Table 4. Classification error rate, sensitivity and Brier score produced by Random Forest, k-Nearest Neighbors and Support Vector Machine classifiers on srbct dataset based on genes selected by the given methods. The best result is shown in bold.
| RF | kNN | SVM | |||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Genes | POS | RPOS | GClust | sigF | Wilc | mRmR | POS | RPOS | GClust | sigF | Wilc | mRmR | POS | RPOS | GClust | sigF | Wilc | mRmR | |
| 5 | Err | 0.048 | 0.019 | 0.096 | 0.040 | 0.021 | 0.390 | 0.078 | 0.034 | 0.100 | 0.000 | 0.074 | 0.078 | 0.086 | 0.021 | 0.035 | 0.007 | 0.328 | 0.412 |
| BS | 0.005 | 0.002 | 0.096 | 0.029 | 0.023 | 0.236 | 0.007 | 0.001 | 0.057 | 0.002 | 0.071 | 0.074 | 0.037 | 0.003 | 0.028 | 0.011 | 0.217 | 0.255 | |
| sen | 0.919 | 0.988 | 0.961 | 0.980 | 0.978 | 0.549 | 1.000 | 1.000 | 0.718 | 1.000 | 0.915 | 0.914 | 0.878 | 0.998 | 0.942 | 0.984 | 0.608 | 0.574 | |
| 10 | Err | 0.018 | 0.021 | 0.027 | 0.035 | 0.013 | 0.086 | 0.039 | 0.038 | 0.055 | 0.000 | 0.071 | 0.069 | 0.016 | 0.011 | 0.029 | 0.006 | 0.204 | 0.143 |
| BS | 0.002 | 0.003 | 0.029 | 0.027 | 0.022 | 0.089 | 0.004 | 0.002 | 0.041 | 0.000 | 0.076 | 0.071 | 0.016 | 0.002 | 0.031 | 0.013 | 0.138 | 0.093 | |
| sen | 0.999 | 0.991 | 0.957 | 0.981 | 0.977 | 0.879 | 1.000 | 1.000 | 0.852 | 1.000 | 0.925 | 0.918 | 0.992 | 0.995 | 0.943 | 0.998 | 0.766 | 0.785 | |
| 15 | Err | 0.004 | 0.014 | 0.016 | 0.001 | 0.013 | 0.165 | 0.039 | 0.035 | 0.075 | 0.000 | 0.074 | 0.071 | 0.004 | 0.004 | 0.015 | 0.002 | 0.188 | 0.182 |
| BS | 0.002 | 0.002 | 0.028 | 0.021 | 0.024 | 0.142 | 0.002 | 0.002 | 0.047 | 0.000 | 0.071 | 0.073 | 0.005 | 0.001 | 0.015 | 0.010 | 0.118 | 0.129 | |
| sen | 0.995 | 0.991 | 0.956 | 0.998 | 0.977 | 0.805 | 1.000 | 1.000 | 0.807 | 1.000 | 0.927 | 0.910 | 0.995 | 1.000 | 0.962 | 1.000 | 0.756 | 0.764 | |
| 20 | Err | 0.009 | 0.007 | 0.016 | 0.010 | 0.009 | 0.081 | 0.036 | 0.036 | 0.053 | 0.000 | 0.066 | 0.071 | 0.011 | 0.003 | 0.020 | 0.002 | 0.144 | 0.130 |
| BS | 0.002 | 0.002 | 0.029 | 0.021 | 0.023 | 0.088 | 0.002 | 0.002 | 0.041 | 0.000 | 0.069 | 0.072 | 0.007 | 0.001 | 0.019 | 0.010 | 0.098 | 0.082 | |
| sen | 0.987 | 0.990 | 0.956 | 1.000 | 0.986 | 0.875 | 1.000 | 1.000 | 0.895 | 1.000 | 0.919 | 0.911 | 0.997 | 0.999 | 0.986 | 1.000 | 0.797 | 0.816 | |
| 25 | Err | 0.009 | 0.004 | 0.017 | 0.011 | 0.009 | 0.067 | 0.038 | 0.020 | 0.060 | 0.000 | 0.066 | 0.074 | 0.011 | 0.008 | 0.030 | 0.000 | 0.134 | 0.098 |
| BS | 0.002 | 0.002 | 0.031 | 0.021 | 0.024 | 0.084 | 0.002 | 0.001 | 0.039 | 0.001 | 0.071 | 0.072 | 0.006 | 0.002 | 0.023 | 0.008 | 0.087 | 0.067 | |
| sen | 0.992 | 0.997 | 0.956 | 1.000 | 0.987 | 0.881 | 1.000 | 1.000 | 0.870 | 1.000 | 0.923 | 0.915 | 0.999 | 0.997 | 0.977 | 1.000 | 0.826 | 0.885 | |
| 30 | Err | 0.006 | 0.006 | 0.023 | 0.007 | 0.005 | 0.075 | 0.034 | 0.002 | 0.047 | 0.000 | 0.064 | 0.065 | 0.009 | 0.014 | 0.018 | 0.000 | 0.131 | 0.129 |
| BS | 0.002 | 0.002 | 0.029 | 0.022 | 0.024 | 0.094 | 0.002 | 0.001 | 0.040 | 0.001 | 0.069 | 0.070 | 0.006 | 0.002 | 0.017 | 0.006 | 0.087 | 0.090 | |
| sen | 0.992 | 0.997 | 0.957 | 1.000 | 0.994 | 0.883 | 1.000 | 1.000 | 0.866 | 1.000 | 0.914 | 0.924 | 0.998 | 0.999 | 0.951 | 1.000 | 0.828 | 0.855 | |