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Summary

Background—Alzheimer’s disease is a debilitating and highly heritable neurological condition. 

As such, genetic studies have sought to understand the genetic architecture of Alzheimer’s disease 

since the 1990s, with successively larger genome-wide association studies (GWAS) and meta-

analyses. These studies started with a small sample size of 1086 individuals in 2007, which was 

able to identify only the APOE locus. In 2013, the International Genomics of Alzheimer’s Project 

(IGAP) did a meta-analysis of all existing GWAS using data from 74 046 individuals, which stood 

as the largest Alzheimer’s disease GWAS until 2018. This meta-analysis discovered 19 

susceptibility loci for Alzheimer’s disease in populations of European ancestry.

Recent developments—Three new Alzheimer’s disease GWAS published in 2018 and 2019, 

which used larger sample sizes and proxy phenotypes from biobanks, have substantially increased 

the number of known susceptibility loci in Alzheimer’s disease to 40. The first, an updated GWAS 

from IGAP, included 94 437 individuals and discovered 24 susceptibility loci. Although IGAP 

sought to increase sample size by recruiting additional clinical cases and controls, the two other 

studies used parental family history of Alzheimer’s disease to define proxy cases and controls in 

the UK Biobank for a genome-wide association by proxy, which was meta-analysed with data 

from GWAS of clinical Alzheimer’s disease to attain sample sizes of 388 324 and 534 403 

individuals. These two studies identified 27 and 29 susceptibility loci, respectively. However, the 

three studies were not independent because of the large overlap in their participants, and 

interpretation can be challenging because different variants and genes were highlighted by each 

study, even in the same locus. Furthermore, neither the variant with the strongest Alzheimer’s 

disease association nor the nearest gene are necessarily causal. This situation presents difficulties 

for experimental studies, drug development, and other future research.

Where next?—The ultimate goal of understanding the genetic architecture of Alzheimer’s 

disease is to characterise novel biological pathways that underly Alzheimer’s disease pathogenesis 

and to identify novel drug targets. GWAS have successfully contributed to the characterisation of 

the genetic architecture of Alzheimer’s disease, with the identification of 40 susceptibility loci; 
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however, this does not equate to the discovery of 40 Alzheimer’s disease genes. To identify 

Alzheimer’s disease genes, these loci need to be mapped to variants and genes through functional 

genomics studies that combine annotation of variants, gene expression, and gene-based or 

pathway-based analyses. Such studies are ongoing and have validated several genes at Alzheimer’s 

disease loci, but greater sample sizes and cell-type specific data are needed to map all GWAS loci.

Introduction

Alzheimer’s disease is a neurological condition characterised by progressive decline in 

cognition, with concomitant functional decline.1 The primary pathological hall mark of 

Alzheimer’s disease is the aggregation of amyloid β peptides into extracellular plaques and 

of hyperphosphorylated tau into intracellular neurofibrillary tangles, accompanied by neuro 

inflammation, gliosis, and neurodegeneration.2

Genetic factors play an important part in the development of Alzheimer’s disease. In 

autosomal dominant Alzheimer’s disease, highly penetrant mutations in APP, PSEN1, or 

PSEN2 result in monogenic Alzheimer’s disease, typically with early onset.3 However, most 

cases of Alzheimer’s disease (99%) involve multiple genetic, environ mental, and lifestyle 

factors, with genetics accounting for up to 53% of total phenotypic variance.4 Until 2018, 

the largest genome–wide association study (GWAS) of Alzheimer’s disease had been done 

in 2013, identifying 19 risk loci.5 Beyond locus identification, characterization of risk loci 

can implicate functional genetic variants and genes, which can inform mechanistic studies 

and rational drug development. Compared with drug targets with no evidence of genetic 

association, drug targets supported by evidence of both genetic association with disease and 

functional data are twice as likely to progress from phase 1 studies to successful approval.6

In 2018 and 2019, three new GWAS in Alzheimer’s disease have been published, expanding 

the number of known genome–wide risk loci to 40.7–9 In this Rapid Review, we summarise 

discovered loci, emphasising that the specific functional or causal gene in each locus is often 

unknown. To ensure genomic risk loci and lead single nucleotide polymorphisms (SNPs) are 

consistent across studies, we used the default settings of Functional Mapping and 

Annotation10 on published GWAS summary statistics, then annotated loci with cytogenetic 

band using SNPnexus (panel 1).11 Because the lead SNP in each locus varies across studies, 

we provide a unified list of SNPs associated with Alzheimer’s disease across GWAS, 

highlighting genetic correlations to emphasise when lead SNPs are equivalent or different. 

Finally, we discuss the strength of GWAS evidence at different loci for Alzheimer’s disease, 

and necessary steps to assign a likely functional gene.

GWAS

In GWAS, millions of common coding and non–coding genetic variants across the genome 

are tested for association with a trait (panel 2). Functional variants are often not directly 

genotyped, but can be correlated with genotyped variants due to linkage disequilibrium (in 

which restricted recombination between loci causes non–random transmission of alleles). 

Furthermore, functional variants often regulate expression of a nearby gene, rather than 

changing the coding sequence.16 Thus, GWAS generally do not discover functional variants 
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or genes, but instead identify genetic loci associated with traits. Informatic and functional 

characterisation is then needed to further identify functional variants and genes.

GWAS have increased statistical power by adding clinically or pathologically diagnosed 

cases and controls. This method is time–consuming and expensive due to the extensive 

efforts needed for recruitment, ascertainment, and genotyping. With the advent of large 

biobanks such as the UK Biobank (>500 000 participants), large population-based cohorts of 

genotyped individuals are now available. However, ascertainment of Alzheimer’s disease 

cases is limited in these biobanks because enrolled participants tend to be too young to have 

a high probability of developing Alzheimer’s disease; in the UK Biobank, only about 1000 

individuals have a diagnosis of Alzheimer’s disease, based on International Classification of 

Diseases 10 codes. Genome–wide association studies by proxy (GWAX)17 are a novel 

solution to this problem, using parental history of a trait to identify proxy cases and controls. 

This approach requires approximately four times as many proxy cases and controls for 

equivalent power to traditional GWAS. However, GWAX can massively increase statistical 

power compared with GWAS due to a larger sample size by including younger samples from 

large biobanks.17 Unknown sample overlap in meta–analysis of cohort studies can lead to 

false associations due to recruitment of individuals into multiple studies, an issue which 

large-scale bio banks will exacerbate.18 Funding agencies have begun to address this issue 

through globally unique identifiers or similar solutions.

An underlying issue for GWAS of Alzheimer’s disease is the use of clinical phenotypes, 

often in the absence of specific biomarkers or neuropathologically defined phenotypes. 

Although Alzheimer’s disease is mainly characterised by the presence of amyloid plaques 

and neurofibrillary tangles, concomitant or alternative neuro degenerative pathologies can 

lead to clinical phenotypes analogous to Alzheimer’s disease.2 For example, in a 

community–based autopsy cohort, approximately 60% of patients with clinical diagnoses of 

Alzheimer’s–type disease were in fact affected by a vascular disease pathology, TDP43, or 

Lewy body pathology rather than plaques and tangles.19 This problem is further exacerbated 

in the GWAX framework, because parental history of Alzheimer’s disease is often less 

precise than clinical diagnoses due to a lack of distinction between Alzheimer’s disease and 

other dementia subtypes. Phenotypic heterogeneity due to misdiagnosis of Alzheimer’s 

disease results in genetic heterogeneity and reduced statistical power for GWAS discovery.20 

Furthermore, Alzheimer’s disease pathology can be found in cognitively normal individuals, 

who might develop the clinical manifestations of Alzheimer’s disease if they live long 

enough.2 Inclusion of young–old (60–69 years) or younger participants as controls in 

Alzheimer’s disease GWAS might lead to further confounding and reduced statistical power; 

the genetic aetiology of non–Mendelian early–onset Alzheimer’s disease dementia seems to 

be the same as in late–onset Alzheimer’s disease dementia,21 but individuals with earlier 

onset might have higher combined genetic and environmental risk. Rather than using age–

matched case–control studies, use of the youngest possible cases with the oldest possible 

controls might substantially improve the discovery power of GWAS in late–onset diseases 

such as Alzheimer’s disease.22,23 Existing Alzheimer’s disease GWAS cohorts have 

generally included a minimum age restriction for cases, and have occasionally used young 

population controls, both practices that should be avoided in future recruitment if possible.
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A potential further confounding factor is population stratification, which causes GWAS 

associations to tag population differences rather than disease associations.24 To resolve this 

issue, a homogeneous population is selected in which population outliers are excluded, and 

principal components are used to reduce overall genetic variation and thus capture and 

account for remaining stratification due to genetic ancestry.24 In this Rapid Review, we 

focus on GWAS done in populations of European ancestry due to their large sample sizes 

and increased statistical power, but GWAS have also been performed in other ethnicities 

(panel 3). Fine–scale population structure could still be an under lying issue that can be 

partly accounted for by covarying on more principal components.29 Fully accounting for 

population structure might require more complex models that adjust for local ancestry of 

specific regions of DNA to truly be controlled.24

Advances in Alzheimer’s disease GWAS

The first GWAS for Alzheimer’s disease of 1086 individuals was done in 2007, and only 

replicated the previous association with APOE.30 Increasing sample sizes from new studies 

and meta–analysis of existing studies led to the discovery of novel Alzheimer’s disease loci,
30 leading to the landmark meta–analysis done by the International Genomics of 

Alzheimer’s Project (IGAP) in 2013.5 This was the largest Alzheimer’s disease GWAS at 

the time and was a meta–analysis of earlier GWAS done by the European Alzheimer Disease 

Initiative, Genetic and Environmental Risk in Alzheimer’s Disease, Cohorts for Heart and 

Aging Research in Genomic Epidemiology, and the Alzheimer Disease Genetics 

Consortium. IGAP’s stage 1 discovery phase consisted of 17 008 Alzheimer’s disease cases 

and 37 154 controls (n=54 162, approximately 8% of cases and controls with pathology 

confirmed), with stage 2 consisting of a follow–up of the top 11 632 SNPs in an additional 

8572 Alzheimer’s disease cases and 11 312 controls (n=74 046). The meta–analysis of stage 

1 and stage 2 identified 19 Alzheimer’s disease susceptibility loci.

A GWAX done in 2018 used 314 278 participants from the UK Biobank,8 with 14 338 

participants reporting paternal and 27 696 participants reporting maternal family history of 

Alzheimer’s disease or dementia. Participants were excluded if their parents were younger 

than 60 years, died before the age of 60 years, or if no age was reported. The GWAX 

summary statistics were then meta–analysed with stage 1 and 2 of the 2013 IGAP GWAS5 

for a total sample of 388 324 individuals. This analysis resulted in the identification of 27 

susceptibility loci. Despite concerns that GWAX reflect different underlying genetic 

architecture than case–control studies due to increased phenotypic heterogeneity, the genetic 

correlation (the proportion of variance in disease liability shared between two traits) between 

self–reported parental history of Alzheimer’s disease and clinically diagnosed Alzheimer’s 

disease was high (maternal rg=0·91; paternal rg=0·66), indicating that this GWAX captured 

the same genetic architecture as a GWAS of clinical Alzheimer’s disease.8,17

Another GWAX done in 20197 expanded its sample size by meta–analysing the IGAP stage 

1 discovery sample,5 a new GWAS from the Psychiatric Genomics Consortium (n=17 477), 

exome–wide data from the Alzheimer’s Disease Sequencing Project (n=7506), and a GWAX 

from the UK Biobank (71 880 proxy cases and 383 378 proxy controls) for a total sample of 

534 403 individuals. Sample overlap between the Alzheimer’s Disease Sequencing Project 
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and IGAP was accounted for statistically. Instead of meta-analysing paternal and maternal 

cases and controls, this GWAX used the number of parents with Alzheimer’s disease 

weighted by the probability of being a case or control on the basis of parental age, rather 

than excluding participants. This analysis identified 29 susceptibility loci.

In 2019, IGAP did the largest GWAS of clinically diagnosed Alzheimer’s disease to date.9 

This analysis increased the IGAP Stage 1 discovery sample to 21 982 cases and 41 944 

controls (n=63 926, approximately 9% of cases and controls with confirmed pathology). The 

meta-analysis with replication samples from stages 2 and 3 produced a final sample size of 

35 274 cases and 59 163 controls (n=94 437). As a result, 24 susceptibility loci were 

discovered.

In total, 40 Alzheimer’s disease susceptibility loci reached genome–wide significance in at 

least one of the four GWAS we discuss (table 1). 15 were replicated across all four GWAS, 

and nine were significant in two or three studies. Two loci identified by the 2013 GWAS,5 

three loci in the 2018 GWAX8 and 2019 GWAS,9 and eight in the 2019 GWAX7 were not 

replicated at full genome–wide significance in the other studies (table 1, figure). All but four 

of those loci (7q35, 16q23.3, 17q21.33, and 18q21.31) reached genome–wide suggestive 

significance (p<1 × 10−5) in at least one of these four studies, suggesting increased sample 

sizes improved statistical power to detect previous suggestive loci. The direction of effect 

was also consistent across studies after accounting for linkage disequilibrium in all except 

six loci (5q14.3, 6p21.1, 7p14.1, 16p12.3, 19p13.3, and 21q21.3), which are among those 

containing multiple independent variants. However, there was extensive overlap in the 

sample used between all four Alzheimer’s disease GWAS, so these studies are not 

independent. Across these 40 susceptibility loci, associations were reported for 78 unique 

lead SNPs—although most lead SNPs within particular loci were in high linkage 

disequilibrium, indicating they probably tag the same functional variant or variants (table 1).

From loci to genes

Discovery of 40 risk loci does not equate to the discovery of 40 risk genes. Many 

susceptibility loci in Alzheimer’s disease are annotated as the nearest gene to the lead SNP. 

Furthermore, different studies have identified different lead SNPs and sometimes report 

different nearest genes within the same loci, such as 7q22.1 for which the closest genes 

identified across the four studies were PILRA, ZCWPW1, and NYAP1 (table 1). However, 

only about a third of trait–associated genes are the nearest gene.31 There are 1343 protein–

coding genes within the 1 MB cis–regulatory region for gene expression across the 40 risk 

loci (table 1). As such, mapping of SNPs to the nearest gene can be false, and might result in 

incorrect assumptions about the relevant molecular pathways underlying disease. 

Consequently, genetic research is now moving from identification of loci associated with 

diseases to determination of function and causation.32–34

Several methods prioritise candidate causal variants and genes within loci.32,35 Conditional 

analysis attempts to identify whether there are multiple independent signals within a locus 

by iterative use of traditional genetic association methods,35 repeatedly covarying on top 

variants until no signal remains, but requires raw genetic data and is somewhat stringent; it 

ignores variants with truly independent effects on genes if they are in strong linkage 
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disequilibrium with lead SNPs. Other statistical fine–mapping methods use either raw data 

or summary statistics to predict less stringent sets of variants that are likely to be causal on 

the basis of association statistics and the linkage disequilibrium structure of the locus.35 

Genomic annotation can then be used to assign biological function to the variants selected 

via fine mapping to further prioritise likely functional variants.

Candidate functional SNPs in regulatory and coding regions affect genes differently. Those 

occurring within the protein coding region can affect protein structure or lead to alternative 

splicing, potentially resulting in altered function or in some cases loss of function.35 Genetic 

variants located in non–coding regions often influence phenotypes by altering the expression 

of nearby genes (expression quantitative trait loci [eQTLs]).35 Genetic variants with 

evidence of colocalisation between variant associations and gene expression can be used to 

prioritise functional genes, although this method is limited by availability of gene expression 

datasets from tissues or cells relevant to the trait.35 Many, but not all, existing methods also 

assume there is only one functional variant in the locus.35 In addition to these in–silico 

approaches, candidate causal variants or genes should be experimentally validated in cell–

based systems or model organisms to evaluate their biological function.32,35

The investigators of the 2019 GWAS9 and 2019 GWAX7 did a series of functional genomic 

analyses to prioritise putative risk genes (table 2). In the GWAS, a priority score was 

constructed for genes located within 500 KB of the linkage disequilibrium region for the risk 

locus associated with each lead SNP, which comprised the sum of several categories of 

evidence: exonic functional annotation, expression and eQTLs in all tissues and in those 

relevant to Alzheimer’s disease, correlation between expression and tau burden, differential 

expression in Alzheimer’s disease, or evidence based on biological pathways. By contrast, 

the investigators of the GWAX study used an approach that functionally annotated genome–

wide significant SNPs, then mapped them to genes on the basis of localisation within a gene, 

association with gene expression in any tissue, and the presence of chromatin interactions. 

They then did a gene–based association analysis that estimated the aggregate effect of all 

SNPs in a gene on a trait to identify genes that were significantly associated with 

Alzheimer’s disease. Finally, they further prioritised genes for which the functionally 

annotated SNPs affected gene expression, methylation, or histone acetylation in brain tissue. 

In all three of the GWAS and GWAX studies7–9 the investigators also did gene–set analyses 

to identify biological pathways that were over–represented among genes identified via gene–

based associations analysis.

The 2019 GWAS9 identified 53 genes across 20 non-APOE loci with a priority score of 

greater than 5; the 23 genes with the highest score in each locus are presented in table 2. 

Conditional analysis indicated that there are probably several functional variants in the 

8p21.1 and 6p21.1 loci. The 2019 GWAX7 identified 35 genes across 15 non–APOE loci 

that were implicated in three of the four gene mapping or gene–based analyses used, with 25 

genes having further evidence of brain–specific QTL annotations; the 22 genes with the 

highest evidence in each locus are presented in table 2. Conditional analyses indicated 

multiple independent association signals in the 2q14.3, 6p21.1, 8p21.1, and 19p13.3 loci. 

For the APOE locus, eight genes (PVR, TOMM40, BCAM, APOC1, APOC4, CLPTM1, 

IGSF23, and APOE) were implicated by all four of the gene–mapping or gene–based 
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analyses used. PVR and TOMM40 also have further evidence of brain–specific eQTL and 

methylation QTLs (mQTLs). Conditional analysis also indicated that there are potentially 

multiple independent signals in the APOE locus. Pathway analysis in the 2018 and 2019 

GWAX7,8 and the 2019 GWAS9 implicated pathways related to lipid traits, tau, and APP or 

amyloid β. The 2018 GWAX8 and 2019 GWAS9 also implicated immune response 

pathways. These results remained significant even after removal9 or conditioning of APOE.8

11 genes overlapped between the analyses in the 2019 GWAX7 and in the 2019 GWAS:9 

CR1, BIN1, HLA-DRB1, CD2AP, PILRA, CLU, PT2KB, PICALM, ADAM10, ABCA7, 

and CASS4 (table 2). Independent of these two studies, fine mapping, whole–exome or 

whole–genome sequencing, targeted resequencing, and in–vitro experimental validation 

studies have identified common or rare functional variants in APOE, CR1, BIN1, TREM2, 

CLU, PILRA, SORL1, ADAM10, ABCA7, and CD33 (table 2).37 Gene expression analysis 

has also identified eQTLs in either myeloid cells or microglia for SPI1, MS4A4A, and 

MS4A6A (table 2).37 Despite this progress, functional variants or genes have not been 

identified for most Alzheimer’s disease loci.

A limitation of functional genomics studies in Alzheimer’s disease is the lack of well–

powered QTL data for microglia, which are probably the most relevant disease-affected cell 

type on the basis of SNP heritability.38 No large QTL datasets exist for human microglia, 

leading investigators to use QTL datasets for peripheral myeloid cells. Additionally, most 

QTL datasets are generated under baseline conditions, but some functional variants might be 

dependent on intrinsic or extrinsic factors not present under baseline conditions. As a result, 

the inability to assign functional variants or causal genes might be due to the absence of 

annotations in disease–relevant conditions.

The limitations of functional genomics are high lighted in the APOE locus in which the 

combination of a gene–dense region, complex linkage disequilibrium structure, and non–

specific QTL datasets led the investigators of the 2019 GWAX7 to implicate seven other 

genes in addition to APOE as potential functional genes in this locus.

Conclusions and future directions

GWAS have identified 40 loci that are associated with Alzheimer’s disease in European 

populations, 24 of which are replicated at genome–wide suggestive significance.5,7–9 

Functional genomics studies further suggests APOE, CR1, BIN1, TREM2, CLU, SORL1, 

ADAM10, ABCA7, CD33, SPI1, and PILRA as the likely causal genes in their respective 

loci.37 Although GWAS have made substantial progress in characterisation of the genetic 

architecture of Alzheimer’s disease, much work remains to identify the functional genetic 

variants and biological mechanisms underlying the observed associations of genetic loci 

with Alzheimer’s disease. This research will require multi–omic datasets from relevant cell 

types such as microglia, which have been strongly implicated in Alzheimer’s disease 

pathogenesis.38 Multiethnic GWAS will aid in mapping of specific variants because of 

divergent genetic variation (panel 3). Research efforts will be also needed to overcome the 

challenge of obtaining the necessary sample sizes in cell–type–specific datasets, especially if 

some associations only apply to specific subsets of cells (eg, activated microglia).38 Until 
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functional mapping of GWAS associations are complete, putative gene annotations should 

be interpreted cautiously.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Panel 1: Glossary of terms

Cytogenetic band

Subregion of a chromosome that is visible under a microscope after staining

Exon

Any part of a transcribed gene that is incorporated into the final functional RNA 

molecule

Genome-wide association study (GWAS)

Observational study of a genome-wide set of genetic variants in different individuals to 

test whether a variant is associated with a trait

GWAS by proxy

A GWAS in which the phenotype is inferred on the basis of parental phenotype

Locus

A fixed position on the genome where a specific gene or genetic marker is located; in 

GWAS a locus represents the top single nucleotide polymorphism (SNP) and all SNPs in 

linkage disequilibrium with it

Linkage disequilibrium

Correlation between genetic variants caused by non-random segregation of alleles located 

close to one another on a chromosome

Population stratification

Genetic variation that tags population structure instead of the phenotype of interest; 

stratification can be as subtle as geographical location within a country or as extreme as 

ethnicity

Quantitative trait locus

A genetic locus that is associated with a quantitative trait such as gene expression, DNA 

methylation, or protein expression; quantitative trait locus studies are generally done 

genome-wide at the SNP level

Genome-wide significance

A result that is significant according to the Bonferroni corrected significance threshold 

(α/n), in which the number of comparisons (n) is the number of independent genetic loci 

based on linkage disequilibrium; in Europeans, genome-wide significance for an 

uncorrected α of 0·05 is p less than 5 × 10−8; this threshold differs depending on 

ethnicity

SNP

A genomic site where a single nucleotide (the basic unit of genetic code) varies between 

individuals; these variants may or may not affect phenotype
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Panel 2: Rare genetic variant analyses in Alzheimer’s disease

Genome-wide association studies traditionally only capture associations with common 

genetic variants—those with a minor allele frequency greater than 1%. However, with the 

release of genotype imputation panels such as the Haplotype Reference Consortium, it is 

now possible to accurately impute genotypes at allele frequencies as low as 0·1%.12 

Furthermore, next-generation sequencing methods such as whole-exome sequencing, 

whole-genome sequencing, and exome arrays allow for the identification of rare genetic 

variants (genetic variants with a minor allele frequency less than 1%) associated with 

disease. The identification of rare genetic variants associated with disease can identify 

novel loci or, when located within the coding region of a gene, can pinpoint the causal 

gene in known loci identified in genome-wide association studies. Rare genetic variant 

analyses in Alzheimer’s disease have identified coding variants located within PLD3,3 

TREM2,3 ABI3,13 PLCG2,13 PILRA,14 ABCA7,14 and SORL1.15
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Panel 3: Non-European Alzheimer’s disease genome-wide association 
studies

Non-European genome-wide association studies of Alzheimer’s disease have identified 

genome-wide significant variants in African-American (APOE, 7p12.1 [rs112404845], 

13q33.1 [rs16961023], and 19p13.3),25 Chinese (14q22.2 [rs72713460], 21q22.13 

[rs928771]),26 and transethnic populations (5q31.3 [rs11168036], 10p14 [rs7920721], 

and 17q22 [rs2632516]).27 The genomic diversity across populations offers opportunities 

to discover new loci that might be specific to a particular population, and can improve the 

identification of functional variants in known loci due to differences in linkage 

disequilibrium structure.28 As such, it is important to include diverse populations in 

genetic studies of Alzheimer’s disease.
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Search strategy and selection criteria

We searched PubMed for genome-wide association studies of Alzheimer’s disease 

published between Jan 1, 2017, and July 1, 2019, using the terms: ((Alzheimer 

Disease[MeSH Terms]) AND association study, genome wide[MeSH Terms]) AND 

(“2017/01/01”[Date - Publication] : “2019/07/31”[Date - Publication]) AND English 

[LA] NOT review[pt]. We included studies in which the outcome was clinically 

diagnosed late-onset Alzheimer’s disease or a family history of Alzheimer’s disease that 

were done in participants of European ancestry. The final reference list was generated on 

the basis of relevance and novelty to this Rapid Review.
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Figure: Combined Manhattan plot of four Alzheimer’s disease GWAS, showing loci with 
genome-wide significance
Coloured circles represent loci that had genome-wide significance in each study, while 

empty circles represent non-significant loci for each study. GWAS=genome-wide association 

studies.
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Table 1:

Loci associated with Alzheimer’s disease from four GWAS

Locus Study rsID chr:pos:ref:alt LD Nearest Gene (N) AF OR (95% CI) P

1q23.3 X19 rs4575098 1:161155392:G:A ADAMTS4 (57) 0.239 1.02 (1.01–1.02) 2.1E-10

1q32.2 S13 rs6656401 1:207692049:A:G 1 CR1 (25) 0.784 0.85 (0.82–0.87) 5.7E-24

X18 rs6656401 1:207692049:A:G 1 CR1 (26) 0.784 0.87 (0.85–0.89) 1.4E-29

X19 rs2093760 1:207786828:A:G 1 CR1 (23) 0.775 0.98 (0.97–0.98) 1.1E-18

S19 rs4844610 1:207802552:A:C 1 CR1 (25) 0.780 0.85 (0.83–0.88) 3.6E-24

2q14.3 X19 rs4663105 2:127891427:A:C 1 BIN1 (17) 0.412 1.03 (1.03–1.04) 3.4E-44

S13 rs6733839 2:127892810:C:T 1 BIN1 (17) 0.395 1.22 (1.18–1.25) 6.9E-44

X18 rs6733839 2:127892810:C:T 1 BIN1 (17) 0.395 1.20 (1.17–1.22) 2.4E-69

S19 rs6733839 2:127892810:C:T 1 BIN1 (17) 0.395 1.20 (1.17–1.23) 2.1E-44

2q37.1 X19 rs10933431 2:233981912:G:C 1 INPP5D (35) 0.761 1.02 (1.01–1.02) 8.9E-10

S19 rs10933431 2:233981912:G:C 1 INPP5D (35) 0.761 1.10 (1.06–1.13) 3.4E-09

S13 rs35349669 2:234068476:C:T 2 INPP5D (35) 0.512 1.08 (1.05–1.11) 3.2E-08

X18 rs35349669 2:234068476:C:T 2 INPP5D (35) 0.512 1.07 (1.05–1.09) 3.6E-11

3p14.3 X19 rs184384746 3:57226150:C:T HESX1 (27) 0.002 1.21 (1.14–1.30) 1.2E-08

4p16.1 X19 rs6448453 4:11026028:A:G CLNK (5) 0.772 0.99 (0.98–0.99) 1.9E-09

5q14.3 S13 rs190982 5:88223420:G:A MEF2C (2) 0.663 1.08 (1.05–1.11) 3.2E-08

6p21.32 X18 rs34855541 6:32559825:A:G 1 HLA-DRB1 (116) 0.135 0.90 (0.87–0.92) 9.5E-15

S19 rs9271058 6:32575406:A:T 2 HLA-DRB1 (120) 0.713 0.91 (0.88–0.93) 1.4E-11

S13 rs111418223 6:32578530:C:A 2 HLA-DQA1 (116) 0.713 0.90 (0.87–0.93) 2.9E-12

X19 rs6931277 6:32583357:A:T 1 HLA-DQA1 (118) 0.122 0.98 (0.98–0.99) 8.4E-11

6p21.1 X19 rs187370608 6:40942196:G:A 1 UNC5CL (30) 0.001 1.25 (1.19–1.32) 1.5E-16

S19 rs114812713 6:41034000:G:C 2 OARD1 (25) 0.019 1.32 (1.19–1.46) 2.1E-13

X18 rs9381040 6:41154650:C:T 3 TREML2 (29) 0.353 0.94 (0.92–0.96) 1.5E-08

6p12.3 S19 rs9473117 6:47431284:A:C 1 CD2AP (15) 0.265 1.09 (1.06–1.12) 1.2E-10

X18 rs9381563 6:47432637:C:T 2 CD2AP (15) 0.656 0.93 (0.91–0.95) 5.8E-14

X19 rs9381563 6:47432637:C:T 2 CD2AP (15) 0.656 0.99 (0.98–0.99) 2.5E-10

S13 rs10948363 6:47487762:A:G 1 CD2AP (15) 0.263 1.10 (1.07–1.13) 5.2E-11

7p14.1 S13 rs2718058 7:37841534:A:G GPR141 (10) 0.347 0.93 (0.90–0.95) 4.8E-09

7q22.1 X19 rs1859788 7:99971834:A:G 1 PILRA (85) 0.715 1.02 (1.01–1.02) 2.2E-15

S13 rs1476679 7:100004446:C:T 1 ZCWPW1 (82) 0.730 1.09 (1.06–1.12) 5.6E-10

X18 rs1476679 7:100004446:C:T 1 ZCWPW1 (85) 0.730 1.10 (1.07–1.12) 9.9E-19

S19 rs12539172 7:100091795:T:C 1 NYAP1 (82) 0.714 1.09 (1.06–1.11) 9.3E-10

7q34-q35 X18 rs10808026 7:143099133:C:A 1 EPHA1 (42) 0.204 0.91 (0.89–0.93) 1.1E-14

S19 rs10808026 7:143099133:C:A 1 EPHA1 (42) 0.204 0.90 (0.88–0.93) 1.3E-10

X19 rs7810606 7:143108158:T:C 2 EPHA1 (44) 0.425 1.01 (1.01–1.02) 3.6E-11

S13 rs11771145 7:143110762:G:A 3 EPHA1 (42) 0.396 0.90 (0.88–0.93) 1.1E-13

7q35 X19 rs114360492 7:145950029:C:T CNTNAP2 (44) <0.001 1.19 (1.12–1.26) 2.1E-09

8p21.1 X18 rs4236673 8:27464929:A:G 1 CLU (24) 0.611 1.12 (1.09–1.14) 1.1E-28

X19 rs4236673 8:27464929:A:G 1 CLU (25) 0.611 1.02 (1.02–1.02) 2.6E-19
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Locus Study rsID chr:pos:ref:alt LD Nearest Gene (N) AF OR (95% CI) P

S13 rs9331896 8:27467686:C:T 1 CLU (24) 0.610 1.16 (1.13–1.19) 2.8E-25

S19 rs9331896 8:27467686:C:T 1 CLU (24) 0.610 1.14 (1.11–1.17) 4.6E-24

10p14 X19 rs11257238 10:11717397:T:C 1 USP6NL (10) 0.382 1.01 (1.01–1.02) 1.3E-08

X18 rs7920721 10:11720308:A:G 1 ECHDC3 (10) 0.393 1.07 (1.05–1.09) 3.2E-11

S19 rs7920721 10:11720308:A:G 1 ECHDC3 (10) 0.393 1.08 (1.05–1.11) 1.8E-11

11p11.2 S19 rs3740688 11:47380340:G:T 1 SPI1 (43) 0.526 1.09 (1.07–1.12) 5.5E-13

X18 rs12292911 11:47449072:G:A 2 PSMC3 (42) 0.369 1.06 (1.04–1.08) 3.3E-09

S13 rs10838725 11:47557871:T:C 3 CELF1 (42) 0.290 1.08 (1.05–1.11) 1.1E-08

11q12.2 S13 rs983392 11:59923508:A:G 1 MS4A6A (52) 0.376 0.90 (0.87–0.92) 6.1E-16

S19 rs7933202 11:59936926:A:C 1,2 MS4A6A (52) 0.341 0.89 (0.87–0.92) 1.9E-19

X19 rs2081545 11:59958380:C:A 2 MS4A6A (52) 0.342 0.98 (0.98–0.99) 1.6E-15

X18 rs1582763 11:60021948:G:A 3 MS4A4E (52) 0.328 0.92 (0.90–0.93) 1.0E-18

11q14.2 X19 rs867611 11:85776544:G:A 1 PICALM (16) 0.692 1.02 (1.02–1.02) 2.2E-18

S13 rs10792832 11:85867875:A:G 2 PICALM (16) 0.667 1.15 (1.12–1.18) 9.3E-26

X18 rs10792832 11:85867875:A:G 2 PICALM (16) 0.667 1.13 (1.11–1.15) 5.1E-36

S19 rs3851179 11:85868640:T:C 2 EED (16) 0.667 1.14 (1.11–1.17) 6.0E-25

11q24.1 S13 rs11218343 11:121435587:T:C 1 SORL1 (6) 0.034 0.77 (0.72–0.82) 9.7E-15

X18 rs11218343 11:121435587:T:C 1 SORL1 (6) 0.034 0.81 (0.77–0.85) 4.6E-17

X19 rs11218343 11:121435587:T:C 1 SORL1 (6) 0.034 0.97 (0.96–0.98) 1.1E-11

S19 rs11218343 11:121435587:T:C 1 SORL1 (6) 0.034 0.80 (0.75–0.85) 2.9E-12

14q22.1 X18 rs17125924 14:53391680:A:G 1 FERMT2 (16) 0.099 1.12 (1.08–1.15) 1.3E-11

S19 rs17125924 14:53391680:A:G 1 FERMT2 (16) 0.099 1.14 (1.09–1.18) 1.4E-09

S13 rs17125944 14:53400629:T:C 1 FERMT2 (16) 0.097 1.14 (1.09–1.19) 7.9E-09

14q32.12 S13 rs10498633 14:92926952:G:T 1 SLC24A4 (23) 0.228 0.91 (0.88–0.94) 5.5E-09

S19 rs12881735 14:92932828:T:C 1 SLC24A4 (23) 0.238 0.92 (0.89–0.94) 7.4E-09

X18 rs12590654 14:92938855:G:A 2 SLC24A4 (23) 0.347 0.92 (0.90–0.95) 8.2E-12

X19 rs12590654 14:92938855:G:A 2 SLC24A4 (23) 0.347 0.99 (0.98–0.99) 1.6E-10

15q21.2 X18 rs59685680 15:51001534:T:G SPPL2A (19) 0.247 0.93 (0.91–0.96) 9.2E-09

15q21.3 X19 rs442495 15:59022615:T:C 1 ADAM10 (18) 0.334 0.99 (0.98–0.99) 1.3E-09

X18 rs593742 15:59045774:A:G 2 ADAM10 (18) 0.298 0.93 (0.91–0.95) 2.8E-11

S19 rs593742 15:59045774:A:G 2 ADAM10 (18) 0.298 0.93 (0.91–0.95) 6.8E-09

15q22.2 X19 rs117618017 15:63569902:C:T APH1B (18) 0.107 1.02 (1.01–1.02) 3.3E-08

16p12.3 S19 rs7185636 16:19808163:T:C IQCK (30) 0.156 0.92 (0.89–0.95) 2.4E-08

16p11.2 X18 rs889555 16:31122571:C:T 1 BCKDK (83) 0.322 0.94 (0.92–0.96) 4.1E-08

X19 rs59735493 16:31133100:G:A 1 KAT8 (83) 0.324 0.99 (0.98–0.99) 4.0E-08

16q22.1 X18 rs4985556 16:70694000:C:A IL34 (32) 0.088 1.09 (1.05–1.12) 3.7E-08

16q23.2 S19 rs62039712 16:79355857:G:A WWOX (3) 0.094 1.16 (1.09–1.24) 3.7E-08

16q23.3 X18 rs12444183 16:81773209:A:G PLCG2 (14) 0.657 1.06 (1.04–1.08) 3.2E-08

17p13.2 X18 rs7225151 17:5137047:G:A 1 SCIMP (51) 0.118 1.10 (1.07–1.13) 6.1E-12

X19 rs113260531 17:5138980:G:A 1 SCIMP (47) 0.117 1.02 (1.01–1.03) 9.2E-10

17q21.33 X19 rs28394864 17:47450775:G:A RP11–81K2.1 (46) 0.471 1.01 (1.01–1.02) 1.9E-08

17q22 X19 rs2526380 17:56398006:C:G BZRAP1 (31) 0.449 0.97 (0.96–0.98) 2.6E-08
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Locus Study rsID chr:pos:ref:alt LD Nearest Gene (N) AF OR (95% CI) P

17q23.3 X18 rs138190086 17:61538148:G:A 1 CYB561 (40) 0.017 1.25 (1.16–1.35) 1.9E-09

S19 rs138190086 17:61538148:G:A 1 CYB561 (36) 0.017 1.30 (1.16–1.46) 5.3E-09

18q21.31 X19 rs76726049 18:56189459:T:C ALPK2 (13) 0.011 1.06 (1.04–1.08) 3.3E-08

19p13.3 X19 rs111278892 19:1039323:C:G 1 CNN2 (74) 0.165 1.02 (1.01–1.03) 7.9E-11

X18 rs3752231 19:1043638:C:T 2 ABCA7 (75) 0.239 1.09 (1.07–1.12) 4.4E-13

S19 rs3752246 19:1056492:G:C 3 ABCA7 (75) 0.838 0.87 (0.84–0.90) 3.1E-16

S13 rs4147929 19:1063443:A:G 3 ABCA7 (75) 0.840 0.87 (0.84–0.90) 1.1E-15

19q13.32 S13 rs41289512 19:45351516:C:G 1 PVRL2* (100) 0.030 5.15 (4.58–5.78) 2.2E-167

X18 rs41289512 19:45351516:C:G 1 PVRL2* (105) 0.030 2.50 (2.37–2.63) 6.7E-255

X19 rs41289512 19:45351516:C:G 1 PVRL2* (124) 0.030 1.22 (1.21–1.24) 5.8E-276

S19 rs12691088 19:45418486:G:A 2 APOC1* (101) 0.016 3.39 (3.15–3.65) 2.7E-238

19q13.41 X19 rs3865444 19:51727962:C:A 1 CD33 (75) 0.336 0.99 (0.98–0.99) 6.3E-09

X18 rs12459419 19:51728477:C:T 1 CD33 (75) 0.336 0.94 (0.92–0.96) 8.0E-09

20q13.2-q13.31 X18 rs6069736 20:54983075:C:T 1 CSTF1 (16) 0.088 0.89 (0.86–0.93) 2.0E-10

S19 rs6024870 20:54997568:G:A 1,2 CASS4 (16) 0.083 0.88 (0.85–0.92) 3.5E-08

X19 rs6014724 20:54998544:A:G 1,2 CASS4 (16) 0.089 0.98 (0.97–0.98) 6.6E-10

S13 rs7274581 20:55018260:T:C 2 CASS4 (16) 0.091 0.88 (0.84–0.92) 2.5E-08

21q21.3 S19 rs2830500 21:28156856:C:A ADAMTS1 (4) 0.336 0.93 (0.91–0.95) 2.6E-08

Nearest protein coding gene to the lead SNP in the locus refers to the nearest protein-coding gene and number of genes within 1 MB of the 
Functional Mapping and Annotation locus. chr:pos:ref:alt=chromosome, base pair position, reference allele, and alternate allele from human 

genome build 19. LD=linkage disequilibrium, where numbers are assigned to blocks of highly correlated (R2≥0·8) or identical SNPs in each locus, 
ordered by the position of the first variant in each block; see appendix (pp 1–2) for further LD information. GWAS=genome-wide association study. 

OR=odds ratio for alternate allele. S13=2013 GWAS.5 S19=2019 GWAS.9 X18=2018 GWAX.8 X19=2019 GWAX.7 SNP=single nucleotide 
polymorphism.

*
These nearest genes are in the APOE locus, where a LD region surrounding the ε4-defining SNP (rs429358) is maximally significant, but the ε2-

defining SNP (rs7412) is less significant than the displayed variant, therefore, these signals are likely due to APOE ε4.
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Table 2:

Implicated genes in AD risk loci using functional genomics analyses

Kunkle et al 2019 Jansen et al 2019 Functional Evidence
†

Locus Nearest Gene Implicated Gene Nearest Gene Implicated Gene

1q32.2 CR1 CR1 CR1 CR1 CR1 copy number variation

2q14.3 BIN1 BIN1 BIN1 BIN1 BIN1 3bp insertion

2q37.1 INPP5D INPP5D INPP5D -

6p21.32 HLA-DRB1 HLA-DRB1 PSMB8 HLA-DQA1 HLA-DRB1 HLA-DRA

6p21.1 OARD1 TREM2 UNC5CL - TREM2 rare variants

6p12.3 CD2AP CD2AP CD2AP CD2AP

7q22.1 NYAP1 PILRA AGFG2 PILRA PILRA ZCWPW1 STAG3 
GATS

PILRA G78R 38

7q34-q35 EPHA1 FAM121B EPHA1 EPHA1 ZYX

8p21.1 CLU CLU PTK2B CLU CLU PTK2B CLU rare coding variants & indels

11p11.2 SPI1 PSMC3 - - SPI1 myeloid eQTL

11q12.2 MS4A6A MS4A6A MS4A6A MS4A3 MS4A4A, MS4A6A myeloid 
eQTL

11q14.2 EED EED PICALM PICALM PICALM

11q24.1 SORL1 SORL1 SORL1 - SORL1 rare variants

14q22.1 FERMT2 STYX - -

14q32.12 SLC24A4 RIN3 SLC24A4 SLC24A4

15q21.3 ADAM10 ADAM10 ADAM10 ADAM10 ADAM10 rare variants

16p12.3 IQCK IQCK - -

17p13.2 - - SCIMP SCIMP

19p13.3 ABCA7 ABCA7 CNN2 ABCA7 CNN2 ABCA7 LoF mutations & 
deletions

19q13.41 - - CD33 CD33 CD33 splicing variants

20q13.2-q13.31 CASS4 CASS4 CASS4 CASS4

†
See Pimenova, Raj & Goate 2018 21 for an in-depth review.
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