Skip to main content
. 2021 May 28;7:e540. doi: 10.7717/peerj-cs.540

Table 4. Parameters tuned for analysis of classifiers.

MLP P Activation Early-stopping Hidden layersize Learning rate Learning rate init Solver Toll
V ReLU True (5,5,5) Adaptive 0.001 Sgd 0.0001
KNN P N_neighbour Metric n-jobs Weights
V 12 Euclidean None Uniform
DT P Max_depth Criteria Min_sample_leaf
V 100 Entropy 5
RF P Max_depth Criteria Min_sample_leaf n_estimators
V 100 Entropy 1 200
NN P Data division Training Performance Derivative
V Random Levenberg_Marquadt Mean squared error Default
FES P MFs Nodes Linear parameters Nonlinear parameters Total Parameters
V [3,3] 870 2,132 60 2,192
ARIMA P p-value d-value q-value Covariance type Performance
V 5 1 0 Opaque Mean squared error