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Skeletal muscle has the remarkable ability to regenerate. However, with age and disease muscle 
strength and function decline. Myofiber size, which is affected by injury and disease, is a critical 
measurement to assess muscle health. Here, we test and apply Cellpose, a recently developed deep 
learning algorithm, to automatically segment myofibers within murine skeletal muscle. We first 
show that tissue fixation is necessary to preserve cellular structures such as primary cilia, small 
cellular antennae, and adipocyte lipid droplets. However, fixation generates heterogeneous myofiber 
labeling, which impedes intensity-based segmentation. We demonstrate that Cellpose efficiently 
delineates thousands of individual myofibers outlined by a variety of markers, even within fixed 
tissue with highly uneven myofiber staining. We created a novel ImageJ plugin (LabelsToRois) that 
allows processing of multiple Cellpose segmentation images in batch. The plugin also contains a 
semi-automatic erosion function to correct for the area bias introduced by the different stainings, 
thereby identifying myofibers as accurately as human experts. We successfully applied our 
segmentation pipeline to uncover myofiber regeneration differences between two different muscle 
injury models, cardiotoxin and glycerol. Thus, Cellpose combined with LabelsToRois allows for fast, 
unbiased, and reproducible myofiber quantification for a variety of staining and fixation conditions.

In many tissues, wound healing and regeneration depends on stem cells to replace the lost or damaged cells. For 
example, skeletal muscle has the remarkable ability to fully recover from injury due to a dedicated muscle stem 
cell population (MuSCs)1–4. Injury activates the MuSCs to replace damaged or lost myofibers. Skeletal muscle 
contains a second type of stem cell, called fibro/adipogenic progenitors (FAPs). FAPs are mesenchymal stem cells 
that work with MuSCs to regenerate skeletal muscle5–12. Following an acute injury, FAPs transiently expand and 
promote MuSC differentiation. In chronic diseases, however, muscle regeneration fails and FAPs produce scar 
tissue and differentiate into adipocytes5,6,10,11,13–16. This fatty fibrosis of muscle is a prominent feature of chronic 
muscle diseases such as Duchenne muscular dystrophy (DMD), sarcopenia, the age-related loss of skeletal muscle 
and strength, obesity, and diabetes13,17–26.

A critical measurement to evaluate muscle health or the ability to recover from injury is the cross-sectional 
area (CSA) of myofibers8,27–30. Myofiber CSA can increase due to hypertrophy, where myofibers become larger, 
for example after consistent exercise or during the initial phase of muscular dystrophies like DMD31–33. Reduced 
myofiber CSA indicates impaired regeneration after an acute injury and contributes to the progressive decline 
in muscle strength seen with age and disease34. Unbiased and rigorous quantification of myofiber CSA provides, 
therefore, crucial information when studying the cellular and molecular mechanisms of muscle regeneration as 
well as assessing potential therapeutics to prevent the decline in muscle mass and strength with age and disease.

Quantification of myofiber CSA is routinely done by snap-freezing muscle tissues followed by immuno-
histochemistry for markers that outline individual myofibers such as Laminin. This method provides robust 
and homogeneous staining of myofiber’s contours and can be easily used to accurately delineate hundreds of 
myofibers using the thresholding function in ImageJ. In fact, several sophisticated ImageJ or Matlab-based 
plugins have been developed over the years to allow for semi-automatic quantification of myofibers35–44. How-
ever, snap-freezing is not compatible with immunostainings for certain epitopes that require prior fixation with 
fixatives such as paraformaldehyde (PFA). For instance, in our experience, prior fixation is crucial to preserve 
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the morphology of individual adipocytes, especially the lipid droplets, that infiltrate muscle. As the functional 
relevance of intramuscular fat is still unclear, it is important to preserve adipocytes within the muscle to study 
their function. Additionally, we noticed that some cellular structures and organelles, such as filopodia and 
primary cilia, require fixation to preserve their integrity. Cilia are small organelles that extrude from the cell 
and act as a cellular antenna that sense extracellular cues45. We have previously shown that cilia control the dif-
ferentiation of FAPs into adipocytes in skeletal muscle6 and white adipose tissue46 by controlling both anti- and 
pro-adipogenic cues, respectively. In addition, FAP cilia are critical for controlling muscle regeneration after 
an acute injury and maintaining myofiber size in a mouse model of DMD, the mdx mouse6. However, without 
prior fixation cilia are undetectable. To circumvent this challenge, the muscle group of choice can be either cut 
in half and divided into two samples or the experiment must be repeated with a new set of animals resulting in 
reduced efficiency, increased animal numbers, and a missed opportunity to study different cellular processes 
at the same Z plane. The major disadvantage of prior fixation is that PFA causes uneven staining and a reduced 
signal-to-noise ratio of most commonly used myofiber markers. This presents a major challenge for using PFA-
fixed muscle sections to quantify large numbers of myofibers and especially prevents the use of the previously 
developed CSA plugin tools.

Here, we tested and applied Cellpose to automatically segment individual myofibers using a variety of stain-
ing and fixing conditions. Cellpose is a deep-learning segmentation algorithm that was recently developed as 
an efficient way to segment a variety of cells stained for different markers47. Cellpose allowed us to readily and 
efficiently identify thousands of myofibers regardless of dye or antibody used. Most importantly, this tool was able 
to robustly segment myofibers even with suboptimal myofiber labeling caused by PFA-fixation. However, depend-
ing on the staining used, the outline of the myofibers was larger than expected, significantly affecting CSA or 
other area-related measurements. To circumvent this, we developed a novel ImageJ plugin, LabelsToROIs, which 
allows processing Cellpose generated label images within ImageJ. It overlays the Cellpose-generated segmenta-
tions with the raw file followed by automatic quantification of the cross-sectional area (CSA) of each myofiber 
or other desired measurements. We also integrated a segmentation erosion tool to counter the above-mentioned 
size bias, which can be as high as 30%. We successfully validated the use of Cellpose together with our ImageJ 
plugin in different muscle regeneration and disease paradigms. Thus, the use of Cellpose in combination with 
our ImageJ plugin saves time, reduces bias, and allows for quantification of poorly stained images. Furthermore, 
it is applicable to a wide variety of staining conditions, and, with the detailed step-by-step instructions provided, 
can be widely adopted by users without programming skills.

Results
PFA fixation of muscle biopsies is required for visualizing several structures but hinders auto-
matic fiber detection.  The preservation of many cellular structures requires immediate fixation of tissue 
biopsies. For example, we noticed that filopodia, primary cilia and adipocytes in skeletal muscle tissue are highly 
sensitive to fixation. We previously discovered that FAPs are the main ciliated cell type in muscle6. Confirming 
our previous findings, primary cilia, marked by the small GTPase ARL13B, are readily detected on PDGFRα
-expressing FAPs in paraformaldehyde (PFA) fixed tibialis anterior (TA) muscle (Fig. 1a). However, without fixa-
tion, we failed to detect ARL13B+ cilia (Fig. 1a). We were also unable to detect cilia using acetylated tubulin, a 
marker for the ciliary axoneme (data not shown) in unfixed tissue sections. In addition, PDGFRα expression was 

Figure 1.   Fixation of muscle tissues is required to preserve certain cellular structures. (a) Cilia, marked by 
ARL13B (red), can only be detected on FAPs, labeled by PDGFRα (green), in PFA-fixed (bottom) but not snap-
frozen (top) tibialis anterior muscle sections. Scale bar is 10 μm. (b) The morphology of PERILIPIN-expressing 
adipocytes (red) is severely compromised without prior fixation. Scale bar is 50 μm. (c) Laminin (gray) 
perfectly outlines myofibers in snap-frozen tissue (top) enabling simple myofiber segmentation using ImageJ 
thresholding. However, fixation impacts Laminin immunoreactivity preventing myofiber segmentation. Scale 
bar is 250 μm.
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less robust in snap-frozen tissues preventing the preservation of the intricate cellular processes and filopodia of 
FAPs (Fig. 1a). Glycerol (GLY) injection into the TA muscle causes massive fat infiltration similar to what is seen 
in chronic neuromuscular disease and sarcopenia5,6,11,28,48–50. The resulting adipocytes can be robustly stained 
for markers such as PERILIPIN 21 days post-GLY injury (Fig. 1b). However, adipocyte morphology is severely 
compromised in unfixed tissue hindering faithful quantification of absolute adipocyte numbers (Fig. 1b). Suc-
cessful muscle regeneration post-injury is evaluated by determining the CSA of the regenerated myofibers. For 
this, muscle sections are routinely stained for Laminin, a basal lamina protein that outlines individual myofibers 
(Fig. 1c). However, Laminin staining is highly sensitive to fixation (Fig. 1c). Thus, while standard thresholding 
in ImageJ allowed for simple fiber segmentation of snap-frozen muscle sections, fixation resulted in signifi-
cant background preventing the use of fixed muscle tissues for evaluating cross-sectional area measurements 
(Fig. 1c).

Cellpose efficiently identifies myofibers regardless of staining or fixation condition.  A novel 
deep-learning algorithm, called Cellpose47, was recently designed to robustly and automatically segment indi-
vidual cells from dense cell clusters. The output of Cellpose are labeled images, an image data format where the 
segmentations are stored and can be eventually converted to the ImageJ regions of interest (ROIs) for subsequent 
analyses (see below for more details). We evaluated the performance of the Cellpose algorithm in analyzing 
cross-sections of the TA muscle stained for different markers (Fig. 2a). We first determined whether this method 
could efficiently identify myofibers in cross-sections of snap-frozen TA muscles stained for Laminin, the gold 
standard in the muscle field. Snap freezing muscle tissue allows for high-quality Laminin images, and, thus, it is 
more amenable for automatic segmentation. As seen in Fig. 2b, Cellpose allowed for the identification of thou-
sands of myofibers within all size ranges with great accuracy, without any necessary pre-processing of the images. 
After these promising results, we next assessed if this algorithm could also identify myofibers in PFA-fixed tissue. 
As described above, fixation causes a more heterogeneous Laminin staining, with areas of different Laminin 
intensities and different internal unspecific background within the fibers. Remarkably, Cellpose could efficiently 
identify the myofibers in these complex images with results highly similar to the gold standard (Fig. 2c). Similar 
results were obtained for the gastrocnemius muscle (Fig. S1). We then tested whether PFA-fixation induced an 
overall change in myofiber CSA compared to snap-freezing. To assess this, we divided the tibialis anterior muscle 
into two parts and snap-froze one half and PFA-fixed the other (Fig. S2A). Laminin-stained cryosections of both 
halves were segmented by Cellpose. After analyzing the CSA, we found that myofiber size distribution was the 
same for both fixed and snap-frozen muscle tissue (Fig. S2B,C). Thus, CSA is not affected by fixation allowing 
for cross-comparison of fixed and snap-frozen CSA measurements. We next evaluated if Cellpose could identify 
myofibers in cross-sections of muscle stained for other commonly used markers such as Phalloidin and wheat-
germ agglutinin (WGA), which label the actin cytoskeleton and the cell membrane, respectively (Fig. 2a). After 
triple staining for Laminin, Phalloidin and WGA of PFA-fixed tibialis anterior cross-sections, Cellpose could 
accurately identify thousands of myofibers in all three stains (Fig. 2d–f). Cellpose identified approximately 3200 
fibers for Laminin, with Phalloidin and WGA closely matching this number, a task that would require days of 
repetitive and laborious work with manual segmentation. To further ascertain whether the segmentation for 
each of the fibers between the different stains was similar, we used the Dice coefficient51–53. As depicted in Fig. 2g, 
this metric provides a numerical quantification of the resemblance of two individual segmentations based on 
their overlap. A value of 1 corresponds to the same shape, size, and location, while 0 indicates no intersection 
between the segmentations. As can be seen in Fig. 2h the mean Dice coefficient for all the fibers between the 
different staining’s was approximately 0.9, indicating that the Cellpose algorithm generated highly similar seg-
mentations for Laminin, Phalloidin, and WGA. Thus, our results show that Cellpose can achieve a very precise 
and comprehensive identification of the myofibers, independent of the staining or fixation condition.

Comparison of Cellpose to other segmentation software.  Multiple software packages have been 
developed over the years to aid in automatic segmentation of myofibers35–44. To determine how Cellpose com-
pares to these programs, we stained different muscle sections from either snap-frozen or PFA-fixed TAs with 
Laminin and segmented the images with three recent and commonly used programs. As expected, MuscleJ, 
OPEN-CSAM and SMASH were very effective in segmenting myofibers in snap-frozen tissue (Fig. 3a). However, 
they failed to segment images from samples that were previously fixed (Fig. 3b). The reason for this is probably 
that these methods rely on fluorescence intensity thresholding to discriminate  myofibers from the background. 
As PFA fixation causes a significant amount of heterogeneity within the samples, the resulting intensity and 
contrast are not sufficient to detect myofibers. We did notice, however, that even in snap-frozen tissues, Cellpose 
displayed significantly less segmentation errors compared to MuscleJ, OPEN-CSAM and SMASH. For example, 
we found that these three programs sometimes missed myofibers, grouped several fibers into one very large fiber 
or mis-identified blood vessels as myofibers (Fig. 3a). To ascertain that Cellpose excluded blood vessels in its 
segmentation, we stained two snap-frozen TA muscles with Laminin and Isolectin GS-IB4, which specifically 
marks the vasculature. By overlaying the segmented Laminin image with the blood vessel marker, we found that 
Cellpose mis-identified 2 blood vessels in one TA and 5 in the other TA as myofibers out of 2705 and 3210 total 
fibers, respectively (Fig. S3). Thus, while our data indicate that Cellpose has a very low false positivity rate of < 
0.156 %, appropriate controls are recommended to guarantee rigorous myofiber segmentation.

Benchmarking of Cellpose across several computing platforms.  We next assessed the performance 
of the Cellpose segmentation algorithm under different computer settings. Since the segmentation of each skel-
etal muscle image, although automatic, can take a considerable amount of computing time, we evaluated the 
effect of image downscaling on its overall segmentation performance. For a single-channel image, the only input 
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Figure 2.   Myofiber segmentation using Cellpose. (a) Schematic of the experimental design. (b) Cross section 
of a snap-frozen tibialis anterior muscle stained for Laminin. Right, original image. Left, Cellpose segmentation 
results. Scale bar, 500 μm. (c) Cross section of a PFA-fixed tibialis anterior muscle stained for Laminin. Right, 
original image. Left, Cellpose segmentation results. Scale bar, 500 μm. (d-f) Cross section of a PFA-fixed tibialis 
anterior muscle stained for Laminin (d),  Phalloidin (e) and WGA (f). Top, original images. Bottom, result 
of Cellpose segmentation. Inset, detail of the specified region. Scale bar within inset, 500 μm. (g) Diagram 
depicting the calculation of the Dice coefficient. For each segmented object in the two label images, the Dice 
coefficient is the result of two times the area of the intersection divided by the sum of the areas of both objects. 
(h) Mean Dice coefficient for all myofibers in the comparison between the indicated stains.
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that Cellpose takes besides the image itself is an approximate mean cell diameter in pixels, which the user must 
determine previously, for instance, by sampling a few representative myofibers within the image. We started our 
analysis with a PFA-fixed Laminin cross-sectional image of TA muscle, with a resolution of 7059x11763 pixels 
(3199x5332 µm2 ) and an approximate myofiber diameter of 120 pixels (~ 40 μm). We then created 4 downscaled 
versions of up to 20 times smaller, covering the range of 0.5 ×, 0.2 ×, 0.1 ×, and 0.05 ×, and then used Cellpose to 
generate the label images with the segmentations using different diameters (Fig. 4a,b).

To objectively quantify Cellpose’s performance on the downscaled images, we calculated the mean Dice 
coefficient between the downscaled label images and the full-size 1X label image (Fig. 4c). These results show 
a gradual decrease in the segmentation quality with the amount of scaling. Importantly, when downscaled up 
to 5 times, reaching an approximate myofiber diameter of 30 pixels, the mean Dice coefficient compared to the 
full-size image was 0.94, thus showing a very acceptable segmentation quality. For the image downscaled 20 
times, where the approximate myofiber diameter was 8 pixels, the mean Dice coefficient was 0.48, indicating an 
important decrease of the segmentation quality, as can be observed in (Fig. 4a).

We next evaluated Cellpose’s segmentation computing time for the differently scaled images. We did this 
using four different hardware configurations. For computers bearing a compatible Nvidia video card, Cellpose 
can be configured to run on the GPU, which can substantially decrease the computing time. We thus evaluated 
its performance on an Intel i7-8700 CPU with 32 GB of RAM bearing an Nvidia Titan Xp, running the different 
segmentations in the GPU or in the CPU-modes. We also evaluated the performance of a 2015 laptop computer 
with an i7-4700 CPU and 16 GB of RAM, running the segmentations using the CPU-mode only. Finally, we also 
made use of the Google colab online programming platform, which can be configured to run in a GPU mode. 
As can be seen in Fig. 4d, the resolution of the images greatly affected Cellpose’s computing time, with a clear 
advantage when running the segmentations on the GPU. In the least powerful hardware, the full-size image took 
more than 50 minutes to segment. Downscaling the image 2-fold resulted in a significant reduction of computing 
time while preserving myofiber integrity. While further downscaling provided additional, albeit smaller, time 

Figure 3.   Segmentation comparison between Cellpose and different software. Snap-frozen (a) and PFA-fixed 
(b) TA sections were stained for Laminin and segmented by Cellpose, MuscleJ, Open-CSAM and SMASH 
as indicated. Original image on the left and segmentation results labeled as ROIs. Inserts on right represent 
magnified areas as indicated by boxes in the merged image. Segmentation errors are labeled as missed fibers (a), 
mis-segmented fibers (b) and false-positive fibers (c). Scale bar, 500 μm.
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improvements, we did notice an increased number of segmentation errors. Thus, by running Cellpose on a local 
computer, which could take hours on large images, users need to evaluate the balance between segmentation 
quality and computing time by selecting a reasonable image downscaling factor. Importantly, we found that 
running Cellpose using the Google Colab option allows full resolution images to be segmented under 2 minutes. 
We, therefore, recommend the use of Google Colab, which enables rapid segmentation at full resolution without 
the need of a dedicated local computer. A link to a detailed video tutorial with step-by-step instructions on how 
to set up and use Cellpose using Google Colab is provided in the “Methods” section.

Figure 4.   Benchmarking of Cellpose algorithm across different image sizes and hardware specifications. (a) 
Top-left, original full-sized PFA-fixed TA cross-section stained for Laminin. The remaining images correspond 
to the Cellpose-generated label images when full-sized or downscaled versions of the original image were fed to 
the algorithm. (b) Myofiber diameter fed to the Cellpose algorithm for the full-sized or the downscaled images. 
Approximate myofiber diameter for the original image was manually determined. (c) Mean Dice coefficient for 
the comparison of the original 1 × label image with itself or with the downscaled label images (see “Methods”). 
(d) Comparison of Cellpose segmentation time for the different image sized across different hardware platforms.
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Correction of segmentation‑induced size bias.  We noticed that Cellpose segmented the myofibers in 
such a way that it often included the Laminin staining itself causing the myofiber area to appear artificially larger 
(Fig. 5a,b). To circumvent this problem, we eroded the myofiber’s segmentations pixel by pixel until Laminin was 
largely excluded (Fig. 5c). We then quantified the mean CSA of Laminin stained TA muscle cross-sections of 6 
different mice with or without label erosion (Fig. 5d). These results show that a slight amount of label erosion 
can result in a significant difference in mean CSA, in this case, as much as 30%, reinforcing the importance of 
manual supervision.

To further validate the use of Cellpose, we next analyzed how similar the segmentations generated by this 
algorithm (with or without erosion) were compared to manual segmentations generated by three human experts. 
To do this, PFA-fixed TA cross-sections were stained for Laminin, Phalloidin, or WGA, and four images with 
approximately 50 myofibers each were obtained for each staining. Cellpose was then used to identify the myofib-
ers in each image (CP) and, in parallel, these segmentations were eroded with a fixed number of pixels according 
to visual inspection (eroded CP, eCP). Additionally, three different human experts manually segmented the same 
images (M). Figure 6a displays representative segmentations for each staining and condition.

We used the Dice coefficient to objectively analyze the accuracy of the segmentations. Since different human 
experts can generate slightly different segmentations, we first calculated the distribution of Dice coefficients 
for each pair of human experts for the 4 images of each stain (M–M). This analysis showed, as expected, high 
values of Dice coefficient that ranged between 0.9 and 0.95, indicating an approximate 5 to 10% error rate in the 
manual segmentations (Fig. 6b). Next, we compared the segmentation of each expert to the one generated by 
Cellpose (M–CP), which shows that Cellpose’s segmentations, despite having high Dice coefficients, were less 
accurate than the manual segmentations. It is important to note that Cellpose’s Laminin segmentation provided 
less accurate results than Phalloidin or WGA. Remarkably, after eroding the segmentations with a fixed number 
of pixels, the Dice coefficient of the eroded labels compared to humans was practically indistinguishable from 
in-between humans (M–eCP). These results show that when combined with label erosion, Cellpose can identify 
myofibers as accurately as human experts.

Figure 5.   Erosion of Cellpose segmentations is needed for accurate CSA measurements. (a) Example of a snap-
frozen Laminin stained TA cross-section. (b) Cellpose segmentation of the image in (a) showing the overlaid 
segmentations in yellow (top) or the Cellpose-generated label image (bottom). (c) Segmentation results after the 
Cellpose label image was eroded by 4 pixels. (d) Mean CSA for all myofiber of Laminin stained TA muscle cross-
sections of 6 different mice with or without a 4-pixel label erosion.
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Development of the plugin LabelToRois to analyze and modify Cellpose segmentations in 
ImageJ.  The current release of the Cellpose segmentation algorithm runs on Python and can be also used 
with a convenient and simple user interface (GUI) (see the accompanying tutorial and how-to video instruc-
tions in the “Methods” section for more information about how to install and run Cellpose). As we previously 
mentioned, Cellpose’s segmentation results are in the format of labeled images, in which each segmentation has 
a specific pixel value that is used as an unequivocal identifier. This type of data storage, although quite common 
in the field of computer vision, is not widely used by users without programming skills. ImageJ is a powerful and 
user-friendly image analysis software widely adopted in the biological community. Within ImageJ, the Regions 
of Interest (ROIs) are an effective way to identify objects before making different measurements. However, there 
is currently no easy nor efficient way of transforming the information stored in label images to ImageJ ROIs for 
non-programmers while also allowing simultaneous ROI erosion.

To circumvent these issues and extend the power of Cellpose to as many users as possible, we developed an 
ImageJ plugin, LabelsToROIs, that takes label images as input and converts them into ROIs. Our plugin allows 
users to automatically erode the segmentations by a user-defined number of pixels while being able to visually 
inspect the resulting ROIs, delete, add, or modify them (Fig. 7). It includes functions to save the ROIs for future 
inspection, as well as to select which measurements to take (i.e. area, Ferret’s diameter, etc.) on the original images 
and saving the results in convenient CSV tables. Furthermore, it also allows for batch analysis of multiple label 
images with minor intervention. Thus, this simple plugin allows users without programming skills to widely 
adopt this great segmentation tool. Importantly, this plugin works well for any kind of label image and, thus, its 
use is not limited to Cellpose nor the field of muscle.

Cellpose combined with LabelsToRois allows for rapid and rigorous quantifications of myofib-
ers in different injury and disease paradigms.  After establishing that Cellpose can efficiently segment 
close to 100% of myofibers present in a cross-section and the development of our ImageJ plugin to rapidly 
quantify myofibers in batch, we evaluated the use of Cellpose and LabelsToRois in different models of skeletal 
muscle regeneration and disease. First, we focused on a mouse model of Duchene muscular dystrophy (mdx 

Figure 6.   Eroded Cellpose segmentations are as accurate as human experts in delineating myofibers. (a) Left, 
example of cross-sectional TA images marked by Laminin, Phalloidin or WGA and, right, their corresponding 
labeled images manually generated by a human expert (M), and the original (CP) or the eroded Cellpose 
segmentation (eCP). (b) A set of four images was analyzed for each of the three indicated stains. Three human 
experts manually segmented each of the images, while those same images were also segmented by Cellpose. 
Cellpose labels were additionally eroded by a fixed number of pixels according to visual inspection. The Dice 
coefficient was used to compare the different label images corresponding to the same original image. The violin 
plot shows the mean Dice coefficient for each human pair for a specific image (M–M), the comparison of human 
manual segmentations to their associated Cellpose segmentations (M–CP), or for human manual segmentations 
to their associated Cellpose eroded segmentations (M–eCP).
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mice), where intramuscular fat and fibrotic scar tissue gradually replace functional muscle54,55. We previously 
discovered that genetic removal of FAP cilia in mdx mice prevented fat formation6. Interestingly, we also found 
that loss of FAP cilia prevented the decline in myofiber size normally seen in mdx mice6. To test if Cellpose could 
generate comparable results, we used our original raw images from this study for Cellpose to segment (Fig. 8a). 
Validating our previous results, quantifications of the cross-sectional area of myofibers segmented by Cellpose 
and quantified by LabelToRois demonstrate that loss of FAP cilia in mdx mice (mdx FAPno cilia) efficiently pre-
vented the decline in myofiber CSA (Fig. 8b) with a shift from fewer smaller to larger fibers (Fig. 8c) compared 
to mdx control mice. Besides reducing user bias, we also found that Cellpose was able to segment on average 
400 more fibers per image compared to using manual thresholding. As a result, we saw an improvement in our 
statistical analysis by a factor of 10. Importantly,  the LabelsToROIs plugin allowed us to easily process all the 
labeled images in a single step and to generate a unique measurement table with all the quantifications in a tidy 
data format, greatly enhancing the subsequent analysis. We next evaluated the performance of Cellpose and 
LabelsToRois on detecting a difference in myofiber regeneration after different injury settings. We compared 
cardiotoxin (CTX) injury, the “gold-standard” muscle injury model11,27,49,56, which is rapidly repaired and causes 

Figure 7.   Development of LabelsToROIs plugin to analyze label images in FIJI/ImageJ. As indicated in 
(a), the plugin takes as input an original image and a labeled image generated using Cellpose or another 
software. (b) The plugin allows to automatically extract the segmentations in the label images and generate the 
corresponding FIJI/ImageJ regions of interest (ROIs). (c) Once generated, the ROIs can be eroded by a fixed 
number of pixels until the segmentations correctly delineate the objects of interest. The ROI files can be saved, 
and different measurements can be selected to generate table measurements. (d) The LabelsToROIs plugin also 
allows for simultaneous processing of multiple images, enabling the generation of ROIs, ROI erosion and table 
measurements in one step, while automatically saving all the files for future inspection. (e) A diagram of the 
proposed pipeline for the automatic analysis of skeletal muscle biopsies.
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little fat, to a glycerol (GLY) injury in CD1 wild type mice, which also elicits a regenerative response but results 
in massive fat infiltration5,6,11,28,48–50. Confirming the differences in fat formation between these two injuries, 
we detected few PERILPIN+ fat cells 21 days post CTX injury (Fig. 8d) with around 25 adipocytes per mm

2 
of injured area (Fig. 8e). In contrast, GLY induced five times as much adipocyte differentiation as CTX, which 
persisted for up to 3 months post-GLY injury (Fig. 8d,e). We then asked if there is a difference in the regenera-
tive response of myofibers between CTX and GLY at 21 days post-injury. Again, using Cellpose and our Label-
sToRois plugin to automatically segment and quantify myofibers stained for Laminin, we found that myofibers 
recovered more efficiently after a CTX injury compared to GLY (Fig. 8f,g). In fact, we noticed that a large major-
ity of myofibers remained small compared to myofibers after a CTX injury (Fig. 8h). Thus, GLY causes massive 

Figure 8.   Cellpose and LabelsToROIs enable the quantification of CSA across different disease and injury 
settings. Top Re-quantification of data from Kopinke et al., 2017. (a) TA images from 10- to 12-month-old 
mdx control and mdx FAPNoCilia mice stained for Laminin were re-analyzed using Cellpose. LabelsToROIs 
was used to erode the segmentations according to visual inspection (5 pixels). Myofiber segmentations were 
color-coded based on their CSA using the FIJI/ImageJ ROI color coder. Scale bar, 500 μm. (b) Mean CSA of 
mdx control (n=10) and mdx FAPNoCilia mice (n=6). Statistical differences were assessed by a Student T test. 
(c) Distribution of myofiber CSA for mdx control and mdx FAPNoCilia mice. Results are presented as means 
standard error of the mean (SEM) for each bin and each genotype. Bottom CSA comparisons between injury 
types. (d) Few adipocytes, marked by PERILPIN (green), have formed 21 days post muscle injury caused by 
cardiotoxin (CTX). In contrast, glycerol-induced injury (GLY) causes massive fat infiltration that persists up to 
3 months. Myofibers are labeled with Phalloidin (red) and nuclei with DAPI (blue). (e) Number of adipocytes 
per mm

2 of injured area 21 days post GLY (n=15) or CTX (n=11) injury. Statistical differences were assessed 
by a Student T test. (f) Cellpose and LabelsToROIs were used to segment and process TA images stained for 
Laminin corresponding to GLY and CTX treated mice. Myofiber segmentations were color-coded based on 
their CSA using the FIJI/ImageJ ROI color coder. (g) Quantification of the mean CSA of myofibers 21 days post 
GLY (n=12) or CTX (n=18) injury. Statistical differences were assessed by a Student T test. (h) Distribution of 
myofiber size for each injury. Results are presented as means standard error of the mean (SEM) for each bin and 
each treatment.
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fat infiltration and displays diminished myofiber regeneration capability compared to CTX. Our data further 
highlight the advantages of the GLY injury model as a valuable tool to mimic and study chronic fat infiltration, a 
hallmark of muscle disease and age, by simple intramuscular injections into any genetic background.

Finally, we evaluated the use of Cellpose and LabelsToROIs in determining myofiber types. Murine myofib-
ers can be separated into slow twitch (type I) and fast twitch (type IIa, IIb & IIx) fibers and each muscle group 
is composed of a different combination of type I and type II fibers57. This composition can be altered through 
fiber type switching, caused by aging, exercise or disease58–65. Therefore, myofiber typing is an important assay 
to determine muscle health and regeneration. To determine if our segmentation pipeline can also be used for 
efficient myofiber typing, we stained muscle sections for type I and type IIa fibers as well as Laminin to mark each 
myofiber. After segmenting the Laminin channel with Cellpose, LabelsToROIs was used for label erosion and 
fluorescence intensity quantification in the different channels. This analysis allowed us to automatically quantify 
the total number of fibers present as well as their corresponding CSAs (Fig. S4). Alternatively, Cellpose can be 
used to individually segment the images corresponding to each stain, allowing a rapid evaluation of the propor-
tion of fiber types and their CSA. Thus, co-staining muscle section with Laminin and fiber type specific antibodies 
allows for rapid determination of the number, type and CSA of all myofibers present in a given muscle section.

Conclusion
Myofiber CSA is a crucial measurement to assess muscle regeneration as well as degeneration. Several helpful 
CSA plugins have been developed to quantify myofiber CSA in an automated and unbiased fashion. In addition, 
some allow for the quantification of additional parameters such as the ability to quantify a variety of different 
cell types or the number of myonuclei. However, one disadvantage common to all is that they require “perfect 
staining”. The biggest advantage of Cellpose is that it can be used to segment suboptimal stainings obtained from 
fixed tissue with remarkable high fidelity. As reported here, we found that Cellpose was equally able to segment 
myofibers marked by Laminin, Phalloidin and WGA. Thus, Cellpose is able to segment myofibers labeled by a 
variety of markers. Importantly, we found that although Cellpose accurately identified the majority of myofib-
ers, there was an area bias associated to the type of staining used, which significantly affected myofiber CSA. 
The development of the ImageJ plugin LabelsToROIs allowed us to solve this issue, enabling the identification 
of myofibers with an accuracy similar to human experts. Cellpose has been developed to segment a plethora of 
different tissues and cell types47. While we describe here how to use Cellpose for myofiber segmentation, Cellpose 
creates the same labeled image file regardless of what tissue or cells it segments. We, therefore, expect that our 
pipeline can also be extended in the future to different experimental setups beyond skeletal muscle. Thus, the 
combined use of the novel deep learning algorithm Cellpose and our LabelsToRois plugin allow for unbiased 
and rigorous analysis of thousands of myofibers within minutes even by users not well-versed in computer pro-
gramming, regardless of staining or fixation condition. Together, we believe that our pipeline will reduce bias, 
enhance reproducibility, and allow widespread use of this segmentation tool.

Methods
Animal studies.  Ift88tm1Bky and (Tg(Pdgfrα-Cre/ERT)467Dbe) alleles have been described previously66,67. 
Mdx mice were purchased from the Jackson Laboratory (Stock No: 001801). Littermates lacking either the Cre 
or the null (in the case of Ift88) served as controls. Tamoxifen (Sigma T-5648) was dissolved in corn oil and 
administered by oral gavage (200–250 mg/kg) on two consecutive days to all mice at 4–5 weeks of age. Muscle 
tissue was then harvested at 1 year of age. For Cardiotoxin and Glycerol injuries, male and female wild type 
mice on a mixed CD1 background at 10–12 weeks of age were used. To evaluate muscle regeneration, mice were 
anesthetized with isoflurane and the Tibialis Anterior (TA) was injected with 25–50 μL of either 10 μM Car-
diotoxin (Naja Pallida, Sigma) or 50% Glycerol. The TA was allowed to regenerate for 21 days before TAs were 
harvested. All animal protocols were approved by the Institutional Animal Care and Use Committee (IACUC) 
of the University of Florida and all animal work carried out in compliance with the ARRIVE guidelines, the 
relevant guidelines and regulations.

Histology, immunohistochemistry and image analysis.  Tissue fixation, processing and immu-
nostaining were performed as described previously6,46. In brief, TAs were fixed or snap frozen in order to com-
pare antibody stainings and subsequent segmentation analysis. For tissue fixation, the TAs were submerged 
in paraformaldehyde (PFA) 4% for 3 h at 4 °C, washed three times for 5min in cold PBS, kept overnight in 
sucrose 30% before embedded in OCT, and frozen in liquid nitrogen-cooled isopentane. To snap freeze, TAs 
were immediately embedded in OCT after harvesting, and frozen in liquid nitrogen-cooled isopentane. TAs 
were cryosectioned at midbelly at 10 μm, multiple sections were collected and stored at − 80 °C until staining. 
For immunofluorescent staining, slides were thawed, washed in PBST (0.1% Tween-20 in PBS) three times for 
5min and incubated overnight at 4 °C in blocking solution (5% donkey serum in PBS with 0.3%Triton X-100). 
Primary antibodies were incubated overnight at 4 °C, followed by three 5min washes in PBST. Slides were then 
incubated with secondary antibodies along with directly conjugated probes for 45min, washed three times for 
5min each and mounted with Fluoromount-G (ThermoFisher). Muscle fibers were visualized with the directly 
conjugated probe Phalloidin-Alexa-568 (1:250, Molecular Probes #A12380). Fibers were additionally outlined 
by marking the extracellular matrix with both the directly conjugated wheat germ agglutinin (WGA)-Alexa 
647 (Molecular Probes, #W32466), and the primary antibody Rabbit anti- Laminin (1:1000, Sigma#L9393) and 
the corresponding donkey anti-rabbit Alexa Fluor 488 (1:1000,#A21206). For fiber type analysis, snap frozen 
sections were used, mouse-on-mouse blocking was performed with AffiniPure Fab Fragment Donkey Anti-
Mouse (1:50, Jackson ImmunoResearch, 715-007-003) during the blocking step. The following primary anti-
bodies were used: Myosin heavy chain Type 1 (1:50, supernatant from DSHB, BA-D5), Myosin heavy chain 
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Type IIA (1:50, supernatant from DSHB, SC-71), along with Laminin to delineate all fibers. Secondaries were 
goat anti-mouse IgG Fcγ subclass 2b specific Alexa Fluor 488 (1:800, Jackson ImmunoResearch, 115-545-207), 
donkey anti-rabbit Alexa Fluor 568 (1:1000, Invitrogen, A10042), and goat anti-mouse Alexa Fluor 647 IgG Fcγ 
subclass 1 specific (1:800, Jackson ImmunoResearch 115-605-205), respectively. To visualize primary cilia, FAPs 
and adipocytes, the following primary antibodies were used: anti-ARL13B (1:1000, Proteintech#17711-1-AP), 
goat anti-PDGFRα (1:250, R&D Systems#AF1062) and rabbit anti-PERILIPIN (1:1000, Cell Signaling#9349). 
Species-corresponding Alexa Fluor-conjugated secondary antibodies from Life Technologies (1:1000) were used 
and DAPI (Sigma) to visualize nuclei. To label blood vessel, Isolectin GS-IB4 from Griffonia simplicifolia (Alexa 
488) was used at 1:200 (Molecular Probes#I21411). Images of the most representative section were acquired 
using a Leica TCS SPE confocal equipped with a DFC7000 camera. The LAS Navigator software was used to 
generate a merged image of the whole TA cross-section. All images were processed identically with Adobe Pho-
toshop (CS5) or ImageJ.

Development of LabelsToRois plugin and tutorials.  LabelsToRois plugin was developed in Jython 
and can be downloaded from our Github page: https://​label​storo​is.​github.​io/. In this page, users can find a 
detailed explanation of label images and written and video tutorials on the installation and usage of Label-
sToROIs within ImageJ. Furthermore, we also include video tutorials on the usage of Cellpose, both for the 
simple user interface and also for the Google Colab script, which allows to segment multiple images in batch. 
These tutorials allow users to make use of this great segmentation tool from raw images up to the generation of 
table measurements that can be later analyzed.

Image analysis.  Single channel fluorescence images were segmented with Cellpose using either the GUI or 
with a modified version from the Python script provided by the authors. Labeled images resulting from Cellpose 
segmentation were fed to the ImageJ plugin LabelsToRois together with the original image. The resulting ROIs 
were eroded with a fixed number of pixels according to visual inspection. Area measurements were generated 
and analyzed with custom Python scripts.

Dice coefficient was calculated for each pair of labeled images using the SimpleITK library in Python68. For 
that, labels IDs were previously matched using custom scripts. To compute the Dice coefficient for the eroded 
labels, ImageJ ROIs were eroded using the LabelsToROIs plugin and then labeled images we generated in ImageJ 
using the ROI map function from the LOCI update site. Connected components labeling and Set Label Map 
functions from the MorpholibJ plugin were also used for working with labeled images69.
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