Denosumab (n = 69) Romosozumab (n = 69) P value

Age (years, mean ± SD) 74.20 ± 11.32 75.83 ± 9.70 0.367

BMI (kg/m2) 21.15 ± 3.39 22.09 ± 3.24 0.192

T-score

Lumbar spine  − 2.50 ± 1.13  − 2.62 ± 1.25 0.322

Total hip  − 2.55 ± 0.73  − 2.57 ± 0.84 0.930

Femoral neck  − 3.12 ± 0.62  − 3.12 ± 0.82 0.870

Prior vertebral fracture, n (%) 26 (37.7) 25 (36.2) 1.000

Prior non-vertebral fracture, n (%) 12 (17.4) 13 (18.8) 1.000

History of prior treatment, n (%)

Naïve 42 (60.9) 49 (70.1) 0.281

Switch 27 (39.1) 20 (29.0)

Concomitant use of active vitamin D, n (%) 12 (17.4) 35 (50.7) 0.612

PINP (µg/L, IQR) 56.8 [35.9, 84.3] 68.6 [41.3, 99.8] 0.086

TRACP-5b (mU/dL, IQR) 454.0 [350.5, 621.5] 545.0 [353.0, 690.0] 0.296

Serum albumin (g/dL) 4.12 ± 0.29 4.17 ± 0.34 0.104

Serum-corrected Ca (mg/dL) 9.35 ± 0.47 9.34 ± 0.37 0.761

eGFR (mL/min/1.73 m2) 70.36 ± 21.43 68.78 ± 21.9 0.472

25OHD (ng/mL) 15.00 ± 6.32 16.35 ± 6.17 0.241
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Figure 2.   Mean percentage changes from baseline to 6 and 12 months (M) in bone mineral density (BMD) 
at the (a) lumbar spine, (b) total hip, and (c) femoral neck. Bars indicate the mean ± 95% confidence 
interval.  **P < 0.01 and ***P < 0.001 versus baseline (Wilcoxon’s signed-rank test). †P < 0.05, ††P < 0.01, and 
†††P < 0.001 versus denosumab (Wilcoxon’s rank-sum test).
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Discussion
Using a propensity score-matching cohort design, the present study found that the increasing rates of lumbar 
spine, total hip, and femoral neck BMD were significantly higher with romosozumab than with denosumab after 
a treatment period of 12 months, with few serious adverse effects for either drug.

Denosumab is a fully human monoclonal antibody to the receptor activator of nuclear factor-kappa B ligand 
(RANKL) that blocks its binding to RANK, thus inhibiting the development and activity of osteoclasts, decreasing 
bone resorption, and increasing bone density23. On the other hand, romosozumab is a bone-forming agent that 
inhibits sclerostin to promote bone formation and suppress bone resorption through a so-called “dual-effect”24,25. 
These molecular-targeted drugs are prominent in the field of osteoporosis treatment.

Three factors are involved in the increase of BMD: (1) initial closure of the bone remodeling space, (2) a 
subsequent increase in mineralization, and (3) the steady contribution of modeling-based bone formation26,27. 
Especially in bone remodeling, the transition of bone metabolism markers affects the size of the anabolic window 
due to the difference between the levels of bone formation markers and bone resorption markers28. Denosumab 
strongly suppresses bone resorption, which in turn inhibits bone formation as well. Bone remodeling is consid-
ered to proceed under these conditions. In contrast, romosozumab promotes bone formation and suppresses bone 
resorption, resulting in a larger anabolic window and presumably a greater effect on increasing bone density. In 
this study, denosumab decreased both the bone formation marker and the bone resorption marker, while the bone 
formation marker did not decrease throughout 12 months and only the bone resorption marker was decreased for 
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romosozumab. Accordingly, we considered that a larger anabolic window was created. Romosozumab also had a 
greater effect on bone modeling than on bone remodeling in a recent report29. Taken together, the considerable 
effects of romosozumab on bone remodeling and modeling appear more effective to increase bone density levels. 
Both our primary and secondary clinical results support this theory.

As a notable point, the low levels of vitamin D in the cohort are not unique circumstances in Japan. In the 
real-world setting, approximately 90% of Japanese patients suffer from a vitamin D deficiency or insufficiency 
as a complication of osteoporosis30. We routinely advise the intake of active vitamin D or calcium preparations 
for patients with lower 25OHD; however, some patients find it undesirable to take additional medicine, and 
ultimately reject the prescription. For those individuals, we suggest other strategies, such as the intake of supple-
ments and insolation, and provide suitable daily life guidance as well as further medical treatment. In addition, 
romosozumab is usually reserved for patients with severe osteoporosis in actual clinical practice, and we believe 
that immediate intervention is required without losing time waiting for 25OHD elevation to a sufficient level to 
prevent further fractures.

As limitations of this study, the following factors require further consideration: (1) there was no discussion on 
treatment-naïve vs. switch (non-naïve) patients because we focused on the standardization of patient background 
characteristics by propensity score matching, (2) as the observation period of this study was short at 1 year, 
longer follow-up for adverse events and new fractures is needed, and (3) the data on adverse events during the 
12 months of treatment were obtained from the clinical records of patients, which was a retrospective process.

In conclusion, this investigation used propensity score matching to directly compare the clinical effects of 
denosumab and romosozumab in patients with postmenopausal osteoporosis. In terms of BMD of the lumbar 
spine, total hip, and femoral neck, the 12-month gains in the romosozumab group were all significantly higher 
than those in the denosumab group, indicating a potential therapeutic advantage that warrants further validation.
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