Table 4. Parameters tuned for analysis of classifiers.
MLP | P | Activation | Early-stopping | Hidden layersize | Learning rate | Learning rate init | Solver | Toll |
---|---|---|---|---|---|---|---|---|
V | ReLU | True | (5,5,5) | Adaptive | 0.001 | Sgd | 0.0001 | |
KNN | P | N_neighbour | Metric | n-jobs | Weights | |||
V | 12 | Euclidean | None | Uniform | ||||
DT | P | Max_depth | Criteria | Min_sample_leaf | ||||
V | 100 | Entropy | 5 | |||||
RF | P | Max_depth | Criteria | Min_sample_leaf | n_estimators | |||
V | 100 | Entropy | 1 | 200 | ||||
NN | P | Data division | Training | Performance | Derivative | |||
V | Random | Levenberg_Marquadt | Mean squared error | Default | ||||
FES | P | MFs | Nodes | Linear parameters | Nonlinear parameters | Total Parameters | ||
V | [3,3] | 870 | 2,132 | 60 | 2,192 | |||
ARIMA | P | p-value | d-value | q-value | Covariance type | Performance | ||
V | 5 | 1 | 0 | Opaque | Mean squared error |