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Inactivation of SARS-CoV-2 Laboratory Specimens
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Abstract.

The burden on diagnostic and research laboratories to provide reliable inactivation for biological specimens

to allow for safe downstream processing is high during the coronavirus disease 2019 (COVID-19) pandemic. We provide
safety data regarding commonly used chemical and physical inactivation procedures that verify their effectiveness
against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).

Severe acute respiratory syndrome coronavirus 2 (SARS-
CoV-2) is the cause of the current coronavirus disease 2019
(COVID-19) pandemic.’™ There is a high demand for safe
sample handling to perform tests on in vitro and in vivo ma-
terial in research and diagnostic laboratories worldwide.
SARS-CoV-2 is considered a risk group 3 pathogen, and
safety at workplaces is of the highest priority.* SARS-CoV-2 is
an enveloped, single-strand, positive-sense RNA virus with a
genome size of approximately 30 kb.23* Its biological, bio-
chemical, and physical features make the virus sensitive to
chemical and physical inactivation procedures. We evaluated
commonly used inactivation procedures to generate safe
material for downstream genome, protein, immune response,
and histopathology analyses.

All infectious work was performed under high biocontain-
ment conditions at the Rocky Mountain Laboratories of
the National Institute of Allergy and Infectious Diseases
(NIAID) according to standard operating protocols (SOPs)
approved by the Institutional Biosafety Committee (IBC).
For our studies, we used the SARS-CoV-2 isolate n"CoV-WA1 -
2020 (MN985325.1; kindly provided by the Centers for Dis-
ease Control and Prevention).® SARS-CoV-2 replication in cell
culture causes a cytopathic effect (CPE), thus allowing for a
simple readout parameter. SARS-CoV-2 stocks were grown
in VeroE6 cells and titrated using a tissue culture infectious
dose 50% (TCIDsg) assay.” The TCIDs, was calculated via the
Reed-Muench formula to a concentration of 4 x 108 TCIDso/
mL.8 Cells were produced by infecting VeroE6 cells at a mul-
tiplicity of infection of 0.01 SARS-CoV-2. Cells were harvested
in Dulbecco’s phosphate-buffered saline (DPBS) at CPE of
approximately 75%, counted, and frozen (-80°C) in aliquots of
2x 105 5 x 105 and 2 x 107 cells/mL. SARS-CoV-2-infected
lung tissue (=1 x 10"° TCIDs0/g) was obtained from a previous
Syrian hamster study approved by the Institutional Animal
Care and Use Committee.®

We tested the physical and chemical inactivation of virus
stocks as well as chemical inactivation of infected cells and
tissue. Triplicate samples were dialyzed with an 8- to 10-kDa
molecular weight cutoff (Repligen Corporation, Waltham, MA)
using DPBS over a stir plate at 4°C (> 500-fold exchange
volumes, five changes during 32-48 hours) or run over a de-
tergent removal column (DetergentOUT GBS10-5000 col-
umns; G-Biosciences, St. Louis, MO). DPBS and noninfected
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VeroE6 cells and hamster lung tissues served as negative
controls. Untreated virus stocks and SARS-CoV-2-infected
VeroE6 cells and hamster lung tissue were used as positive
controls. All samples were brought to a final volume of 3 mland
equally divided to infect VeroE6 cells (80% confluency) in
triplicate for a total of 9 flasks per sample type. Cells were
incubated at 37°C for 7 days and monitored regularly for CPE.
Three days after initial infection, samples were passaged by
transferring 1 mL supernatant each to a new flask of VeroE6
cells (80% confluency). Additionally, we tested extracted RNA
with or without transfection reagents to assess RNA in-
fectivity. The results are summarized in Table 1, and detailed
protocols are provided as Supplementary Material.

IRRADIATION

Inactivation by irradiation is the preferred method for
specimens used for a variety of serological, immunological,
and biochemical assays, for which authentic protein and
particle structure are critical. We previously determined that a
dose of 1.0 Megarad (10,000 Gray) completely inactivated
SARS-CoV-1, strain Tor 2 (10). To determine a breakthrough
dose for inactivation, we treated 1 x 10° TCIDso of SARS-CoV-
2 with 0, 0.2, 0.4 0.6, 0.8, and 1.0 Megarad. We used a JL
Shepherd Model 484R irradiator (JL Shepherd and Asso-
ciates, San Fernando, CA) using a cobalt-60 source as pre-
viously described.® Irradiation was performed on dry ice and
samples were co-located with lithium fluoride film dosimeters
on a rotating platform to assure homogeneous irradiation and
confirm the absorbed doses. VeroE6 cells were infected in
triplicate with the treated samples and monitored for CPE. As
with SARS-CoV-1, only the dose of 1.0 Megarad completely
inactivated SARS-CoV-2 (Table 1).

CHAOTROPIC REAGENTS

For nucleic acid extraction, we used the guanidinium iso-
thiocyanate buffers AVL and RLT (Qiagen, Hilden, Germany)
as well as TRIzol (Life Technologies, Carlsbad, CA), as rec-
ommended by the manufacturers. AVL was mixed with stock
virus at a ratio of 1:5 (sample:total) and incubated for 10
minutes at room temperature, followed by transfer to 560 pL of
100% ethanol for 20 minutes at room temperature (Table 1).
Infected cells (5 x 10°) were resuspended and incubated in
RLT for 10 minutes, followed by the addition of 600 yL of 70%
ethanol for an incubation period of 20 minutes. Infected lung
tissue was homogenized in RLT with a stainless-steel bead
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(10 minutes at 30 Hz). A soluble aliquot (equivalent to ~30 mg)
was transferred to a new tube and fresh RLT was added to a
volume of 600 pl, followed by the addition of 70% ethanol
(600 uL) for 20 minutes. TRIzol was mixed with stock virus at a
ratio of 1:3.2 (sample:total) and incubated for 10 minutes at
room temperature (Table 1). Infected cells (5 x 105 were
resuspended and treated with TRIzol (1:3 sample:total). Infected
lung samples were homogenized, and an aliquot of tissue ho-
mogenate (~50 mg) was transferred to a new tube and fresh
TRIzol was added. After immediate dialysis, VeroE6 cells were
inoculated with the treated material and monitored for CPE. In all
cases, no CPE was observed, indicating complete inactivation of
SARS-CoV-2 by AVL, RLT, and TRIzol (Table 1).

RNA INFECTIVITY

The single-strand, positive-sense RNA genome of corona-
viruses may start a replication cycle on entry into cells, sub-
sequently generating infectious virus. Therefore, we
performed direct infectivity testing of extracted RNA in water
on VeroEB6 cells. RNA was simply added to the cell monolayer
or transfected with the reagents Lipofectamine LTX (Invi-
trogen, Carlsbad, CA), TransIT LT1 (Mirus Bio, Madison, WI),
or TransIT-mRNA (Mirus Bio) according to the manufacturers’
recommendations. Although TransIT LT1 is designed pri-
marily for DNA transfection and unlikely to aid the uptake of the
SARS-CoV-2 RNA genome, Lipofectamine LTX supports
transfection of both RNA and DNA components, and TransIT-
mRNA is specifically designed for RNA transfection. Trans-
fection mixtures containing 30 yL RNA (one-half the elution
volume) were tested in duplicate, and each sample was evenly
split across three wells of a six-well plate of VeroE6 cells at
80% confluency. No CPE was observed by viral RNA alone or
transfection with reagents other than TransIT-mRNA, in-
dicating that SARS-CoV-2 genomic RNA is noninfectious
under these conditions (Table 1).

FIXATIVES

Formalin and paraformaldehyde are commonly used to fix
cells or tissues for histologic or microscopic analyses. In-
fected cells (2 x 10%) were diluted in 1 mL 10% neutral-buffered
formalin (Leica Biosystems, Wetzlar, Germany) or (2 x 107) 2%
paraformaldehyde (Electron Microscopy Services, Hatfield,
PA) overnight at 4°C. Samples were pelleted by centrifugation
and washed with DPBS in a minimum of three cycles to
remove fixative and used to infect VeroE6 cells. Monitoring of
cells revealed the absence of CPE, indicating complete in-
activation of SARS-CoV-2 (Table 1).

Infected hamster tissue was incubated in 10 mL of 10%
neutral-buffered formalin (full lungs) or 2% paraformaldehyde
(half lung) for a period of 7 days at 4°C. Subsequently, a small
section of tissue (~150 mg) was dissected and homogenized
in DPBS. After a minimum of three cycles of pelleting and
washing with DPBS, samples were used to infect VeroE6 cells.
Monitoring of cells confirmed the absence of CPE, indicating
complete inactivation of SARS-CoV-2 (Table 1).

DETERGENTS

Detergent treatment under heat is often used for protein
analysis. Aliquots of virus stock (300 pL) or infected cells

(5 x 108 in 300 pL) were diluted in 100 pL 4 x loading buffer
(1% sodium dodecyl sulfate [SDS] final) and boiled at 100°C
for 10 minutes. Detergent was immediately removed through
DetergentOUT columns (G-Biosciences). Treated samples
were tested for inactivation on VeroEG6 cells. Although titers
were not measured from control samples after this treatment,
CPE viathe positive samples was not delayed, indicating that
a significant reduction in virus because of treatment alone
was unlikely. In test samples, no CPE was noticed, indicating
complete inactivation of SARS-CoV-2 (Table 1).

CONCLUSIONS

The study verified the safe use of common chemical and
physical treatment procedures for the complete inactivation of
SARS-CoV-2 in distinct specimen types (Table 1). Addition-
ally, we have shown that SARS-CoV-2 genomic RNA alone is
unlikely to spontaneously generate virus from introduction to
cells. The inactivation procedures are likely to apply to all
coronaviruses because of the similar biological, biochemical,
and biophysical features within the virus family. These data
may provide guidance for IBCs to evaluate SOPs for the in-
activation of SARS-CoV-2 containing biological specimens.
The well-defined results may also assist in the improvement
and approval of SOPs for inactivation without the need to
verify inactivation for individual samples, which is unfeasible
with the current diagnostic and research operations.
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