- | Systems Biology
Pl and Applications

ARTICLE

www.nature.com/npjsba

W) Check for updates

Characteristics of mathematical modeling languages that
facilitate model reuse in systems biology: a software

engineering perspective

Christopher Scholzel

'™ Valeria Blesius', Gernot Ernst>®> and Andreas Dominik

Reuse of mathematical models becomes increasingly important in systems biology as research moves toward large, multi-scale
models composed of heterogeneous subcomponents. Currently, many models are not easily reusable due to inflexible or confusing
code, inappropriate languages, or insufficient documentation. Best practice suggestions rarely cover such low-level design aspects.
This gap could be filled by software engineering, which addresses those same issues for software reuse. We show that languages
can facilitate reusability by being modular, human-readable, hybrid (i.e., supporting multiple formalisms), open, declarative, and by
supporting the graphical representation of models. Modelers should not only use such a language, but be aware of the features
that make it desirable and know how to apply them effectively. For this reason, we compare existing suitable languages in detail
and demonstrate their benefits for a modular model of the human cardiac conduction system written in Modelica.

npj Systems Biology and Applications (2021)7:27 ; https://doi.org/10.1038/s41540-021-00182-w

INTRODUCTION

As the understanding of biological systems grows, it becomes
more and more apparent that their behavior cannot be reliably
predicted without the help of mathematical models. In the past,
these models were confined to single phenomena, such as the
Hodgkin-Huxley model of the generation of neuronal action
potentials'. They have served their purpose up to a point where
now it is necessary to take into account the upward and
downward causations that link all levels of organization in a
biological system from genes to proteins to cells to tissue to
organs to whole organisms, populations, and ecosystems?. These
causations span effects on multiple scales of space and time,
which need to be included in models. This can be achieved by two
different approaches. A micro-level model combines thousands of
individual homogeneous submodels to reach the next higher
scale. This approach requires a vast amount of computing power
and is therefore usually limited to span a distance of only two
scales. More wide-spanning multi-scale models can be achieved
by the multi-level approach, which combines both macro- and
micro-level descriptions of a system by different models®. While
micro-level parts of such a model may look as described above,
the macro-level parts feature heterogeneous descriptions of
subsystems and their high-level interactions. For this approach,
a wide variety of techniques exist that reduce the computational
complexity of resulting models®. While both approaches require
the reuse of existing models, the multi-level approach additionally
involves the combination of independent submodels, which may
have been designed for different purposes and in different labs.
These submodels may even use different modeling formalisms,
thus forming a multi-class model°.

The first step in building a model consisting of several
submodels is to regenerate the individual parts from the literature.
This can already be a challenge due to several issues with
reproducibility in systems biology including incomplete model
descriptions, errors in formulas, availability of the code or missing

descriptions of experiment setup or design choices®™®, A recent
study by curators of the BioModels database showed that only
51% of 455 published models were directly reproducible®. In an
extreme case, Topalidou et al.? report requiring three months to
reproduce a neuroscientific model of the basal ganglia.

We experienced similar reproducibility issues first-hand when
we translated the Seidel-Herzel model (SHM)—a macro-level
model of the human baroreflex, which is able to simulate many
disease conditions and exhibits interesting dynamical properties
—into a form that would be more amenable to extension and
reuse'®"2, Even though we could reach out to the author of the
model to obtain his original implementation in C, the translation
process was still quite challenging. The C code was monolithic and
imperative in nature, describing calculation steps instead of
mathematical relations and containing details that where not
described in the corresponding PhD thesis. We had to carefully
extract the meaning of each line of code in order to build a
modaular, declarative version that produced the same simulation
results. For this task, we chose the modeling language Modelica,
since it provides a lot of flexibility for modular model design.
However, when we wanted to extend the model with a trigger for
premature ventricular contractions (PVCs), it turned out that even
our new version was not suitable for reuse. In fact, the component
that described the cardiac conduction system remained mono-
lithic and lacked a graphical representation, which made it hard to
identify the equations and variables that would have to be
changed. This situation—having to untangle the semantics and
code of an existing model to extend or adjust it for use in a
different context—is emblematic of the challenges faced when
building multi-scale and especially multi-level models. Our
example shows that issues with reproducibility and reuse reach
down to the engineering level. The modeling language and the
design principles applied to the construction of a model can
facilitate or hamper further use. This also holds for the
aforementioned case of Topalidou et al.?, since the original model

"Technische Hochschule Mittelhessen — University of Applied Sciences, Giessen, Germany. *Vestre Viken Hospital Trust, Kongsberg, Norway. *University of Oslo, Oslo, Norway.

HMemail: christopher.schoelzel@mni.thm.de

Published in partnership with the Systems Biology Institute

NP| nature partner
pJ journals

http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-021-00182-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-021-00182-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-021-00182-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s41540-021-00182-w&domain=pdf
http://orcid.org/0000-0001-8627-0594
http://orcid.org/0000-0001-8627-0594
http://orcid.org/0000-0001-8627-0594
http://orcid.org/0000-0001-8627-0594
http://orcid.org/0000-0001-8627-0594
http://orcid.org/0000-0002-9368-0812
http://orcid.org/0000-0002-9368-0812
http://orcid.org/0000-0002-9368-0812
http://orcid.org/0000-0002-9368-0812
http://orcid.org/0000-0002-9368-0812
https://doi.org/10.1038/s41540-021-00182-w
mailto:christopher.schoelzel@mni.thm.de
www.nature.com/npjsba

npj

C. Scholzel et al.

was implemented in Delphi, which is also an imperative language
and, therefore, not well suited for mathematical modeling.

Even though the need for design principles on the engineering
level is apparent, most publications about best practices for
reproducibility and reusability do not address it. Instead, existing
approaches broadly fall into three (overlapping) categories. They
tend to focus on (a) biological validity'>™'%, (b) high-level choices
of modeling formalisms and techniques'®™', or (c) model
documentation, annotation, and distribution”?*%3. Apart from
these general discussions about reusability, there also are authors
who advocate for individual modeling techniques, such as
modular model design®* in CellML or coupling models via
semantic annotations®>. However, while the latter work is
applicable to multiple languages, it only focuses on one, albeit
central, part of model design, namely the composition of multiple
models or model parts. This means that researchers who want to
select a suitable language for their modeling task still have little
guidance available. The best assistance for choosing a modeling
language currently comes from the list of accepted standards
published by the Computational Modeling in Biology Network
(COMBINE)**?%, The COMBINE suggests to use CellML and the
Systems Biology Markup Language (SBML) with the main reason
that these are standard exchange formats that have a high
interoperability among several tools. While this is true and a great
improvement over the previous state of the art, standardization,
and interoperability alone cannot guarantee reusable model
design. For example, the BioModels database?” features curated
models in SBML format, but most of these models are monolithic
and therefore require further modification if only parts of the
model should be reused®. In the aforementioned reproducibility
study, the curators of this database found that the reproducibility
rate for SBML models was only slightly higher (56%) than the
overall rate of reproducibility across all models (51% including
models written in SBML, MATLAB, Python, C, R, and other
languages)®. Our previous example of the translation of the SHM
also shows that using a suitable language is a necessary but not
sufficient criterion for the model to actually be reusable.
Additionally, no single language or even a small set of prescribed
languages is likely to cover all use cases which may arise in
systems biology, especially when considering multi-class models,
which combine entirely different model formalisms’.

Even when the discussion is restricted to the formalisms of
ordinary differential equations (ODEs) and discrete events, there
are a multitude of languages to choose from. As mentioned
above, the COMBINE lists SBML and CellML as accepted standard
languages. Both are markup languages based on the eXtensible
Markup Language (XML) and designed to be written and read by
software tools and not directly by humans. While SBML has a clear
focus on metabolism and cell signaling models, CellML, despite its
name, is not targeted toward a specific level of organization.
MATLAB is a proprietary domain-specific programming language
designed for scientific computing in general, which is also popular
in systems biology (https://www.mathworks.com/products/
matlab.html). It provides an environment for graphical block
diagrams called Simulink (https://www.mathworks.com/products/
simulink.html) and a declarative language for designing physical
systems called Simscape (https://www.mathworks.com/products/
simscape.html). The MATLAB environment SimBiology is another
alternative based on block diagrams, which is targeted toward
pharmacological models, but can, like SBML, model arbitrary ODE-
based dynamical systems (https://de.mathworks.com/products/
simbiology.html). While MATLAB is still popular’**°, the open-
source programming language Python also gains increasing
interest in the community®>*'~34, Usually models are not built in
Python itself, but researchers have created packages such as
PySB*® and the Python Simulator for Cellular systems (PySCeS)*'
that define embedded domain-specific languages (DSLs) which
facilitate the creation of mathematical models for specific use cases.

npj Systems Biology and Applications (2021) 27

With Tellurium®® there also exists a broader python-based
environment that supports multiple COMBINE standards and uses
the declarative modeling language Antimony®. Another emer-
ging language for the definition of embedded DSLs for
mathematical models is Julia, which has a similar focus as Python
but is more extensible and tends to have better runtime
performance®. Finally, Modelica is an open-source declarative
modeling language primarily used in engineering®’. It has a large
user base both in industry and research, but is still largely
unknown in systems biology. Notable exception include the
Physiolibrary*®*—a Modelica library for physiological models—and
SBML2Modelica®*—a tool that translates SBML models to
Modelica. This extensive list of language candidates makes it
apparent that researchers need guidelines to choose between
these candidates and to write model code that actually uses the
desirable characteristics of the chosen language.

In recent years there has been increasing interest to apply
techniques from software engineering (such as unit testing,
version control, or object-oriented programming) to modeling in
systems biology?®°%%°. Hellerstein et al.*° even go so far to
suggest that systems biologists should rethink the whole
modeling process as “model engineering”. To date they are the
only authors that we are aware of who actually give explicit
guidelines for how to write model code (e.g., they suggest to use
human-readable variable names).

In this article we share our experience with extending the SHM
and generalize our findings from this example to expand on the
idea of model engineering in three ways: First, we propose a list of
desirable characteristics that make a model language suitable for
building reusable multi-scale models. Second, we give guidelines
on how these characteristics can be exploited during model
design to increase the reproducibility and reusability of a
particular model. Third, we compare state-of-the-art language
candidates with respect to the aforementioned characteristics.

From these candidates, we chose one, namely Modelica, to
demonstrate the reasoning behind the characteristics, guidelines,
and language assessment using the example of the cardiac
conduction system within the SHM. We transform the existing
monolithic model into a modular structure and show how this
facilitates the PVC extension. After we present our results we
reflect on the impact that each of the language characteristics and
the choice of Modelica, in particular, has on the usefulness of
the model.

RESULTS

Desirable characteristics for a mathematical modeling
language for systems biology

The following characteristics were developed from literature review
and/or from our personal experience with Modelica and the SHM.
The goal of these characteristics is to facilitate the creation and
analysis of multi-scale, multi-level, and multi-class models. We,
therefore, focus on increasing reproducibility, understandability,
reusability, and extensibility. The resulting characteristics are that a
modeling language should be modular, human-readable, hybrid,
open, declarative, and graphical. Each characteristic will be
introduced with arguments for its usefulness, a brief set of
guidelines on how it may be applied to full effect, examples where
this was relevant in our implementation of the SHM, and references
to other authors that advocate this feature. To easily refer to these
characteristics we form the mnemonic MoDROGH for Modular,
Descriptive, human-Readable, Open, Graphical, and Hybrid. We will
also use the term “MoDROGH language” for a language that
exhibits all or most of these characteristics.

Published in partnership with the Systems Biology Institute

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simscape.html
https://de.mathworks.com/products/simbiology.html
https://de.mathworks.com/products/simbiology.html

MoDROGH characteristics: Modular

In order to replace or reuse parts of a model, they have to be
identified in the code. The modeling language should make this
as easy as possible, using separable components with clear
interfaces. The number of variables in the interface should be
minimal, encapsulating internal implementation details so that
using and connecting the component becomes as easy as
possible. Some languages facilitate this by allowing the definition
of connector components, which group interface variables
together, so that the interface has, e.g. a single electrical pin
connector instead of two separate variables for current and
voltage. Interfaces are important to define intended biological
transitions between model components and to document
assumptions, even if rigid interfaces can limit reuse. It can even
be argued that it is beneficial if a component cannot easily be
reused in an environment with different assumptions, since such
a switch of assumptions will likely require more change than
adding a variable to the interface. For quick experimentation, it
can be an advantage if the language allows connecting arbitrary
internal variables of components, but published versions of a
model should always have a clear interface concept to remain
understandable.

Modularization and encapsulation are reliable tools to handle
complexity in large software projects, so it is reasonable to expect
that they will also be able to manage the complexity of biological
systems. Modularity also inherently facilitates reusability, since
clearly defined self-contained modules are easier to reuse than a
set of equations that has to be extracted from a tightly coupled
model. To allow reuse of components within the same model, it
must be possible to import multiple instances of a module and
assign individual identifiers to them. This can be further facilitated
by supporting full object-orientation, allowing a component to
inherit variables, equations, and possibly annotations from one or
more parent components, which define common structure and
behavior. Additionally, components are also easier to reuse if
individual variables and equations may be overwritten or removed
during instantiation and inheritance. Some languages also allow the
reuse of models across different languages, tools, and platforms by
using a standardized exchange format or a standardized interface. In
systems biology, SBML is a standard exchange format for hundreds
of tools, allowing the use of models in a multitude of different
contexts often through the use of translators that convert SBML to
different languages. In contrast, the Functional Mock-up Interface
(FMI) is a model exchange format maintained by the Modelica
Association®'*? that focuses more on a unifying interface than a
unified language. It is not used to translate models into other
languages, but rather to distribute models in an encapsulated
format that is independent of the underlying formalism, which is
especially interesting for multi-class models.

Guidelines. Modules should be small enough to be understand-
able at first glance, but still self-contained. If a formula or concept is
used multiple times in a model, it should be defined as a module
once and then referenced. In software engineering this concept is
called DRY for “don’t repeat yourself”. Modules should have clearly
defined, minimal interfaces, which explicitly state possible
connection points to the outside world. Both modules and their
interfaces should follow the biological structure of the system. If a
module represents more than one biological entity or an equation
in the module conflates effects from multiple distinct causes, it
might be worth to investigate whether splitting up the corre-
sponding module further might increase its understandability and
flexibility for reuse and extension. Interfaces should represent the
transfer of some physical quantity between biological entities and
should only expose variables whose meanings are clear and do not
require an understanding of the module’s internal organization or
function. If possible, each module should be tested individually,
which is called a “unit test” in software engineering.

Published in partnership with the Systems Biology Institute

C. Scholzel et al.

npj

Importance in SHM modeling task. Since the SHM features a
multitude of feedback loops, locating errors was very tedious with
the original monolithic model. Systematic debugging became
only possible when we isolated the different parts of the system,
such as the baroreceptors, and subjected them to controlled input
signals to observe the component output. It was also possible to
reuse several components within the SHM: the parasympathetic
and the sympathetic system share a base class that only leaves the
sign of the baroreceptor influence open for definition and the four
different release equations for norepinephrine and acetylcholine
are also governed by a common base class.

References. There is a consensus that multi-scale modeling
requires some form of modularity for hierarchical composi-
tion?*2>2843745 More specifically, Hellerstein et al.*° and Mulugeta
et al.3° both suggest that object-oriented programming might be
an especially promising way to implement modularity. Many
researchers advocate for clearly defined interfaces>?2***¢, but
there is also critique with regard to a loss of flexibility for reuse
and the requirement to consider all code-level elements of a
model as potential coupling points®~2°,

MoDROGH characteristics: human-readable

This characteristic covers two loosely connected aspects: The
fundamental readability of model files with a text editor and the
readability and understandability of definitions within the model.

Every modeling language has to be both human-readable so
that a human can write the code to define a model and machine-
readable so that a software tool can interpret that code to run
simulations. However, as Fig. 1 shows, there is a trade-off between
the two and languages can choose to support the one at the cost
of the other. On the one end of the spectrum, languages like
Antimony or Modelica, whose syntax is closer to natural language
and easier to read and write for humans using just a text editor,
require more effort for specialized parsers to build abstract syntax
trees, which can then be processed by compilers and other
software tools. The middle ground is formed by XML-based
languages like SBML and CellML. XML files already have a tree
structure and parsers for XML exist for virtually all modern

Qo Antimony y = (x + 1) / (x - 1)
oo
ES
Eg CellML text var y: dimensionless;
= y = (x + 1{dimensionless}) / (x - 1{dimensionless});
SBML <parameter constant="false" id="y"/>
<assignmentRule variable="y">
<math xmlns="http://www.w3.0rg/1998/Math/MathML">
<apply>
<divide/>
<apply><plus/><ci>x</ci><cn>1<cn></apply>
bo <apply><minus/><ci>x</ci><cn>1</cn></apply>
£3 </apply>
93 </math>
£9 </assignmentRule>

Fig. 1 Simple variable definition with assignment rule in three
modeling languages with different levels of focus on human-
versus machine-readability. Each of the three code snippets
contains the same information defining a variable y, which depends
on another preexisting variable x. Antimony mainly focuses on how
humans would write equations in text form, but requires a
specialized parser. CellML Text—an intermediary editing language
used by the tool OpenCOR®*—adds some syntax that is easy to
parse by a machine (due to using braces that do not conflict with
other symbols in the code), but is not an intuitive representation of
unit information for a human unfamiliar with the language. SBML
focuses more on machine-readability, since XML can be parsed by
the standard libraries of most modern programming languages,
ensuring minimal barriers for tool support. However, while the SBML
code is still readable and editable in a text editor, it takes some
effort and familiarity with the language to decipher the meaning
from the symbols.

npj Systems Biology and Applications (2021) 27

npj

C. Scholzel et al.

a) b)

DSargs = args() model LotkaVolterra "predator-prey model"

DSargs.name = "LotkaVolterra" Real x(start=10, fixed=true) "prey pop.";

DSargs.ics = { Real y(start=10, fixed=true) "pred. pop.";
'x': 10, # prey parameter Real alpha = 1.1 "prey birth";
'y': 10 # predator parameter Real beta = 0.4 "prey death";

} parameter Real delta = 0.1 "predator birth";
DSargs.pars = { parameter Real gamma = 0.4 "predator death";
‘alpha': 1.1, equation
'beta': 0.4, der(x) = alpha * x - beta * x * y;
'delta': 0.1, der(y) = delta * x * y - gamma * x;
'gamma': 0.4 annotation(Documentation(info="<html>
} This model implements the <a href=\"https://
DSargs.tdata = [0, 20] en.wikipedia.org/wiki/Lotka%E2%80%93

DSargs.varspecs = {

Volterra equations\">Lotka-Volterra

'x': 'alpha*x - beta*x*y', equations.
'y': 'delta*x*y - gamma*y' </html>"));
} end LotkaVolterra;

Fig. 2 Simple predator-prey model in a language without (PyDSTool) and with (Modelica) support for documentation strings. a While
regular Python comments (#) can be used to annotate PyDSTool models, they are ignored by the compiler and are only useful when reading
the code directly. b Modelica comments are part of the model syntax and can therefore be read by tools to, e.g., provide automated tooltips in

dialogs and graphs or to enrich model summaries in databases.

programming languages, which lowers the barrier to implement
support for an XML-based format in a software tool and, therefore,
increases interoperability between tools. While XML files can still
be viewed and edited in a text editor, this requires familiarity with
the language and tends to be cumbersome for larger edits.
Especially the Mathematical Markup Language (MathML) format
used both by SBML and CellML for storing equations can be hard
to write and decipher without tool assistance. SBML and CellML,
therefore, rely on software tools that use graphical interfaces or
intermediary languages to ease model editing. On the machine-
readable end of the spectrum, MATLAB Simulink uses a
proprietary binary format that is tailored specifically to the
MATLAB software toolchain. This can both reduce storage space
and implementation effort for parsers, but also means that it is
impossible to inspect model files without the corresponding
software.

For model exchange and interoperability between different
tools, XML-based formats have the clear advantage that support-
ing their import or export in a tool requires very little
programming effort. This is illustrated by the success of SBML
and FMI, which are both based on XML and are supported by
over 100 tools each (http://sbml.org/SBML_Software_Guide/
SBML_Software_Matrix, https://fmi-standard.org/tools). Increased
interoperability also facilitates model reusability, because it
becomes more likely, that a researcher who wants to reuse a
model can simply import it in their tool of choice without having
to translate it to another language first.

However, for model development and for publishing models to
other researchers, languages with a strong focus on human-
readability are preferable, because they allow tool-independent
access to a model and because they are more suitable for version
control. Due to their verbose syntax, XML-based languages are
typically not designed to be written by humans directly but by
software tools, which provide intermediary languages or graphical
interfaces to facilitate editing. The translation between these
different representations is performed automatically during export
and import, which is convenient, but if the feature sets of the
exporting and the importing tool do not overlap completely, there
is a risk that information is lost. For example, a SBML model
written with tool A may include layout information for a graphical
representation of the model, but when it is loaded in tool B, which
uses a purely equation-based representation, this layout informa-
tion may be discarded. If tool B does not show a warning message,
there is no way for the user to know that the model contained this
information unless they look at the SBML code itself. This problem
is less likely to occur, if the model is written in a language more

npj Systems Biology and Applications (2021) 27

focused toward human-readability, which is then also used
directly for editing. In this case, both tool A and tool B would
display the same code and while tool B does not display the
graphical representation, the user would notice the presence of
the layout annotations and could choose to view the model in a
tool that does support them. Additionally, the more a language
focuses on human-readability, the more easily it can be translated
to slides, websites, articles, and other formats, which makes it
easier to communicate the details of a model to other researchers.
It can also be archived more safely, as it will still be easily readable
decades into the future, even if the tools used to create it and to
view its contents will not be available anymore. Finally, version
control software can be immensely helpful for tracking errors, for
finding the exact versions of a model used to generate plots in an
article, and for understanding the rationale behind modeling
design choices. Standard solutions like Git operate under the
assumption, that the documents under version control are written
by humans and that element order, white space, and other details
all are results of deliberate choices and, therefore, carry meaning.
This is not the case for XML-based documents written by tools,
which can artificially inflate changesets between document
versions with management data or structural changes that carry
no meaning and therefore obscure the changes that are actually
relevant. While there are specialized solutions to distinguish
semantic from structural changes in XML documents®’, this is still
an active field of research and not yet broadly implemented in
version control software. Also, even with these solutions,
researchers might only be familiar with the tool that generated
the file and not the content of the file itself, which makes it harder
for them to localize and understand changes between model
versions.

It is possible to combine the benefits of XML-based exchange
formats and languages that focus more on human-readability, if
these exchange formats are used and published in addition to a
more human-readable representation of a model. This can be seen
as analogous to software packages in general purpose program-
ming languages. Open source software projects are usually both
published as some kind of easily installable artifact—a file that not
even has to be human-readable at all—and also as human-
readable code in an online repository, which can be used to
analyze and extend the software.

Moving from the question of the general file format to the
content of the file, it can be said that readable code is largely the
responsibility of its authors. However, a language may facilitate a
clean coding style by providing expressive language constructs
and documentation features or hinder it by introducing visual

Published in partnership with the Systems Biology Institute

http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
http://sbml.org/SBML_Software_Guide/SBML_Software_Matrix
https://fmi-standard.org/tools

clutter. One example for this is the verbose use of {dimension-
less} that is required after each constant in an equation in
CellML Text as seen in Fig. 1. Additionally, languages can also add
human-readable documentation strings to variables and compo-
nents or incorporate an HTML document for a more detailed
model description. In contrast to comments in traditional
programming languages, which are ignored by the compiler,
these documentation features can enrich model presentation
across various tools and representations including graphical
dialogs or HTML representations within a model database. An
example for this can be seen in Fig. 2.

Guidelines. Model files stored in a version-controlled repository
and published in model databases should be written in languages
that focus on human-readability. If possible, models should
additionally be published in a more easily machine-readable
exchange format like XML to lower the barrier for direct reuse. If
the language has support for structured documentation that is
semantically tied to individual components or variables, this form of
documentation should be preferred over unstructured comments.
Every parameter, variable, and model component should at least be
documented with a short human-readable label. Any non-obvious
design choices or complex equations should also be documented.

Importance in SHM modeling task. On several occasions during
our implementation, we accidentally introduced errors in one part
of the model while correcting an issue in a different part. To
recover from these errors, it was crucial that we could quickly skip
through the changes made since the last known working version.
This was facilitated by the fact that Modelica focuses on keeping
model files easily human-readable. With an XML-based format, we
would have had more difficulties to make sense of the differences
between versions.

|40 |43

References. Hellerstein et a and Zhu et a stress the
importance of keeping model files under version control. The
authors of Tellurium specifically state that human-readable
languages can facilitate reproducibility and exchangeability**.
Drager et al.*® found that existing tools struggle to make all the
information in the XML-based description of SBML models
accessible in a comprehensive form, which led them to develop
a tool called SBML2LaTeX, which generates human-readable
reports from SBML models.

MoDROGH characteristics: hybrid

A language is hybrid if it supports multiple modeling formalisms
and thus multi-class models. The most common form of hybrid

a)

discrete Real x_max;
initial equation
in_window = false;
X_max = X;
equation
when in_window and der(x) < 0 then
X _max = max(x, pre(x max));
10 end when;
11

© 0O N U AN WNR

Boolean in window = time < event+2;

C. Scholzel et al.

npj

models and languages cover both continuous ODE or differential
algebraic equations (DAEs) and discrete events, but other
combinations are possible. The distinction between ODE and
DAEs is important here since physical conservation laws, such as
conservation of mass or energy, are algebraic constraints, which
cannot always be formulated with pure ODE. Incorporating them
in a model can, however, have the benefit of making connections
between components acausal, which means that variables do not
have to be designated as input or output and instead the solver
can choose the appropriate resolution order. This avoids errors
and performance issues related to algebraic loops, simplifies
model descriptions, and allows reusing components in different
contexts. As with DAEs, support for discrete events also comes in
different forms. Many languages support the reinitialization of
continuous variables through discrete events. In this formalism the
only discrete part of the model is a set of equations that define
boolean values based on the state of the system. When these
values switch from false to true, events are generated, which can
introduce discontinuities in an otherwise continuous system. For a
fully hybrid model that involves more complex discrete parts it is
preferable that the language also supports the explicit declaration
of discrete variables. The value of these variables remains constant
between events, but they may be defined with complex equation
systems, which are solved during each event instance. As a result,
they can make models that require complex event triggers more
understandable as can be seen in Fig. 3.

It is important to note that we do not argue that a modeling
language should support as many formalisms as possible, but
rather a combination of formalisms that go well together. If other
formalisms are required, the language should rather aim to allow
the coupling of models across languages with standardized
interfaces such as the FMI*"*2. Additionally, there is a trade-off
between fully supporting a modeling formalism, such as ODE or
DAEs and being able to assign a domain-specific meaning to
language constructs. For example, SBML, PySB, and Antimony all
use biological terms tied to the biochemical level to describe the
parts of a model. This makes the language easier to understand
and use for domain experts, but may prove challenging when
building a multi-scale model that has to extend beyond the
biochemical level.

Guidelines. A model should clearly indicate which variables
are discrete and which are continuous. Event triggers, which
define the transition between discrete and continuous parts of
the model, should be examined and tested with extra care. If the
language allows them, acausal connections should be preferred
over causal input-output relationships, since acausality
facilitates reuse.

b)

in window = 0;

in_window' = 0;

at (time < event+2): in window = 1;
at (time >= event+2): in window = 0;

X_max = X;

Xx_max' = 0;

at ((in window > 0) && (x' < 0)):
X_max = max(x, X_max);

Fig. 3 Definition of a discrete variable x_max in a language with (Modelica) and without (Antimony) support for declaring discrete
variables. The variable x_max captures the peak value of the continuous variable x obtained within two seconds after an event event. a The
Modelica model defines a discrete boolean variable in_window, to simplify the when condition later in the code. The information that this
variable is discrete already lies in the type definition as Boolean. For real variables like x_max, there exists a keyword discrete, which
determines that the variable value may only change within a when equation. b The same model structure and semantics can also be achieved
in Antimony, but the discrete variables in window and x_max each need an explicit rate rule to ensure that their value only changes when
an event occurs (lines 3 and 8). Additionally, two events are needed to emulate the boolean variable in_window: One to update the value
when the condition becomes true (line 4) and one to do so when it becomes false (line 5).

Published in partnership with the Systems Biology Institute

npj Systems Biology and Applications (2021) 27

npj

C. Scholzel et al.

Importance in SHM modeling task. At first, it was not clear for us
whether the contractility of the heart in the SHM was a continuous
or discrete variable. This confusion led to a severe error in an early
version of the model. Our current implementation defines the
variable with the keywords discrete Real to clearly indicate
this distinction. Discrete variables were also required to disen-
tangle the semantics of the cardiac conduction system, which is
introduced in detail in the “Results” section.

References. In their 2017 review, Bardini et al.? argue that multi-
scale models in systems biology, in general, should strive toward a
hybrid approach. The same has also previously been stated by
other researchers**~>". In particular, the authors of PyDSTool argue
that hybrid models based on DAEs are well-suited to represent
multi-scale models®.

MoDROGH characteristics: open

As a prerequisite for reproducibility and collaboration, models and
simulation tools need to be accessible for everybody. In particular,
the hurdle to run a quick simulation of a model to determine its
usefulness for a specific task should be as low as possible. An
openly accessible model definition also means that readers can
offer feedback and corrections to improve the model. Preferably
the language itself, the compiler and associated tools should all
have an open-source license. Additionally, collaboration is also
facilitated if the language can be used on different platforms.

Guidelines. Readers of a paper should be able to download
the model code and to simulate it with open-source tools. The
download should also include explicit licensing information. The
model repository should include everything necessary to repro-
duce plots and other results of the corresponding paper. It should
also be under version control and include a human-readable
changelog. Other researchers should be able to point out errors
and suggest corrections.

Importance in SHM modeling task. Without the reference code of
Seidel, our re-implementation of the SHM would not have
achieved a perfect agreement with the original. To weed out
our last errors, which only showed quantitative and not
qualitative differences in the plots, we needed to simulate both
models with identical solver settings and manually compare the
output data. Additionally, some small errors in the published
formulas became only apparent when we compared them with
their C implementation.

References. Many large projects and databases such as the
Physiome Model Repository of the IUPS Physiome project®?, the
NSR Physiome project®®, the BioModels database®’, the virtual
liver network>*, Plants in silico*® and SEEK?* already provide open-
source implementations of models. Mulugeta et al3° also
specifically advocate for more version control and changelogs
(in the form of e-notebooks).

MoDROGH characteristics: declarative

The mathematical formalism for biological models can already be
complicated in itself. A modeling language should not require the
adaptation of the model to the execution logic of the language,
obscuring the original definition. Instead, the language should
adapt to the model if it is presented in a clean mathematical
formulation. This way the code can focus on expressing meaning
rather than structure, which facilitates understanding. This also
includes the possibility to formulate ODE and DAEs not only in
explicit form, i.e., with a single variable on the left-hand side of the
equation, but also in implicit form, i.e., with arbitrary mathematical
terms on the left and right-hand side. For example, specifying u =
r * i should be equivalent to the equation u / r = i and the

npj Systems Biology and Applications (2021) 27

solver should decide for which variable this equation needs to be
solved.

As a consequence of such a declarative style, errors reported by
the compiler can also focus on meaning rather than just grammar,
increasing the soundness of the model. One important example of
this is that declarative languages usually allow the declaration and
automatic checking of proper units for variables and parameters.
Missing or wrong unit conversions are a common source of error
in modeling that can be all but eliminated this way. Unit
definitions also add semantic information and therefore make
the model more understandable. Additionally, if the model is
described in a declarative style, it is possible for automated tools
to identify and extract meaningful parts of the model. This
facilitates tool support—e.g., in the form of numerical solvers,
optimization, and verification toolchains—and also allows con-
necting model parts to standardized ontological terms. For the
latter it is preferable if the support for ontologies is already
included in the language itself.

Guidelines. Models should follow strict mathematical rules to fit
nicely into the chosen formalism. If the language allows it
equations should be written exactly as one would write them in
a scientific paper to convey their meaning, choosing freely between
explicit and implicit form. If a model needs workarounds in the form
of code that has to be added to make the model compile but that
does not add new information about the modeled system, it may
be worthwhile to revisit design choices and check the mathematical
soundness of the model. In our own experience we found that most
workarounds could be removed and the resulting model behaved
more soundly and was easier to understand. Models should also
specify units for all variables, preferably using the International
System of Units (Sl). If possible, automated unit consistency checks
should be performed before publishing a model. Additionally, if the
language supports semantic annotation with ontological terms, this
feature should be used for all variables and components.

Importance in SHM modeling task. The original SHM was
implemented in C, which is an imperative language. Most of the
reference code that we consulted for our re-implementation was
responsible for management tasks, such as storing a history of
variables that enter equations with a delay, debugging output, or
a manual implementation of an integration loop with the Runge-
Kutta method. Although most equations were defined as separate
functions, we sometimes had difficulties untangling the semantics
of the model from the main integration loop.

One area of the model that was highlighted by the Modelica
compiler as not mathematically sound was the systemic arterial
blood pressure, which is given by an algebraic equation during
systole and by an entirely separate differential equation in diastole.
This issue only became apparent, because we had to translate the
imperative C code, which simply used an if-expression to switch
between the two states, into a declarative form, which required a
consistent equation structure. This consistent structure could be
established by manually differentiating the systolic equation and
then only switching between two different expressions for the
derivative.

References. Few researchers in systems biology explicitly distin-
guish between imperative and declarative languages. Zhu et al.>®
state that declarative languages are desirable, because it allows
the description of the biological processes “in a natural way”.
Several language authors also state that their respective modeling
language is declarative?®**°%>7, but they do not explain why this
is important. Of these, only the authors of JSim>” and Myokit*®
state that declarative languages allow concentrating on what is
modeled and not how the equations are solved, make models
more understandable, and facilitate their analysis both by
researchers and software tools.

Published in partnership with the Systems Biology Institute

MoDROGH characteristics: graphical

Discussing or even just understanding a model is difficult if the
model is only described in the form of code or mathematical
equations. This is especially true when the input of domain
experts is required, who are not computer scientists or
mathematicians. For this purpose most papers in biology use
some kind of diagram to transport the general structure of the
model in a graphical way. Here, there is a trade-off between two
different visualization types:

1. Automatically generated abstract graphs of variable depen-
dencies are an exact representation of the model and are
well-supported by tools, which reduces the effort required
to build these representations. However, automatic graph
layout is a nontrivial problem: Different algorithms or
parameter settings can lead to large differences in the
layout®®, Most algorithms also do not scale well to large
graphs and additional techniques are required to group
nodes according to semantic similarity>°. Additionally, to the
lack of grouping capabilities, automatic graph visualizations
also solely rely on the variable names to convey the role of a
variable—e.g., whether it is the product, reactant or catalyst
of a reaction—or the kind of variable interactions—e.g., if
the correlation is positive or negative. Consequently, this
approach is mainly suited to represent the mathematical
dependencies of variables, but not to give an intuitive
overview of the model structure or to analyze the biological
relations between modeled concepts.

2. Manual drawings of the biological interactions with
respective images and symbols capture the essence of the
information required to understand the model and can
quickly be processed by the reader. This also has the
additional benefit that the model can be discussed with
domain experts that are familiar with the biological
concepts, but not with mathematical modeling. However,
they are less accurate, not standardized, and require a lot of
manual effort. This can also mean that when a model is
extended or otherwise updated, changes may not be
immediately reflected in the drawing, since it may only be
updated at a later stage or not at all.

There are multiple hybrid approaches that try to address the
shortcomings of pure type 1 or type 2 visualization. The Systems

a)

<informalfigure float="0" id="frd">
<mediaobject>
<imageobject>
<objectinfo>
<title>
model diagram
</title>
</objectinfo>
<imagedata
fileref="model.png"/>
</imageobject>
</mediaobject>
<caption>
Diagram of the XYZ model.
</caption>
</informalfigure>

C. Scholzel et al.

npj

Biology Graphical Notation (SBGN)®® allows the illustration of
models with standardized abstract structural diagrams, which
serve a similar function as circuit diagrams in electrical engineer-
ing. SBGN diagrams do not display variables, but represent the
actual physical entities and processes with unambiguous,
standardized glyphs. While there exist tools that can generate
SBGN diagrams automatically, like CySBGN®', some manual
arrangement is required to produce satisfactory results. The
standardization of SBGN also comes at the expense of the
biological intuitiveness of the resulting diagram. Instead of
immediately recognizable biological icons, researchers have to
learn and interpret a series of abstract glyphs. For metabolism
pathways this is no issue, since species that are part of a reaction
are typically identified by their name and not by any two- or three-
dimensional structure that could be used as an icon. However, e.g.,
for action potential models it would be preferable to represent ion
channels and pumps by schematic drawings and to have a visual
separation between the inside and outside of a cell. Such a
graphical representation is especially helpful if it is standardized
across different models. For example, the Physiome Model
Repository®® uses the same icons for ion channels and pumps
across all curated action potential models, which are drawn by the
now discontinued tool OpenCell (http://physiomeproject.org/
software/opencell/about). A similar standardized icon language
could also be beneficial for models at the tissue or organ level.

Like type 1 and type 2 visualizations, SBGN graphs are
independent of the capabilities of the language with which the
model was written. They are generated by tools that do not need
to have any connection with the modeling language itself.
Modeling languages can support them by referencing image files
or XML files containing SBGN as part of the model documentation,
but they have to be maintained separately. An example of this can
be seen on the left side in Fig. 4.

This is addressed by another hybrid approach that goes a step
further toward the analogy with circuit diagrams and integrates
layout and rendering information directly into the model
structure. It is mainly prevalent in languages with an industrial
background, such as Modelica and MATLAB, but is also
implemented in the SBML level 3 layout and rendering
packages®?®3, In this approach, model components are assigned
graphical annotations, which define how the component should
look and where it should be placed in the diagram representation

b)
model MyModel
//(2) component location in diagram
MyComponent comp annotation(
Placement (transformation(
extent = {{0, 0}, {20, 20}}
))
)
equation
//(3) line connecting two components
connect(comp.c, other.c) annotation(
Line(points={{10, 0}, {10, 100}})
)

//(1) component icon as vector graphic

annotation(Icon(graphics={
Rectangle(extent={{0,0},{100,10}})

1)

end MyModel;

Fig.4 Two different ways in which modeling languages can support graphical representations of models as part of their syntax. a CellML
allows to include diagrams or plots as figures in the model documentation. The image files remain separate from the model code and have no
semantic connection to it except for the figure caption. b Modelica allows to add graphical annotations using a vector graphics syntax. Models
and their components can have icons graphics (// (1)), which can be placed in a diagram coordinate system (// (2)) and connected with
lines (// (3)). This graphical representation is tied to the structure of the model. If, e.g., a component is removed from a model, the placement
annotation (// (2)) must also be removed, which automatically updates the diagram and ensures that it still accurately reflects the new

model structure.

Published in partnership with the Systems Biology Institute

npj Systems Biology and Applications (2021) 27

http://physiomeproject.org/software/opencell/about
http://physiomeproject.org/software/opencell/about

C. Scholzel et al.

of the model. In a modular language, this information can be used
to build tools that allow to construct models by dragging and
dropping component icons and connecting them with lines, much
like a circuit diagram. An example of this can be seen on the right
side in Fig. 4. The resulting diagrams are both an accurate
reflection of the connections between model components,
because they are intrinsically tied to the functional model code,
and can be understood quickly, since they are arranged manually
and use biological imagery. If the model changes and, eg., a
component is removed, the graphical annotation also has to be
removed, because the compiler would otherwise produce an error
message. This ensures that graphical representations stay up to
date when a model is changed. Creating symbols and images for
components requires effort, but this has to be done only once for
each component and the arrangement and connection may even
be easier than writing the equations that connect the components
in code.

As becomes apparent, this last approach should be favored for
multi-scale models, although it has to be noted that it is also
possible to combine multiple approaches in the same language.

Guidelines. All interactions between the individual modules in a
model should have a graphical representation in the correspond-
ing diagram. Each diagram should only have a few components. If
it becomes too crowded, some components should be grouped
together to form a hierarchical structure. Each individual
component in the diagram should be represented with an
intuitive symbol that either corresponds to the appearance or
function of its biological equivalent. Components should be
visually grouped according to their function and interaction to
facilitate understanding.

Importance in SHM modeling task. The original SHM features a
graphical representation in the form of 23 text boxes that are
connected by arrows. While this does give an overview of the
physiological effects present in the model, one of our first steps to
better understand the model was to augment this diagram by
grouping the effects by the organs to which they belong and
adding respective icons. Our Modelica implementation now
features a fully visual diagram with 15 components that is
guaranteed to be faithful, since it is tied to the equations in the
code. It helped us on several occasions to discuss the model with
domain experts, such as physicians and chemists.

References. The Physiolibrary is a Modelica library for physiolo-
gical models that has graphical representations for each
component®®, ProMoT is a modeling tool that allows the
composition of modular models in a graphical way*. Alves
et al.** compare 12 different simulator tools, giving higher ratings
to those that have graphical representations for model compo-
nents. Mangourova et al.®® state that it is preferable when a
modeling tool for integrative physiology provides a graphical way
of composing models since this can reduce development time.

Existing languages exhibit MOoDROGH characteristics to
varying extent

As mentioned in the introduction, there are multiple suitable
languages available that implement the MoDROGH characteristics
to some extent. In this section, the most prominent examples will
be discussed with respect to each characteristic (highlighted in
italics). We consider a “modeling language” to be any language
used for describing and distributing mathematical models. This
includes exchange formats such as CellML and SBML, languages
that are embedded in a general-purpose programming language
like Python or Julia, and standalone languages like Modelica. We
selected languages that are currently popular either in systems
biology or in mathematical modeling in general with a tendency

npj Systems Biology and Applications (2021) 27

toward general-purpose modeling languages that are not
restricted to a specific organizational level or model type. As an
additional criterion, languages had to exhibit at least some
MoDROGH characteristics. We have to emphasize that the list is
not comprehensive, but we tried to cover examples for all major
trends in modeling languages.

MoDROGH languages: MATLAB

MATLAB is perhaps the most widely known language used for
solving ODE (https://www.mathworks.com/products/matlab.html).
The MoDROGH criteria can be best fulfilled when using the
Simulink environment (https://www.mathworks.com/products/
simulink.html) with the embedded language Simscape (https://
www.mathworks.com/products/simscape.html). The SimBiology
environment can be used as an alternative, which is comparable
to SBML in its expressiveness regarding rules and reactions and
can also export models to SBML (https://de.mathworks.com/
products/simbiology.html). It is, however, tailored toward phar-
macological models and not as feature-rich as Simulink and
Simscape, which is why we restrict our analysis on the latter
combination. Simscape realizes modularity through full object-
orientation with class definitions, instantiation, and inheritance,
although Simscape classes can only have one parent class, in
contrast to MATLAB classes, which allow multiple inheritance.
Through Simulink, models can be imported from different
languages using the FMI, but export of Simscape models with
this interface is currently not supported. The language is also
declarative allowing to freely mix between implicit and explicit
formulation of DAEs, which are written in a concise syntax that
focuses on human-readability. It supports documentation strings
for components and human-readable labels for variables. Unfor-
tunately, the readability of Simscape is hampered by the fact that
Simscape has to be used in conjunction with Simulink, which
saves models in a proprietary binary format, which is not readable
in a text editor and not even openly documented. This issue is
further aggravated by the fact that backward compatibility to
older versions of the model format is not guaranteed®. Units are
supported and a mandatory consistency check is performed at the
interfaces between components. There is no built-in support for
ontologies, but since Simscape supports object-orientation, “is-a”
relationships, which designate a component as an instance of a
concept, might be expressed by building a large type hierarchy of
ontological terms. This would require all models to use this type
hierarchy and, therefore, reduce flexibility in designing generic
base classes, since Simscape only allows single inheritance.
Simscape classes can be used as graphical components within
Simulink to create larger systems by arranging and connecting
them via drag and drop. Hybrid systems are supported with index-
reduction for DAEs and discrete events and variables. Unfortu-
nately MATLAB, Simulink, and Simscape are proprietary tools that
are not open in any way, requiring license fees and prohibiting
custom extensions.

MoDROGH languages: SBML

In systems biology, the SBML is a widely-used open language for
describing biological models—mostly at the level of biochemical
pathways®®. SBML level 3 includes an optional language module
for hierarchical composition, which allows building modular
models via the import of components during which individual
variables can also be overwritten or deleted. Because it uses a
subset of MathML to describe equations, SBML is declarative, and
hybrid and in theory allows the definition of arbitrary DAEs in
explicit and implicit form. SBML is based on XML, which makes it
highly machine-readable and in turn facilitates interoperability
between tools, because support for model import or export can be
implemented easily. Unit definition is possible but optional and
tools are not required to interpret them. However, libSBML, the

Published in partnership with the Systems Biology Institute

https://www.mathworks.com/products/matlab.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simulink.html
https://www.mathworks.com/products/simscape.html
https://www.mathworks.com/products/simscape.html
https://de.mathworks.com/products/simbiology.html
https://de.mathworks.com/products/simbiology.html

most popular library for working with SBML models, can perform
automatic unit consistency checks®”. Support for discrete events is
limited to reinitialization of continuous variables. The reliance on
MathML and XML is also a drawback, because it limits the human-
readability of model files and presents challenges for version
control software that is not equipped to distinguish structural
from semantical changes. Individual components can be anno-
tated with textual notes, Systems Biology Ontology (SBO) terms, or
Minimal Information Required In the Annotation of Models
(MIRIAM) metadata. Using the SBML level 3 packages for layout
and rendering, graphical annotations can be assigned to model
components. The high interoperability between SBML tools
resulting from its focus on machine-readability is a major
advantage, because researchers can use a tool that is designed
to fit their specific use case and can reuse models across tools.
Due to the wide acceptance of SBML, it can be expected that most
researchers will have at least one such tool available so that the
visual clutter of the XML files is no issue for model reuse. However,
most of these tools do not support all optional SBML packages
with the consequence that in practice support for modularity,
graphical annotations, and DAEs in implicit or explicit form may be
limited to specific tools.

MoDROGH languages: CellML

CellML is similar to SBML, but focuses on building more general
component-based models®, It is also open, declarative and hybrid
with the same considerations for being based on XML and
MathML. In contrast to SBML, it does not only support units, but
enforces that every variable in a valid CellML model must have a
unit definition. Modelers can still choose the special value
dimensionless to designate that a variable does not have a
unit, but they have to make this choice consciously and explicitly.
The language itself does not require tools to check the consistency
of these units, but OpenCOR, one of the main tools for creating
and simulating CellML models, does perform automated consis-
tency checks when a model is loaded or saved®. OpenCOR can
also somewhat alleviate the downside in human-readability,
because it defines a so called “CellML Text” language, which can
be used to view and manipulate the model in a more human-
readable text format®. However, “CellML Text” has limited
expressiveness only allowing the definition of explicit and not
implicit equations and it is only used for viewing and editing and
not for model storage. It also does not contain annotations, which
can be defined in CellML through embedded metadata files in
Resource Description Framework (RDF) format, which can also
contain ontological annotations. Since version 1.1, modular CellML
models can be hierarchically composed of sub-models®*”°. To
support the graphical representation of models, CellML provides
constructs for referencing externally-stored graphical files and
formatting figure captions. This feature allows modelers to link
models with an associated image and is used by the curators of
the Physiome Model Repository—the primary clearinghouse for
CellML models—to display relevant figures on a model's webpage.
However, as there is no semantic link between figure elements
and model code, it is the responsibility of the modeler to keep the
figure up to date when the model is changed.

MoDROGH languages: Python

Python is an open-source programming language that is popular
in data science (http://www.python.org). The language itself is
imperative, but it can be extended with some declarative features
for special purposes. In systems biology, notable efforts include
PySB** and the PySCeS®'. These packages define their own
declarative domain-specific languages (DSLs) within Python to
tackle specific biological use cases. PySB focuses on rule-based
reaction models while PySCeS focuses on ODE, structural analysis,
and metabolic control analysis. There also exist general-purpose

Published in partnership with the Systems Biology Institute

C. Scholzel et al.

packages, such as SimuPy’' and PyDSTool*?, that allow users to
create and analyze models built with ODE, DAEs, and discrete
events.

All aforementioned python-based solutions are open and
declarative and Python itself focuses on human-readability.
However, the modeling packages mainly rely on the modeler to
use the features of Python to implement modularity concepts and
to document their models by themselves. Also, none of them
support any graphical representation of models. Notably, SimuPy
and PyDSTool lack slightly in human-readability and declarative-
ness because they require a very specific and low-level technical
format for defining equations. Exceptions in terms of modularity
are SimuPy's block diagrams and PySB’s macros. The fact that the
environment is not declarative in itself leads to the drawback that
only PySB supports ontological annotations and only PySCeS
supports the definition (but not consistency checks) of units.
Regarding the hybrid characteristic, the differences are most
pronounced since PySB is not hybrid at all, featuring only specific
biochemical rules without events, while PySCeS and SimuPy allow
discrete events as well as ODE and only PyDSTool is able to also
handle DAEs. None of these packages support the explicit
declaration of discrete variables.

MoDROGH languages: Antimony

Antimony?® is a declarative modeling language with an emphasis
on human-readability used by the open Python-based environ-
ment Tellurium3*, which can be used for model building,
simulation, and analysis. Since Tellurium version 2, Antimony
also supports the structural annotation of models with terms from
the SBO or general MIRIAM metadata. Antimony is modular by
design, allowing the definition of components that can be
imported in other models. As in SBML, individual variables and
equations can be overwritten or deleted during import. It is hybrid
in the sense that it allows discrete events, but it only supports
explicit ODE and not DAEs and it lacks support for declaring
discrete variables. Like SBML, Antimony focuses on models on the
level of biochemical pathways by providing a special syntax for
reactions. It has no support for embedding any form of graphical
model representations.

MoDROGH languages: Modelica

Modelica is an open-source declarative modeling language
primarily used in engineering®. It is very similar to MATLAB's
Simulink environment and the Simscape language. In fact,
Simulink was developed before Modelica and Modelica before
Simscape, which suggests some influence between the languages
in both directions. Modelica supports modularity via object
orientation including the overwriting of variables and explicit
equations, and, in contrast to Simscape, multiple inheritance. Most
Modelica tools support the FMI, allowing the reuse of models
across different languages. Like Simscape, it also allows grouping
of interface variables to connectors, which can be used to connect
models graphically via drag and drop. It is human-readable and
declarative allowing to define a model with a mix of explicit and
implicit DAEs. Models can be annotated with documentation
strings for individual components, a full HTML documentation for
classes and machine-readable annotations, which do not support
ontologies by default but have a flexible extension mechanism
with so-called vendor-specific annotations. As in Simscape, “is-a”
relationships between model components and ontological terms
can also be implemented via a type hierarchy. While this
introduces design restrictions in Simscape, Modelica supports
multiple inheritance and therefore allows maintaining ontological
type hierarchies in addition to generic base classes. Units are
supported and optional consistency checks can be performed.
Modelica is also fully hybrid with support for discrete events and
variables as well as arbitrary DAEs. With additional, open-source

npj Systems Biology and Applications (2021) 27

http://www.python.org

npj

C. Scholzel et al.

10

Table 1. Evaluation of language candidates with respect to the desirable MoDROGH characteristics established in this paper.
MATLAB? SBML CellIML pySB PySCeS SimuPy PyDSTool Antimony Modelica Julia®

Modular v V) v) X) X v v)
Declarative v/ v/ v V) V) V) V) v/ v V)
Readable X V) V)) W) V) V) V) 4)
Open X v v v v v v v V) v
Graphical v v V) X X X X X v X
Hybrid v v) v) X W) v) 4 V) v 4

2Using the Simulink environment and the Simscape language.
PUsing macro packages that extend the language.

A check mark in parentheses means the language has the respective characteristic in principle, but not to its full extent or with noticeable drawbacks. A more
detailed version of this table with regard to individual language features can be found in Supplementary Table 1.

libraries, it is also capable to express models, e.g., as bond graphs,
Petri nets and finite state machines. The Modelica ecosystem is a
mix of open academic tools and commercial tools for use in
industry while most libraries are open-source. There are two
actively maintained open-source Modelica compilers called
JModelica and OpenModelica, the latter including a fully-fledged
integrated development environment (IDE)”%>”3, However, Dymola,
the most widely-used Modelica IDE, is proprietary and not fully
compatible with open-source alternatives (https://www.3ds.com/
products-services/catia/products/dymola/). Therefore, Dymola
models may need to be adjusted slightly to run with open-
source compilers or vice versa.

MoDROGH languages: Julia

Julia is an open programming language that is mainly used for
data science®. It is imperative by nature, but the language can be
extended with macros, which are more powerful than the
respective capabilities of Python, to allow declarative modeling.
Elmqvist et al. use this feature for Modia, an implementation of the
Modelica syntax within Julia’®. Modia is currently still experi-
mental. It is modular, hybrid, and focuses on human-readability, but
lacks, for example, the graphical features of Modelica.

In general, Julia offers strong support for differential equations
with packages such as DifferentialEquationsjl which supports
hybrid systems including DAEs, partial differential equations (PDEs)
and discrete events, but not the declaration of discrete variables””.
The syntax of this package focuses on human-readability and is
declarative, but only allows either a fully-implicit or semi-explicit
formulation of the whole system of DAEs with a mass matrix. Like
Python-based solutions, annotation and modularization in this
package is up to the modeler using the features of the language
Julia which supports a multiple dispatch mechanism, which can be
used to accomplish the same functionality as object orientation
except for encapsulation. However, units with automated
consistency checks can be supported though the Unitful,jl
package””. Like Modia, DifferentialEquations.jl offers no graphical
representation of models.

MoDROGH languages: comparison of existing candidates

A summary of the available languages and their features can be
found in Table 1. Notably, Simscape and Modelica stand out by
supporting full object-oriented design of models, explicit declara-
tion of discrete variables, an integrated graphical representation,
which allows biological drawings and manual arrangement,
acausal connections between components, cross-language import
of models via the FMI, grouping of interface variables as
connectors, and unrestricted mixing of implicit and explicit
equation formats. The feature-richness of these languages is not
surprising, since both are established industry standards, which
are used in multiple disciplines to build large and complex models.

npj Systems Biology and Applications (2021) 27

Between the two candidates, Modelica additionally provides a
mostly open environment, multiple inheritance, overwriting of
variables and some equations during instantiation and inheri-
tance, export to other languages via the FMI, and machine-
readable annotations, which can, in theory, be used to implement
support for ontologies. On the downside, this ontology support
must be implemented manually and is not included in major tools
and while open source tools do exist, they only make up a part of
the Modelica ecosystem and are not necessarily fully compatible
with proprietary solutions.

Although it is certainly not the only option and it is as of now
foreign to the systems biology ecosystem, we think that Modelica
is a suitable choice to demonstrate the benefits of the MoDROGH
characteristics since it implements them to the fullest extent
among our selection of languages.

Modularizing a model of the human cardiac conduction
system facilitates reuse

The Seidel-Herzel model (SHM) describes the autonomic control of
the heart rate in humans at a high level of abstraction'®. It was
developed and implemented by Henrik Seidel in 1997 using the
programming language C. We chose this model because
preliminary versions, which have been published as individual
peer-reviewed articles''’%, have gained substantial research
interest and are able to simulate several relevant disease
conditions such as first and second degree atrioventricular
block'®, carotid sinus hypersensitivity'', congestive heart failure”’,
and primary autonomic failure’” as well as treatment options such
as the administration of atropine or metoprolol’’. It is also
especially interesting with regard to its dynamical properties such
as the emergence of Mayer waves'®, bifurcations'', and cardior-
espiratory synchronization’®. In a previous paper, we translated
the SHM to Modelica'?, and we recently also published our full
model code as an open-source reference implementation’®. The
model is therefore freely available, able to produce physiologically
relevant results, large enough to benefit from engineering
methodology, and yet small enough to allow an in-depth analysis
at the source code level. It is not representative of lower-level
metabolism and cell signaling models, which are currently the
most common type of models encountered in systems biology,
but it is well suited to showcase what is needed for future multi-
scale models, which inevitably have to leave these well-explored
levels behind to generate new insights. In fact, the model can
already be considered to span multiple scales of time since it
includes effects at the sub-second level as well as on the level of
multiple minutes®°.

To be more specific, the SHM can be classified as a hybrid
(discrete and continuous), deterministic, quantitative, macro-level
model. All effects in the model are described on the organ level,
including the time course of systemic arterial blood pressure

Published in partnership with the Systems Biology Institute

https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/

generated by the pumping of the heart; the Windkessel effect of the
expanding arteries dampening the initial rise in blood pressure;
the arterial baroreceptors generating a neural signal depending on
the absolute value and the increase in blood pressure; the
autonomic nervous system emitting norepinephrine and acetylcho-
line as hormone and neurotransmitter based on signals from the
baroreceptor and the lungs; and the cardiac conduction system with
the sinoatrial node (SA node) as main pacemaker and the
atrioventricular node (AV node) as a fallback system.

In the following, only the conduction system is examined. It takes
an input signal from the SA node (based on norepinephrine and
acetylcholine concentrations) and includes the refractory behavior of
the SA node limiting the maximum signal frequency, the delay
between a signal from the SA node and the actual ventricular
contraction, and the AV node generating a signal if no signal has
been received for a given period of time. There is a little confusion
about the refractory behavior, because the wording in Seidel’s thesis
suggests that he wanted to model the refractory period of the
ventricles, but in the code, the refractory state is checked before the
delay between SA node and ventricles is applied. In the original
model, these effects were tightly coupled within a single piece of
code comprising five parameters, and 13 variables and equations—
not counting additional parameters and variables for initial
conditions. We found that this complexity makes it hard to
understand and modify the model, which is why we translated it
into a modular structure using Modelica. We will explain Modelica-
specific language constructs as they appear in the code examples,
but for a more complete introduction to Modelica in a biological
context the reader is referred to the Lotka-Volterra examples in ref. &'
as well as our own implementation of the Hodgkin-Huxley model®2.

The modular version separates the code into the three
components RefractoryGate, Pacemaker and AVConduc-—
tionDelay. These components are connected via a unifying
interface using a base class UnidirectionalConduction-
Component, which takes a Boolean signal as an input and
produces a Boolean output. These inputs and outputs are only
true for the exact point in time when a signal is issued (i.e., they
behave as a sum of Kronecker deltas). In Modelica, this behavior
can be indicated by defining a type alias InstantSignal.

type InstantSignal = Boolean(quantity="sum of Kronecker deltas");
connector InstantInput = input InstantSignal annotation(...);
connector InstantOutput = output InstantSignal annotation(...);

The new type is functionally identical to the base type
Boolean, but by overwriting the built-in variable quantity it
includes additional information that is both human-readable and
can be interpreted by graphical tools to enhance understand-
ability. The next two lines achieve two separate goals: first, the
keyword connector designates InstantInput and Instan-
tOutput as part of the interface of a class to the outside world.
Second, specifying the input and output causalities ensures
that input signals can only be connected to output signals and
vice versa. This distinction can also be reflected in the graphical
representation, which is defined in annotation () statements,
which are shown here without their content for the sake of
brevity. The base model UnidirectionalConductionCom-
ponent, which has one input and one output, then becomes

partial model UnidirectionalConductionComponent
InstantInput inp "input connector" annotation(Placement(...));
InstantOutput outp "output connector" annotation(Placement(...));
annotation(Icon(...));

end UnidirectionalConductionComponent;

Note that the model is declared as partial which indicates
that it is only a template that cannot be used on its own but must

Published in partnership with the Systems Biology Institute

C. Scholzel et al.

be extended by defining other models that include the following
declaration.

extends Unidirectional ConductionComponent;

This statement imports all variables and equations of the base
class into the current model, which ensures that all components
will have an input and output connector named inp and outp
without the need to define these variables multiple times. Models
can also inherit graphical annotations from base classes, which
can define a common look and connector placement for the
graphical representation.

The three main components RefractoryGate, Pacemaker,
and AVConductionDelay all extend UnidirectionalCon-
ductionComponent. For the sake of brevity, we will only show
the code for the RefractoryGate here while the code for the
other two components can be found in the methods section. The
RefractoryGate represents the refractory behavior of the SA
node which cannot be excited for a certain time period after it has
fired a signal. For our model this means that the output equals the
input except that after each signal there is a time period
d refrac in which incoming signals are ignored. This results
in the following definition:

model RefractoryGate "lets signal pass if refractory period has passed"
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Gate;
import SI = Modelica.SIunits;

parameter SL.Time t_first = 0 "time of first signal";

parameter SI.Duration d_refrac = 1 "duration of refractory period";

Boolean refrac_passed = time - pre(t_last) > d_refrac "not refractory?";
protected

discrete SI.Time t_last(start=t_first, fixed=true) "time of last output";
equation

outp = inp and refrac_passed,;
when outp then
t_last = time;
end when;
end RefractoryGate;

This model showcases several language features: It designates
parameters with the parameter keyword, indicating that their
value will not change during the simulation. It uses the
Modelica.SIunits package, which contains types with unit
definitions according to the SI. It documents each variable with a
short informative explanation. It defines the helper variable
t last in a protected environment, which indicates that this
variable is only relevant inside this component and should be
hidden from other components. It contains an event using
the when keyword, which can be used to assign values to discrete
variables and to reinitialize continuous variables. It uses the
pre () function to distinguish between the value of t last
before and after the event, which is required, because equations
do not assume any causality. It explicitly marks t last as
discrete, which ensures that it must be defined within a when
equation and indicates to the reader that it remains constant
between events. It also employs multiple inheritance by including
two extends statements: one for the base class containing the
interface connectors, and one for an icon class containing the
graphical annotation code. The latter is not strictly required, but it
is convenient for readability, because it allows keeping verbose
icon annotations in a separate file.

The other two components follow a similar design structure. The
Pacemaker represents the capability of the AV node to generate
spontaneous action potentials in the absence of a signal from the
SA node. This means it lets incoming signals pass through but also
issues a signal on its own when the output has been silent for the
duration of its period period. To ensure that signals during the
refractory period do not prematurely reset the pacemaker, it needs

npj Systems Biology and Applications (2021) 27

npj

C. Scholzel et al.

12

AVN @

Fig. 5 Diagram of the modular conduction model with symbols for the components. Components from left to right: Pacemaker for the
pacemaker effect of the AV node, RefractoryGate for the refractory behavior of the SA node and AvConductionDelay for the
combined delay between the SA node and the ventricles. The C in a black box indicates that the main variable of the component is held
constant while the stopwatch symbol for the delay should indicate that the duration is time-dependent. Components have their input on the
left, their output on the right and the pacemaker has the additional reset input at the bottom.

a separate reset input, which is only triggered when the output
signal has also passed the refractory gate. The AVConduction-
Delay represents the time delay that occurs due to the slow
conduction between AV node cells. It delays an incoming signal by
a duration that depends on the elapsed time since the last output
signal has been issued. As mentioned above, the code for both of
these components can be found in the methods section.

To form the full model of the cardiac conduction system, the
components have to be connected through their interface
variables. In Modelica, this is usually done in graphical tools like
OpenModelica through a drag and drop interface. For this, the
aforementioned annotation () statements come into play.
They define the icons and the placement of components and
connection lines in a vector graphics format. An example for the
placement of the inp connector may look as follows:

InstantInput inp "input connector" annotation(
Placement(
visible = true,
iconTransformation(
origin = {-108, 0}, extent = {{-10, -10}, {10, 10}}, rotation = 0
)
)
);

This ensures that the resulting diagram in Fig. 5 is not a separate
image file that has to be maintained separately, but is instead
directly tied to the actual model structure. To keep the model code
simple and short we defined the icon annotations in separate classes
whose code can be found in Supplementary Listing 23-27. As seen
in Fig. 5 we chose an open fence gate for the refractory gate, a
metronome for the pacemaker, and an hourglass for the delay. The
components are simply connected in order with the exception that
the reset of the pacemaker component is only triggered if the signal
also passed the refractory component. The resulting composite
Modelica model ModularConduction looks as follows:

model ModularConduction
extends Unidirectional ConductionComponent;
extends SHMConduction.Icons.Heart;
import SI = Modelica.SIunits;
RefractoryGate refrac_av(d_refrac=0.364) "refr. time of AVN" annotation(...);
Pacemaker pace_av(period=1.7) "AV node pacemaker behavior" annotation(_...);
AVConductionDelay delay_sa_v "delay from SAN to ventricles" annotation(...);
discrete SI.Duration d_interbeat(start=initial_T, fixed=true);
discrete SI.Time cont_last(start=0, fixed=true);
equation
connect(inp, pace_av.inp) annotation(...);
connect(pace_av.outp, refrac_av.inp) annotation(...);
connect(refrac_av.outp, pace_av.reset) annotation(...);
connect(refrac_av.outp, delay_sa_v.inp) annotation(...);
connect(delay_sa_v.outp, outp) annotation(...);
when outp then
d_interbeat = time - pre(cont_last);
cont_last = time;
end when;
end ModularConduction;

npj Systems Biology and Applications (2021) 27

Note that we do not show the content of the annotation ()
statements here for the sake of brevity. The full code can be
found on GitHub and in Supplementary Listing 1-27. Since the
model itself receives a Boolean input from the SA node and
provides a Boolean output for the Ventricles, it is itself a
UnidirectionalConductionComponent. Components are
used by defining variables of the types RefractoryGate,
Pacemaker, and AVConductionDelay. The definitions also
overwrite the parameters d_refrac and period to adjust the
general Pacemaker and RefractoryGate models to their
specific use case in this model. The inputs and outputs of the
components are connected via connect () equations. In this
case, connect (a, b) is synonymous with the equation a = b,
but more complex connectors can connect multiple variables
within a single statement and can also handle conservation laws.
The model also introduces the additional variable d_inter-
beat, which allows using the interbeat intervals as a higher-level
feature.

The structure defined in this model (and seen in Fig. 5)
deviates from the original SHM because the refractory behavior
is situated at the AV node instead of the SA node. Additionally,
the delay component models the complete delay from the SA
node to the ventricles but is actually applied after the
components for the AV node. To remain closer to physiology,
one could split the delay component into two delays—one
before and one after the AV node—and similarly add another
refractory gate for the SA node. However, in Supplementary
Note 1 we show that this simplified structure closely replicates
the behavior of the SHM and even reveals some minor
inconsistencies in the original model.

We also used our modular version to implement the trigger for
PVC, which initially uncovered the problems with the monolithic
version. It turned out that this extension now becomes possible
without much effort, since it is easier to determine the effect of a
PVC on the individual components one by one than to describe its
effect on the whole system at once. A complete discussion of the
extension can be found in Supplementary Note 2 and a diagram
of the resulting model can be seen in Fig. 6.

DISCUSSION

The model that we chose to demonstrate the benefit of the
MoDROGH characteristics is quite small as compared to, e.g.,
current whole-cell models, which can involve 28 or more
individual interconnected components®. It can be argued that
one needs to look at models of this scale to really assess the
impact of model engineering decisions and language choice.
However, we think that more than the size or structure of the
model, the context of its reuse is the most important factor that
allows us to generalize our findings to different areas of
mathematical modeling. To extend the SHM, we needed to
identify the correct integration points for the new effect in the
model, which in turn required us to first separate the model into

Published in partnership with the Systems Biology Institute

C. Scholzel et al.

npj

pace_av refrac_av
C m m C
S s

delay _sa_v

refrac_v
C

Bro-l iy
o

N
PVC

Fig.6 Diagram of the extension of the modular conduction model with a trigger for (PVCs). The components are the same as in Fig. 5 with
additional components and connections highlighted in blue: reset inputs, second RefractoryGate (right) for the refractory period of the
ventricles, two logical OR gates and one AND gate. The letters on the outside of the rectangle represent the connections of the model to the
outside world: the input from the SA node (S), the output to the ventricles (V) and the trigger signal for PVCs (PVC).

modules that each represent only a single physiological effect. We
think that this requirement to understand and break up existing
models for reuse in a different context represents one of the main
challenges of multi-scale modeling in general. Additionally, larger
models would not allow an in-depth discussion of their code
within a single research article, since there would be simply too
much interrelated code to discuss. We, therefore, chose the
cardiac conduction system of the SHM as a “minimal working
example”, which is just large enough to show the effects that we
want to discuss but still small enough to cover the whole code in
this article. This is in accordance with common practices in
computer science textbooks where general design patters for the
construction of large software systems are discussed based on
small examples®*. It is also important to note that the language
Modelica and the techniques that we discuss here can be, and to
some extent have been, applied to build large models. Examples
include the Physiolibrary, a library to build multi-organ or whole-
body circulatory models®, the Guyton model of physiological
regulation® or even larger examples from industrial settings such
as end-to-end simulation of launch vehicles®® or electrical power
systems with thousands of components®”. For our specific
example, an application to a model of relevant size is also
tangible, because our model of the cardiac conduction system can
be seamlessly integrated in our Modelica implementation of the
full SHM, which features 15 interconnected components and also
utilizes the MoDROGH characteristics'2.

This leads to our initial research question to assess how the
modular, declarative, readable, open, graphical, and hybrid nature
of a MoDROGH language helped in the modeling process of the
conduction model. We discuss this for each individual character-
istic (highlighted in bold) and then sum up the impact on the
model design goals of reproducibility, understandability, reusa-
bilty, and extensibility and reflect on our choice to use the
modeling language Modelica.

Regarding the modular characteristic, the first noteworthy
observation is a reduction in the amount of items that a researcher
has to process simultaneously to understand the model. The
modular implementation of the cardiac conduction system
consists of small components with at most three parameters
and seven variables and equations including only two to three
interface variables. This stands in contrast to the five parameters
and 13 variables and equations of the monolithic version. This can
be seen as an indicator for increased understandability®®. The
Pacemaker, RefractoryGate and ConductionDelay mod-
els all are quite generic and it is easy to imagine that they could be
reused in a different model that requires these effects. This also
facilitated the extension of the model with a trigger for PVCs,
which required the incorporation of a second RefractoryGate

Published in partnership with the Systems Biology Institute

to model not only the refractory behavior of the SA node but also
of the ventricles (see Fig. 6). In this case, the component could be
reused without modification.

This extension was our initial goal, which sparked the discussion
about language characteristics and design guidelines for mathe-
matical models. When we originally tried to implement this
behavior in the monolithic version, we found it extremely hard to
pinpoint the lines of code that would need to change. Now, with
the modular version, the question was not “Which variables do |
have to change?” but “Which influence does a PVC have on
physiological component X?". The discussion shifted from
technological considerations to physiological ones, which made
the extension possible without much effort. In the original model,
several variables and equations would have to be added, making
the already complicated system almost unmanageable. The
benefits of modularity become even more apparent when moving
from the conduction model to the whole SHM.

Since the whole ModularConduction model is also encap-
sulated with a simple interface consisting of an input, an output,
the interbeat interval and the timestamp of the last contraction it
can seamlessly be integrated into our modular version of the SHM.
In fact, switching between the monolithic and modular imple-
mentation becomes as simple as changing the type of a variable
from MonolithicConduction to ModularConduction. This
is in stark contrast to the original implementation by Seidel in C,
where the variables and equations for the conduction system
were scattered throughout the code of the whole model. As a
welcome side effect, the separation of the model into individual
physiological effects also revealed some design flaws in the
original. For example, it was not quite clear if the refractory term
referred to the refractory behavior of the SA node, the AV node, or
the ventricles and in Supplementary Note 1, we discovered that
the C implementation introduces a seemingly unphysiological
time-dependence in the effective duration of the refractory
period.

It has to be said that the components we developed are only
reusable within their physiological context. In contrast to, e.g.,
reaction equations in metabolism models, physiology is not yet
standardized enough to have a unifying theory that allows
building libraries of components that can be used in multiple
tissue or organ models. However, the Physiolibrary can be seen as
a first approach in this direction, which also uses Modelica®®,

Regarding the human-readable characteristic, all variables,
parameters, and components in our model have human-readable
labels that clearly specify which physiological quantity they
represent. The full version of the model code, which can be
found in Supplementary Listing 1-27 and at https://github.com/
CSchoel/shm-conduction, also contains additional documentation.

npj Systems Biology and Applications (2021) 27

13

https://github.com/CSchoel/shm-conduction
https://github.com/CSchoel/shm-conduction

npj

C. Scholzel et al.

14

This is important for the understandability of the model but also
for reuse and extension. Reuse requires the identification of
possible connection points between variables in different models
based on their semantics. Extension could, for example, involve
the replacement of one variable or component with a more
complex representation, which models the same concept in more
detail.

The new model also removed an undocumented technical
workaround from the original where the interaction between
refractory time, spontaneous beats by the AV node, and the
time delay were resolved indirectly: a scheduling system kept
track of the next time a beat would be issued, giving
precedence to beats that enter the schedule at a later time
but would take effect earlier. A diagram of this system can be
seen in Supplementary Fig. 1. This indirect implementation was
hard to understand, because the schedules have no direct
physiological equivalent. The AV node, for example, does not
signal the sinus node ahead of time to indicate when it will
issue the next beat. This system was therefore replaced by an
explicit, more readable version by only considering actual
signals and no schedules.

Modelica focuses on human-readability over machine-read-
ability, which enabled us to discuss code-level details in this
article and makes it possible to quickly review changes in a
version control tool like Git (https://git-scm.com/). This made it
easy for us to spot bugs by tagging working versus broken
versions and identifying the lines that changed between the
working and the broken state. In contrast, editing software for
XML-based formats with less focus on human-readability may re-
order lines from one version to another without consequence
for the overall functioning of the model and without these
changes being apparent to the modeler. This can result in long
line change messages in popular version control systems such as
Git, which complicates locating the individual line that
introduced an error.

Another advantage of fully human-readable code can be seen
in the experiment setup, which we show in the methods section.
This model contains the code OpenModelica simula-
tionFlags (s = "dassl"), which tells the OpenModelica
compiler to use the Differential Algebraic System Solver
(DASSL)®® to solve the equation system. This information can
only be interpreted by OpenModelica and not by other tools,
which might not support this solver. However, since Modelica is
designed to be written by humans directly, researchers who
inspect the model can easily find this information without
knowing that it is there. In contrast, if the model was written in
an XML-based language, researchers would probably not look at
the raw code, but load the model in a tool that uses an
intermediary language or a graphical user interface to display the
model content. It is likely that such a tool would just discard
information that it cannot process, making it possible that details
like these tool-dependent solver settings might be overlooked in
reproduction attempts.

However, our model also has a downside with regard to its
human-readability: the visual annotations, which are only helpful
within a tool like OpenModelica, do introduce visual clutter when
the model is only viewed in text form. To some extent, we could
alleviate this issue by separating icon definitions into separate files
and base classes and including them via multiple inheritance. Yet
still the model ModularConduction has to include verbose
annotation () statements for the placement and connection of
components.

Moving on to the hybrid characteristic, the example model is
purely discrete and therefore not hybrid in itself. However, it is
important to note that we could use the same language to

npj Systems Biology and Applications (2021) 27

describe this discrete model that we also used for the rest of the
SHM, which is mainly continuous. It was, for example, not needed
to explicitly set the derivatives of the discrete variables to zero,
which would introduce visual clutter and therefore reduce
understandability. While our example cannot directly show the
benefits of DAEs and acausality, these features are included in
the implementation of the SHM that we published previously.
One example of this are the acetylcholine kinetics, which use the
following connector interface.

connector SubstanceConcentration
Real concentration "concentration of the substance";
flow Real rate "rate of concentration change";

end SubstanceConcentration;

The keyword flow indicates that the variable rate is subject
to a conservation law: At each connection point in the system,
the sum of acetylcholine flow from and to all connected
components must be zero. In the SHM, the acetylcholine
concentration is only determined by a single Neurotrans-
mitterRelease component, which is connected to the
parasympathetic system, but it is easy to imagine an extension
that includes multiple uptake sites. In such an example, the
automatic generation of the conservation law by Modelica would
allow to separate the effects of all connected components, which
only have to declare their individual contribution to the
acetylcholine concentration. This both leads to better encapsula-
tion, making the model more understandable, and it facilitates
extension since additional components that have an influence on
the concentration can be added without changing any of the
equations of the existing components.

The openness of both the Modelica language and the
OpenModelica IDE ensures that readers can easily run simula-
tions themselves. They simply have to download the latest
release from the Github repository at https://github.com/
CSchoel/shm-conduction, download and install OpenModelica
and load the models using the "Load library" option in the “File”
menu. This means that our results can be easily reproduced
regardless of available licenses or of the user’s operating system
and that researchers who might want to reuse the model or
components can quickly run simulations to assess the usefulness
of the model for their use case.

However, there may still be some barriers. First, Modelica is
not yet widely known in systems biology, which makes it likely
that researchers will have to become familiar with a new tool
and language in order to reproduce our findings. Second,
engineers that use Modelica for industrial applications mostly
turn toward proprietary solutions like Dymola (https://www.3ds.
com/products-services/catia/products/dymola/), which can be
more feature-rich than and not fully compatible with
OpenModelica.

One area where the declarative characteristic comes into play
in our example are unit definitions. Even though the example
model only contains time-related variables and no other
physical quantities, the fact that we introduced proper S| units
is still helpful for understanding. For example, it avoids errors, if
the components are reused in another model that measures
time in milliseconds instead of seconds. Unfortunately, Modelica
does not enforce unit definitions or unit consistency checks.
However, when these optional unit declarations are used
consistently, they help to quickly identify and solve such order
of magnitude errors.

In his C implementation, Seidel implemented a fourth order
Runge-Kutta method himself, making this the only numerical
method available. By using a declarative language, it becomes

p_

Published in partnership with the Systems Biology Institute

https://git-scm.com/
https://github.com/CSchoel/shm-conduction
https://github.com/CSchoel/shm-conduction
https://www.3ds.com/products-services/catia/products/dymola/
https://www.3ds.com/products-services/catia/products/dymola/

ossible to easily switch between different solvers which can
improve numerical accuracy. Not being tied to a specific
numerical method also increases interoperability between
models and thus reusability.

Another benefit of the declarative specification that becomes
apparent in our example is the increase in mathematical
soundness and clarity. The C implementation contained some
design choices that were convenient for programming, but
neither for understanding nor physiological plausibility. For
example, the original model mixed variables that represent
actual signals and time stamp variables that schedule signals for
the future (see Supplementary Fig. 1). To comprehend these
formulas a context switch from the physiological meaning to the
technical representation is required. Another hurdle for under-
standing the model is the unclear causality. In the SHM, every
effect is triggered by the contraction, even if there is no actual
signal feedback from the ventricles to the AV node on a
physiological level. By separating the model into smaller physio-
logically meaningful modules with a unified interface, the Modelica
compiler automatically hinted at these concerns, eg. because
variables were missing.

One downside of choosing Modelica is that we could not
demonstrate the benefit of augmenting a model with semantic
information using ontologies. However, the use of the STunits
package and the definition of the InstantSignal type to
indicate Kronecker delta behavior of in- and outputs show how
this could be achieved through a type hierarchy: The variables in
the model do not only have units, but we also distinguish
between the type Time for a point in time and Duration for a
difference between two points in time. Similarly, Instant-
Signal is technically equivalent to the type Boolean, but
carries additional semantic information about the shape of the
signal. In much the same way, one could build large type
hierarchies containing all terms of an ontology like the SBO,
Chemical Entities of Biological Interest (ChEBI)°® or Ontology of
Physics for Biology (OPB)°'. Another way to implement ontology
support in Modelica would be so called vendor-specific annota-
tions of the form annotation(__VendorName (key=value,
.. .)),which could be added to components and variables. Since
ontology terms are typically identified through Uniform Resource
Identifiers (URIs), which are not human-readable, and because
there are currently no graphical Modelica tools that support such
ontologies, the first approach using the type system seems
preferable for now.

Regarding the graphical characteristic, the diagram in Fig. 5
helps to understand the model at first glance. It can both be used
as an entry point for understanding and for communicating the
model to a domain expert who is not familiar with mathematical
modeling or the language Modelica. The same would not be
possible with more detailed SBGN graphs or automatically
generated graphs of variable interactions, which would also
include internal variables of components and helper variables. At
the same time, the diagram is not just a separate image file but it
is generated from annotation () statements in the individual
components themselves. This means that it will remain up to date
if components are added or removed or new connectors are
included so that other researchers can rely on the accuracy of
the diagram if they want to understand, reuse, or reproduce the
model. The annotations also allow building more complex models
or small test cases using drag and drop in a graphical tool like
OpenModelica’?, which can facilitate reuse and extension. For
example, the PVC extension required very little changes in the
code. Most of the changes could be applied by adding a
RefractoryGate component and three logical AND and OR
gates to the diagram which can be seen in Fig. 6.

Published in partnership with the Systems Biology Institute

C. Scholzel et al.

npj

On the downside, it can be argued that the connection in Fig. 5
which points back from the refractory component to the
pacemaker component is unintuitive and may be confusing when
the model is interpreted physiologically. This can be remedied by
introducing another layer of abstraction, which combines the
components Pacemaker and RefractoryGate to a single
component RefractoryPacemaker. We did not do this in our
implementation to keep the model code as simple as possible, but
in a larger model such an intermediary component may be
advisable.

As of now, our discussion was focused on Modelica, but there
are multiple languages with MoDROGH characteristics. Addition-
ally, our example revealed some shortcomings of Modelica with
respect to modeling biological systems. We, therefore, want to
recapitulate which features of the language were especially
beneficial for our model design, which features were lacking,
and what are the trade-offs that have to be made when switching
to another language.

Our Modelica implementation made heavy use of object
orientation, including multiple inheritance; it featured discrete
variables with human-readable labels; it relied on the graphical
representation for creating and communicating the toplevel
model structure; it provided minimal interfaces by encapsulating
helper variables and defining explicit connectors; and it used the
built-in support for Sl units. Unfortunately, unit definition are not
enforced in Modelica, which means that it is up to the modeler
to ensure their reliable use. Modelica also does not support
semantic annotation of model components with ontological
terms. We showed how this can be achieved with a type
hierarchy or with vendor-specific annotations, but still ontology
support would have to be added to open-source Modelica tools
to be of practical use.

As an alternative, MATLAB with the Simulink environment
and the Simscape language is the only other language
presented in the results section that supports full object
orientation, declaration of discrete variables, and integrated
graphical annotations. In contrast to Modelica, it also enforces
unit checks at the interfaces between components. The only
technical downside of this language is that Simscape classes
do not support multiple inheritance. However, this is probably
no issue since we only used multiple inheritance to import the
annotation code for icons. Simulink only supports icons as
links to separate image files and not as verbose vector
graphics code. This has the benefit of not cluttering the code
and, therefore, removing the requirement for multiple
inheritance, but it also has the drawback that it is not possible
to define a common appearance for all components by
inheriting parts of the graphical annotation from the base
class. Apart from the technical aspects, the biggest drawback
of MATLAB is that it is not open. If we had used MATLAB
instead of Modelica, researchers who want to repeat our
experiments could still download the code from GitHub, but
they would need licenses for Matlab, Simulink, and Simscape
to run the simulations.

From the open alternatives, Julia with the Modia package
comes closest to the features we used for our example model. It
has the drawback of not supporting any graphical representation
and still being in an experimental stage. If one instead makes the
switch to the more stable DifferentialEquations.jl, the support for
object-orientation, declaration of discrete variables, variable labels,
and encapsulation is lost.

To compensate the shortcomings of Modelica, CellML might be
the best fit, since it is the only language from those presented in
the results section that enforces unit definitions. Additionally, it
also supports model annotation with terms from an ontology and
as an accepted COMBINE standard it is part of an established

npj Systems Biology and Applications (2021) 27

15

npj

C. Scholzel et al.

16

ecosystem for mathematical modeling in systems biology. With
SemGen, there even exists a tool for semantics-based annotation
and composition of CellML (and SBML) models®?. On the
downside, CellML does not support full object orientation for
composing models. This means that base classes that define an
interface need to be imported as components of the model, which
requires a more verbose syntax. It also does not support the
explicit declaration of discrete variables but does support variable
reinitialization due to discrete events. To implement a variable like
the interbeat interval d_interbeat, which stays constant
between events, an additional equation would have to be added
to the model, which sets the derivative of this variable to zero. This
both introduces unnecessary code and makes the model less
understandable as there is no clear distinction between discrete
and continuous parts apart from the labels assigned to the
variables. CellML also follows a different philosophy for graphical
annotations, providing basic support for referencing and caption-
ing externally-stored images as part of the documentation for the
whole model. Finally, the language is not designed to be written
directly by humans and instead relies on the use of appropriate
tools to view and edit models.

It becomes clear that there is no single "best" language. Further
development is needed to obtain a language that supports all the
MoDROGH characteristics to their fullest extent. This development
could start with Modelica, leveraging a flexible and industry-
proven general-purpose modeling language and extending it to fit
the needs of the systems biology community. It could also start
with CellML or SBML, which are already proven languages with
widespread support in the systems biology community, and which
could borrow some software engineering features and standards
from languages like Modelica or Simscape. Other approaches and
foundations are also possible and it may even make sense to not
pursue the "perfect" language at all, but to focus more on
interoperability between languages that fit the specialized needs
of smaller modeling domains.

In conclusion, using a modeling language that is Modular,
Descriptive, human-Readable, Open, Graphical, and Hybrid
(MoDROGH) can make models more reproducible, under-
standable, reusable, and extensible. Because there is no single
best language, modelers have to decide which features are
most important for them and which trade-offs they are willing
to make. They should be aware of the beneficial characteristics
of the language and use them consistently as we described in
our guidelines and showed in our modular example model of
the cardiac conduction system. The situation that a model
needs to be dissected, modified, and extended to be used in a
different context is common in multi-scale, multi-level, and
multi-class models and therefore it is likely that our findings
translate to large areas of systems biology. Mathematical
modeling in systems biology has become an engineering
challenge that requires engineering solutions. Models should
no longer be implemented with only a single purpose in mind,
but as reliable parts of larger systems. We hope that this article
can spark a discussion in the community to put more emphasis
on these engineering aspects of mathematical modeling in
the development, selection, and application of modeling
languages.

METHODS
Material

We used Mo|E version 0.6.3°> to write the code of our models and
OpenModelica version 1.13.072 as well as Inkscape version 0.91 (https://
inkscape.org/) to add the component icons. OpenModelica version
1.17.0-dev.344+-gc8233fa62a was used for all simulations in conjunction

npj Systems Biology and Applications (2021) 27

with Julia version 1.5.3 and the packages OMJulia (v0.1.0) and
ModelicaScriptingTools (v1.1.0-alpha.4). For plotting we used Python
version 3.9.1 with the packages matplotlib (v3.3.4), numpy (v1.20.0), and
pandas (v1.2.1).

In the following we will show and explain our Modelica code for the
models and simulations. To keep it short, we do not show the code of the
original monolithic version and of the graphical annotations. We also do
not include most of the documentation strings, which are present in the
full version. They can be found in Supplementary Listing 1-27 and at
https://github.com/CSchoel/shm-conduction. Please also note that this
article was previously published as a preprint™.

Modular conduction model

The fundamental part of the modular model of the human cardiac
conduction system is the interface component UnidirectionalCon-
ductionComponent, which serves as a base class for all other
components. It has already been shown in the results section. It defines
the input and output connectors inp and outp, which are Booleans that
are wrapped in a custom type InstantSignal to indicate that they
behave as a sum of Kronecker deltas, meaning that they are only true for
the exact instants in time when events occur:

type InstantSignal = Boolean(quantity="sum of Kronecker deltas");
connector InstantInput = input InstantSignal annotation(...);
connector InstantOutput = output InstantSignal annotation(...);

partial model UnidirectionalConductionComponent
InstantInput inp "input connector" annotation(Placement(...));
InstantOutput outp "output connector" annotation(Placementy(...));
annotation(Icon(...));

end Unidirectional ConductionComponent;

The keyword connector designates the types InstantInput and
InstantOutput as part of the interface of a class and allows the
assignment of a basic icon representation in the form of an annotation
() statement. The content of these annotation statements can be quite
verbose, which is why we only show them in the full code in
Supplementary Listing 1-27 as well as on GitHub. The model Unidir-
ectionalConductionComponent is defined as partial to desig-
nate that it is not designed to be used as a finished component but has to
be extended in some way—in this case by defining the relationship
between the input and the output.

The RefractoryGate has already been shown in the results section.
The component passes on its input signal as output signal, but only when
the elapsed time since the last signal left the component is larger than the
refractory period:

model RefractoryGate "lets signal pass if refractory period has passed"

extends UnidirectionalConductionComponent;

extends SHMConduction.Icons.Gate;

import SI = Modelica.SIunits;

parameter SL.Time t_first = 0 "time of first signal";

parameter SI.Duration d_refrac = 1 "duration of refractory period";

Boolean refrac_passed = time - pre(t_last) > d_refrac "not refractory?";
protected

discrete SL.Time t_last(start=t_first, fixed=true) "time of last output";
equation

outp = inp and refrac_passed;

when outp then

t_last = time;

end when;

end RefractoryGate;

The function pre () is used here to denote the value right before an
event instead of the value right after the event. The when statement
describes an event which can define states of discrete variables and can
reinitialize continuous variables. This model also introduces a pro-
tected section which contains variables and parameters that should not
be visible from the outside.

Published in partnership with the Systems Biology Institute

https://inkscape.org/
https://inkscape.org/
https://github.com/CSchoel/shm-conduction

The Pacemaker model propagates incoming signals, but also adds its
own signal if there was no input for a certain period of time. Additionally,
this component, too, has to ignore incoming signals during the refractory
period. This can be implemented by decoupling the reset of the
pacemaker timer from the output of the component and instead treating
the reset signal as an additional input. It is assumed that this reset signal is
only triggered if the signal passes not only the pacemaker but also the
subsequent RefractoryGate component. The pacemaker component
itself still resets when a spontaneous output signal is generated to
maintain the invariant that the output signal will not be true for a
prolonged period of time:

model Pacemaker "pacemaker eliciting spontaneous signals"
extends Unidirectional ConductionComponent;
extends SHMConduction.Icons.Metronome;
InstantInput reset "resets internal clock";
import SI = Modelica.SIunits;
parameter SI.Period period = 1 "pacemaker period";
protected
discrete SI.Time t_next(start=period, fixed=true)
"scheduled time of next spontaneous beat";
InstantSignal spontaneous_signal = time > pre(t_next)
"signal generated spontaneously by this pacemaker";
equation
outp = inp or spontaneous_signal;
when spontaneous_signal or pre(reset) then
t_next = time + period;
end when;
end Pacemaker;

The ConductionDelay model puts incoming signals on hold and
releases them after a certain time has passed. Physiologically the duration
of the delay for each signal depends on the time that has passed between
the last signal leaving the component and the current input signal. The
original model silently assumed that there will never be a second input
signal while a signal is put on hold. Therefore, this assumption is kept, but
made more explicit by using the helper variable delay passed in the
when condition:

partial model ConductionDelay "delay depending on prev. cycle duration"
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Hourglass;
import SI = Modelica.SIunits;
discrete SI.Duration d_delay "delay duration";
Boolean delay passed(start=false, fixed=true) = time > t_next
"if false, there is still a signal currently put on hold";
protected
discrete SI.Duration d_outp_inp(start=0, fixed=true)
"time between last output and following signal";
discrete SL.Time t_last(start=0, fixed=true) "time of last output";
discrete SI.Time t_next(start=-1, fixed=true)
"scheduled time of next output";
equation
outp = edge(delay passed);
when inp and pre(delay_passed) then
d_outp_inp = time - pre(t_last);
t_next = time + d_delay;
end when;
when outp then
t_last = time;
end when;
end ConductionDelay;

Modelica does already have support for explicit delays, but this feature is
tailored toward continuous variables. Therefore, we use a scheduling
solution with the variable t next, which indicates the time when the next
signal should leave the component. This is similar to the approach in the
original C implementation of the SHM, but here this scheduling system is
encapsulated in a single component and the respective helper variables are

Published in partnership with the Systems Biology Institute

C. Scholzel et al.

np)

defined in a protected environment so that they do not show up in the
simulation output.

Note that this is again only a partial model, which does not specify
the behavior of the variable d_delay. This allows the separation of the
general delay logic from the physiological equation for the AV node which
is modeled in the AVConductionDelay:

model AVConductionDelay "conduction delay between SA node and ventricles"
extends ConductionDelay;
import SI = Modelica.Slunits;
parameter SI.Duration k_avc t=0.78 "maximum increase in delay duration";
parameter SI.Duration d_avc0 = 0.09 "minimal delay duration";
parameter SI.Duration tau_avc = 0.11 "reference time for delay duration";
parameter SI.Duration initial_d_avc = 0.15 "initial value for delay";
initial equation
d_delay = initial_d_avc;
equation
when inp and pre(delay_passed) then
d_delay = d_avc0 + k_avc_t * exp(-d_outp_inp/tau_avc);
end when;
end AVConductionDelay;

Currently, this separation is only performed to increase readability and
to not further complicate the already complex ConductionDelay
component. Additionally, if the delay was split into two components, as
discussed in the results section, the second delay component could also
inherit the base equations from ConductionDelay, which would avoid
code duplication.

Finally, the model ModularConduction combines the aforemen-
tioned components using connect () equations to connect the input
and output variables. These equations are represented as lines in the
graphical representation which are again defined in annotation ()
statements:

model ModularConduction
extends UnidirectionalConductionComponent;
extends SHMConduction.Icons.Heart;
import SI = Modelica.SIunits;
RefractoryGate refrac_av(T_refrac=0.364)
"refractory component for AV node" annotation(...);
Pacemaker pace av(period=1.7)
"pacemaker effect of AV node" annotation(...);
AVConductionDelay delay sa v
"delay between SA node and ventricles" annotation(...);
discrete SI.Duration d_interbeat(start=1, fixed=true)
"duration of last heart cycle";
discrete SI.Time cont_last(start=0, fixed=true)
"time of last contraction";
equation
connect(inp, pace av.inp) annotation(...);
connect(pace_av.outp, refrac_av.inp) annotation(...);
connect(refrac_av.outp, pace av.reset) annotation(...);
connect(refrac_av.outp, delay sa_v.inp) annotation(...);
connect(delay sa v.outp, outp) annotation(...);
when outp then
d_interbeat = time - pre(cont_last);
cont_last = time;
end when;
end ModularConduction;

As already mentioned in the results section, this model also shows
how parameters like d refrac and period can be adjusted when
the components are imported. Note also that the model Modular-
Conduction is again an UnidirectionalConductionCompo-
nent and can therefore be used as a component in a larger model such
as the SHM.

npj Systems Biology and Applications (2021) 27

17

np)

C. Scholzel et al.

18

Modular contraction experiment setup

Simulation experiments can also be defined directly in Modelica syntax.
The following code was used to produce Supplementary Fig. 2:

model ModularExample
ModularConduction modC;
MonolithicConduction monC;
equation
modC.inp = monC.inp;
if time <5 then
monC.inp = sample(0,1);
elseif time < 15 then
monC.inp = sample(0,3);
elseif time < 20 then
monC.inp = sample(0,0.05);
elseif time < 30 then
monC.inp = sample(0,0.8);
elseif time < 40 then
monC.inp = sample(0,0.2);
else
monC.inp = sample(0,1.8);
end if;
annotation(
experiment(
StartTime = 0, StopTime = 50,
Tolerance = le-6, Interval = 0.002
),
__OpenModelica_simulationFlags(s = "dassl")
);
end ModularExample;

Here, the built-in function sample (start, interval) is used to issue
signals from the SA node at a precise interval. The interval length is switched
every five to ten seconds using an if statement. In addition to the
experiment setup, the experiment protocol is also given by the experiment
() annotation, which defines the start and stop times of the interval, the
requested step size for the output and the tolerance used in the solver
settings. The vendor-specific annotation OpenModelica simulation-
Flags is used to define the DASSL® as the default solver. For Supplementary
Fig. 2, the variables monC.d interbeat and modC.d interbeat were
plotted against simulation time.

DATA AVAILABILITY

The data for figures in the data supplement can be generated from the model code
available on GitHub (https:/github.com/CSchoel/shm-conduction), Zenodo®, and
BioModels (https://www.ebi.ac.uk/biomodels/MODEL2103050002). No other datasets
were generated or analyzed during the current study.

CODE AVAILABILITY

The full code of the models, experiments, and plots used in this article can be found
on GitHub, Zenodo, and BioModels. The model of the cardiac conduction system is
uploaded as https:/github.com/CSchoel/shm-conduction®, and https://www.ebi.ac.
uk/biomodels/MODEL2103050002. The identifiers for the Modelica implementation
of the SHM are https://github.com/CSchoel/shm-conduction’®, and https://www.ebi.
ac.uk/biomodels/MODEL2101280001, respectively.

Received: 18 October 2019; Accepted: 19 April 2021;
Published online: 03 June 2021

npj Systems Biology and Applications (2021) 27

REFERENCES

1.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

Hodgkin, A. L. & Huxley, A. F. A quantitative description of membrane current and
its application to conduction and excitation in nerve. J. Physiol. 117, 500-544 (1952).

. Bardini, R, Politano, G., Benso, A. & Di Carlo, S. Multi-level and hybrid modelling

approaches for systems biology. Comput. Struct. Biotechnol. J. 15, 396-402 (2017).

. Uhrmacher, A. M., Degenring, D. & Zeigler, B. Discrete event multi-level models

for systems biology. In Transactions on Computational Systems Biology I, (ed
Priami, C.), 66-89 (Springer, 2005).

. Dada, J. 0. & Mendes, P. Multi-scale modelling and simulation in systems biology.

Integr. Biol. 3, 86 (2011).

. Yu, J. S. & Bagheri, N. Multi-class and multi-scale models of complex biological

phenomena. Curr. Opin. Biotech. 39, 167-173 (2016).

. Waltemath, D. & Wolkenhauer, O. How modeling standards, software, and

initiatives support reproducibility in systems biology and systems medicine. IEEE
Trans. Biomed. Eng. 63, 1999-2006 (2016).

. Medley, J. K, Goldberg, A. P. & Karr, J. R. Guidelines for reproducibly building and

simulating systems biology models. IEEE Trans. Biomed. Eng. 63, 2015-2020
(2016).

. Tiwari, K. et al. Reproducibility in systems biology modelling. Mol. Syst. Biol. 17,

9982 (2021).

. Topalidou, M., Leblois, A., Boraud, T. & Rougier, N. P. A long journey into repro-

ducible computational neuroscience. Front. Comput. Neurosci. 9, 1-2 (2015).

. Seidel, H. Nonlinear Dynamics of Physiological Rhythms. PhD thesis, (Technische

Universitat Berlin, Berlin, Germany, 1997).

. Seidel, H. & Herzel, H. Bifurcations in a nonlinear model of the baroreceptor-

cardiac reflex. Physica D: Nonlinear Phenomena 115, 145-160 (1998).

. Schélzel, C., Goesmann, A, Ernst, G. & Dominik, A. Modeling biology in Modelica:

The human baroreflex. In Proceedings of the 11th International Modelica Con-
ference, 367-376 (Versailles, France, 2015).

. Sarma, G. P. et al. Unit testing, model validation, and biological simulation.

F1000Research 5, 1946 (2016).

. Miskovic, L., Tokic, M., Fengos, G. & Hatzimanikatis, V. Rites of passage: require-

ments and standards for building kinetic models of metabolic phenotypes.
Current Opin. Biotechnol. 36, 146-153 (2015).

. Hicks, J. L, Uchida, T. K, Seth, A., Rajagopal, A. & Delp, S. L. Is my model good

enough? Best practices for verification and validation of musculoskeletal models
and simulations of movement. J. Biomech. Eng. 137, 020905 (2015).

. Grimm, V. & Railsback, S. F. Pattern-oriented modelling: a ‘multi-scope’ for pre-

dictive systems ecology. Philos. Trans. R. So. B: Biol. Sci. 367, 298-310 (2012).

. Zhao, P., Rowland, M. & Huang, S.-M. Best practice in the use of physiologically

based pharmacokinetic modeling and simulation to address clinical pharmacol-
ogy regulatory questions. Clin. Pharmacol. Ther. 92, 17-20 (2012).

. Smith, N. P., Crampin, E. J,, Niederer, S. A., Bassingthwaighte, J. B. & Beard, D. A.

Computational biology of cardiac myocytes: proposed standards for the phy-
siome. J. Exp. Biol. 210, 1576-1583 (2007).

. Goldberg, A. P. et al. Emerging whole-cell modeling principles and methods. Curr.

Opin. Biotechnol. 51, 97-102 (2018).

Bartocci, E. & Lio, P. Computational modeling, formal analysis, and tools for
systems biology. PLOS Comput. Biol. 12, e1004591 (2016).

Walpole, J,, Papin, J. A. & Peirce, S. M. Multiscale computational models of
complex biological systems. Ann. Rev. Biomed. Eng. 15, 137-154 (2013).

Hucka, M. et al. Promoting coordinated development of community-based
information standards for modeling in biology: the COMBINE initiative. Front.
Bioeng. Biotechnol. 3, 19 (2015).

Wolstencroft, K. et al. SEEK: a systems biology data and model management
platform. BMC Syst. Biol. 9, 33 (2015).

Cooling, M. T., Hunter, P. & Crampin, E. J. Modelling biological modularity with
CellML. IET Syst. Biol. 2, 73-79 (2008).

Neal, M. L. et al. A reappraisal of how to build modular, reusable models of
biological systems. PLOS Comput. Biol. 10, e1003849 (2014).

Waltemath, D. et al. The first 10 years of the international coordination network
for standards in systems and synthetic biology (COMBINE). J. Integr. Bioinform. 17,
20200005 (2020).

Malik-Sheriff, R. S. et al. BioModels—15 years of sharing computational models in
life science. Nucleic Acids Res. 48, D407-D415 (2019).

Cooling, M. T. et al. Standard virtual biological parts: a repository of modular
modeling components for synthetic biology. Bioinformatics 26, 925-931 (2010).
Clerx, M., Collins, P., de Lange, E. & Volders, P. G. Myokit: a simple interface to
cardiac cellular electrophysiology. Prog. Biophys. Mol. Biol. 120, 100-114 (2016).
Mulugeta, L. et al. Credibility, replicability, and reproducibility in simulation for
biomedicine and clinical applications in neuroscience. Front. Neuroinform. 12, 18
(2018).

Olivier, B. G., Rohwer, J. M. & Hofmeyr, J.-H. S. Modelling cellular systems with
PySCeS. Bioinformatics 21, 560-561 (2005).

Published in partnership with the Systems Biology Institute

https://github.com/CSchoel/shm-conduction
https://www.ebi.ac.uk/biomodels/MODEL2103050002
https://github.com/CSchoel/shm-conduction
https://www.ebi.ac.uk/biomodels/MODEL2103050002
https://www.ebi.ac.uk/biomodels/MODEL2103050002
https://github.com/CSchoel/shm-conduction
https://www.ebi.ac.uk/biomodels/MODEL2101280001
https://www.ebi.ac.uk/biomodels/MODEL2101280001

32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

Clewley, R. Hybrid models and biological model reduction with PyDSTool. PLoS
Comput. Biol. 8, 1002628 (2012).

Lopez, C. F., Muhlich, J. L, Bachman, J. A. & Sorger, P. K. Programming biological
models in Python using PySB. Mol. Syst. Biol. 9, 646 (2013).

Choi, K. et al. Tellurium: An extensible python-based modeling environment for
systems and synthetic biology. Biosystems 171, 74-79 (2018).

Smith, L. P, Bergmann, F. T,, Chandran, D. & Sauro, H. M. Antimony: a modular
model definition language. Bioinformatics 25, 2452-2454 (2009).

Bezanson, J.,, Edelman, A., Karpinski, S. & Shah, V. B. Julia: A fresh approach to
numerical computing. SIAM Rev. 59, 65-98 (2017).

Mattsson, S. E. & EImqvist, H. Modelica—an International effort to design the next
generation modeling language. In 7th IFAC Symposium on Computer Aided Con-
trol Systems Design, CACSD’97, 51-155 (Gent, Belgium, 1997).

Matejak, M. et al. Physiolibrary—Modelica library for physiology. In Proceedings of
the 10th International Modelica Conference, 499-505 (Lund, Sweden, 2014).
Maggioli, F, Mancini, T. & Tronci, E. SBML2Modelica: Integrating biochemical
models within open-standard simulation ecosystems. Bioinformatics 36, 2165-2172
(2019).

Hellerstein, J. L, Gu, S., Choi, K. & Sauro, H. M. Recent advances in biomedical
simulations: A manifesto for model engineering. F1000Research 8, 261 (2019).
Blochwitz, T. et al. The functional mockup interface for tool independent
exchange of simulation models. In Proceedings of the 8th International Modelica
Conference, 105-114 (Dresden, Germany, 2011).

Blochwitz, T. et al. Functional mockup interface 2.0: the standard for tool inde-
pendent exchange of simulation models. In Proceedings of the 9th International
Modelica Conference, 173-184 (Munich, Germany, 2012).

Zhu, X-G. et al. Plants in silico: Why, why now and what?-An integrative platform
for plant systems biology research. Plant, Cell Environ. 39, 1049-1057 (2016).
Mirschel, S., Steinmetz, K., Rempel, M., Ginkel, M. & Gilles, E. D. ProMoT: Modular
modeling for systems biology. Bioinformatics 25, 687-689 (2009).

Kell, D. The virtual human: Towards a global systems biology of multiscale, dis-
tributed biochemical network models. [UBMB Life 59, 689-695 (2007).
Hasenauer, J.,, Jagiella, N., Hross, S. & Theis, F. J. Data-driven modelling of biolo-
gical multi-scale processes. J Coupled Syst. Multiscale Dyn. 3, 101-121 (2015).
Oliveira, A, Kohwalter, T, Kalinowski, M., Murta, L. & Braganholo, V. XChange: a
semantic diff approach for XML documents. Information Systems 94, 101610 (2020).
Dréger, A. et al. SBML2LaTeX: conversion of SBML files into human-readable
reports. Bioinformatics 25, 1455-1456 (2009).

Lincoln, P. & Tiwari, A. Symbolic systems biology: hybrid modeling and analysis of
biological networks. In Hybrid Systems: Computation and Control (eds Alur, R. &
Pappas, G. J.), 660-672 (Springer, 2004).

Bortolussi, L. & Policriti, A. Hybrid systems and biology. In Formal Methods for
Computational Systems Biology (eds Bernardo, M., Degano, P. & Zavattaro, G.)
424-448 (Springer, 2008).

Rejniak, K. A. & Anderson, A. R. A. Hybrid models of tumor growth. Wiley Inter-
discip. Rev. Syst. Biol. Med. 3, 115-125 (2011).

Yu, T. et al. The physiome model repository 2. Bioinformatics 27, 743-744 (2011).
Bassingthwaighte, J. B. Strategies for the physiome project. Anna. Biomed. Eng.
28, 1043-1058 (2000).

Holzhiitter, H.-G., Drasdo, D., Preusser, T., Lippert, J. & Henney, A. M. The virtual
liver: a multidisciplinary, multilevel challenge for systems biology. Wiley Inter-
discip. Rev. Syst. Biol. Med. 4, 221-235 (2012).

Zhu, H., Huang, S. & Dhar, P. The next step in systems biology: simulating the
temporospatial dynamics of molecular network. BioEssays 26, 68-72 (2004).
Loew, L. M. & Schaff, J. C. The virtual cell: a software environment for compu-
tational cell biology. Trends in Biotechnol. 19, 401-406 (2001).

Butterworth, E., Jardine, B. E,, Raymond, G. M., Neal, M. L. & Bassingthwaighte, J. B.
JSim, an open-source modeling system for data analysis. F1000Research 2, 288
(2013).

Yan, K. & Cui, W. Visualizing the uncertainty induced by graph layout algorithms.
In 2017 IEEE Pacific Visualization Symposium (PacificVis), 200-209 (Seoul, South
Korea, 2017).

Kerren, A. & Schreiber, F. Network visualization for integrative bioinformatics. In
Approaches in Integrative Bioinformatics (eds Chen, M. & Hofestadt, R.), 173-202
(Springer, 2014).

Le Novére, N. et al. The systems biology graphical notation. Nat. Biotechnol. 27,
735-741 (2009).

Gongalves, E., lersel, M. & Saez-Rodriguez, J. CySBGN: a cytoscape plug-in to
integrate SBGN maps. BMC Bioinformatics 14, 17 (2013).

Gauges, R, Rost, U, Sahle, S., Wengler, K. & Bergmann, F. T. The Systems Biology
Markup Language (SBML) level 3 package: Layout, version 1 core. J. Integr.
Bioinform. 12, 550-602 (2015).

Bergmann, F. T., Keating, S. M., Gauges, R., Sahle, S. & Wengler, K. SBML level 3
package: Render, version 1, release 1. J. Integr. Bioinform. 15 https://doi.org/
10.1515/jib-2017-0078 (2018).

Published in partnership with the Systems Biology Institute

C. Scholzel et al.

np)j

64.

65.

66.

67.

68.

69.

70.

71.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

Alves, R., Antunes, F. & Salvador, A. Tools for kinetic modeling of biochemical
networks. Nature Biotechnol. 24, 667-672 (2006).

Mangourova, V., Ringwood, J. & Van Vliet, B. Graphical simulation environments
for modelling and simulation of integrative physiology. Comput. Methods Pro-
grams Biomed. 102, 295-304 (2011).

Keating, S. M. et al. SBML Level 3: an extensible format for the exchange and
reuse of biological models. Mol. Syst. Biol. 16, €9110 (2020).

Bornstein, B. J,, Keating, S. M., Jouraku, A. & Hucka, M. LibSBML: An API library for
SBML. Bioinformatics 24, 880-881 (2008).

Cuellar, A. A. et al. An overview of CellML 1.1, a biological model description
language. Simulation 79, 740-747 (2003).

Garny, A. & Hunter, P. J. OpenCOR: A modular and interoperable approach to
computational biology. Front. Physiol. 6, 26 (2015).

Nickerson, D. & Buist, M. Practical application of CellML 1.1: The integration of
new mechanisms into a human ventricular myocyte model. Prog. Biophys. Mol.
Biol. 98, 38-51 (2008).

Margolis, B. W. L. SimuPy: a Python framework for modeling and simulating
dynamical systems. J. Open Source Softw. 2, 396 (2017).

Fritzson, P. et al. The OpenModelica modeling, simulation, and development
environment. In Proceedings of the 46th Conference on Simulation and Modelling
of the Scandinavian Simulation Society (Trondheim, Norway, 2005).

Akesson, J. R, Gafvert, M. & Tummescheit, H. J. Modelica—An open source
platform for optimization of modelica models. In Proceedings of the 6th Vienna
International Conference on Mathematical Modelling (Vienna, Austria, 2009).
EImqyist, H., Henningsson, T. & Otter, M. Systems modeling and programming in
a unified environment based on Julia. InISoLA 2016: Leveraging Applications of
Formal Methods, Verification and Validation: Discussion, Dissemination, Applica-
tions, 198-217 (Corfu, Greece, 2016).

Rackauckas, C. & Nie, Q. DifferentialEquations.jl—A Performant and Feature-Rich
Ecosystem for Solving Differential Equations in Julia. Journal of Open Research
Software 5, 15 (2017).

Seidel, H. & Herzel, H. Modelling heart rate variability due to respiration and
baroreflex. In Modelling the Dynamics of Biological Systems (eds Mosekilde, E. &
Mouritsen, O. G.), 205-229 (Springer, 1995).

Kotani, K., Struzik, Z., Takamasu, K., Stanley, H. & Yamamoto, Y. Model for complex
heart rate dynamics in health and diseases. Phys. Rev. E 72, 041904 (2005).
Kotani, K., Takamasu, K. Ashkenazy, Y., Stanley, H. & Yamamoto, Y. Model for
cardiorespiratory synchronization in humans. Phys. Rev. E 65, 051923 (2002).
Scholzel, C. Modelica implementation of the Seidel-Herzel model of the human
baroreflex. Zenodo https://doi.org/10.5281/ZENODO.3855126 (2020).

Duggento, A, Toschi, N. & Guerrisi, M. Modeling of human baroreflex: con-
siderations on the Seidel-Herzel model. Fluct. Noise Lett. 11, 1240017 (2012).
Tiller, M. Modelica by Example https://mbe.modelica.university/. E-book (Michael
Tiller, 2020).

Schélzel, C,, Blesius, V., Ernst, G. & Dominik, A. An understandable, extensible, and
reusable implementation of the Hodgkin-Huxley equations using Modelica. Front.
Physiol. 11, 583203 (2020).

Karr, J. R. et al. A whole-cell computational model predicts phenotype from
genotype. Cell 150, 389-401 (2012).

Freeman, E., Robson, E., Bates, B. & Sierra, K. Head First Design Patterns (O'Reilly,
Sebastopol, CA, 2004).

Kofranek, J., Rusz, J. & Matousek, S. Guyton's Diagram brought to life—From
graphic chart to simulation model for teaching physiology. In Technical Com-
puting Prague 2007: 15th Annual Conference Proceedings, 1-13 (Prague, Czech
Republic, 2007).

Briese, L. E., Klockner, A. & Reiner, M. The DLR environment library for multi-
disciplinary aerospace applications. In Proceedings of the 12th International
Modelica Conference, 929-938 (Prague, Czech Republic, 2017).

Casella, F., Bartolini, A., Pasquini, S. & Bonuglia, L. Object-oriented modelling and
simulation of large-scale electrical power systems using Modelica: A first feasi-
bility study. In Proceedings of the IECON 2016—42nd Annual Conference of the IEEE
Industrial Electronics Society, 6298-6304 (Florence, Italy, 2016).

Sweller, J. Cognitive Load Theory. In Advances in Cognitive Load Theory: Rethinking
Teaching (eds Tindall-Ford, S., Agostinho, S. & Sweller, J.) 1st edn., 1-11 (Routle-
dge, 2019).

Petzold, L. R. Description of DASSL: A differential/algebraic system solver. Sandia
Report SAND82-8637 (Sandia National Laboratories, Alouquerque, New Mexico;
Livermore, California, 1982).

Hastings, J. et al. ChEBI in 2016: improved services and an expanding collection of
metabolites. Nucleic Acids Res. 44, D1214-D1219 (2016).

Cook, D. L., Bookstein, F. L. & Gennari, J. H. Physical properties of biological
entities: an introduction to the ontology of physics for biology. PLoS ONE 6,
€28708 (2011).

Neal, M. L. et al. Semantics-based composition of integrated cardiomyocyte
models motivated by real-world use cases. PLoS ONE 10, e0145621 (2015).

npj Systems Biology and Applications (2021) 27

19

https://doi.org/10.1515/jib-2017-0078
https://doi.org/10.1515/jib-2017-0078
https://doi.org/10.5281/ZENODO.3855126
https://mbe.modelica.university/

np)

C. Scholzel et al.

20

93. Justus, N., Scholzel, C., Dominik, A. & Letschert, T. Mo|E—a communication service
between Modelica compilers and text editors. In Proceedings of the 12th Inter-
national Modelica Conference, 815-822 (Prague, Czech Republic, 2017).

94. Scholzel, C, Blesius, V., Ernst, G. & Dominik, A. Characteristics of mathematical
modeling languages that facilitate model reuse in systems biology: a software
engineering perspective. bioRxiv. Preprint at https://doi.org/10.1101/
2019.12.16.875260v6 (2021).

95. Scholzel, C. CSchoel/shm-conduction: Release v1.1.1. Zenodo https://doi.org/
10.5281/zenodo0.4585654 (2021).

ACKNOWLEDGEMENTS

We thank our four anonymous reviewers for their much valued input which greatly
improved the quality of this article. C. Scholzel would like to thank Denis Noble, Peter
Hunter, James Bassingthwaighte, Maxwell Neal, and Herbert Sauro for insightful
discussions about the IUPS and NSR Physiome projects, CellML, and present and
future challenges for systems biology. We also thank Alexander Goesmann for his
advice regarding the focus of the article and Jochen Blom, Bjérn Pfarr and Annina
Hofferberth for proofreading the manuscript.

AUTHOR CONTRIBUTIONS

CS., VB, and AD. conceived the project, C.S. implemented the models and
performed the experiments, V.B. and G.E. provided physiological consultation and
criticism, C.S. drafted the manuscript and V.B., G.E,, and A.D. revised it.

FUNDING
Open Access funding enabled and organized by Projekt DEAL.

npj Systems Biology and Applications (2021) 27

COMPETING INTERESTS

The authors declare no competing interests.

ADDITIONAL INFORMATION

Supplementary information The online version contains supplementary material
available at https://doi.org/10.1038/541540-021-00182-w.

Correspondence and requests for materials should be addressed to C.S.

Reprints and permission information is available at http://www.nature.com/
reprints

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims
in published maps and institutional affiliations.

Open Access This article is licensed under a Creative Commons

BY Attribution 4.0 International License, which permits use, sharing,
adaptation, distribution and reproduction in any medium or format, as long as you give
appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made. The images or other third party
material in this article are included in the article’s Creative Commons license, unless
indicated otherwise in a credit line to the material. If material is not included in the
article’s Creative Commons license and your intended use is not permitted by statutory
regulation or exceeds the permitted use, you will need to obtain permission directly
from the copyright holder. To view a copy of this license, visit http://creativecommons.
org/licenses/by/4.0/.

© The Author(s) 2021

Published in partnership with the Systems Biology Institute

https://doi.org/10.1101/2019.12.16.875260v6
https://doi.org/10.1101/2019.12.16.875260v6
https://doi.org/10.5281/zenodo.4585654
https://doi.org/10.5281/zenodo.4585654
https://doi.org/10.1038/s41540-021-00182-w
http://www.nature.com/reprints
http://www.nature.com/reprints
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

	Characteristics of mathematical modeling languages that facilitate model reuse in systems biology: a software engineering perspective
	Introduction
	Results
	Desirable characteristics for a mathematical modeling language for systems biology
	MoDROGH characteristics: Modular
	Guidelines
	Importance in SHM modeling task
	References

	MoDROGH characteristics: human-readable
	Guidelines
	Importance in SHM modeling task
	References

	MoDROGH characteristics: hybrid
	Guidelines
	Importance in SHM modeling task
	References

	MoDROGH characteristics: open
	Guidelines
	Importance in SHM modeling task
	References

	MoDROGH characteristics: declarative
	Guidelines
	Importance in SHM modeling task
	References

	MoDROGH characteristics: graphical
	Guidelines
	Importance in SHM modeling task
	References

	Existing languages exhibit MoDROGH characteristics to varying extent
	MoDROGH languages: MATLAB
	MoDROGH languages: SBML
	MoDROGH languages: CellML
	MoDROGH languages: Python
	MoDROGH languages: Antimony
	MoDROGH languages: Modelica
	MoDROGH languages: Julia
	MoDROGH languages: comparison of existing candidates
	Modularizing a model of the human cardiac conduction system facilitates reuse

	Discussion
	Methods
	Material
	Modular conduction model
	Modular contraction experiment setup

	DATA AVAILABILITY
	References
	Acknowledgements
	Author contributions
	Funding
	Competing interests
	ADDITIONAL INFORMATION

