Skip to main content
. 2021 May 26;7:e551. doi: 10.7717/peerj-cs.551

Table 5. Prediction performance of proposed ECOVNet without using ensemble.

Method Pre-trained Weight Precision(%) Recall(%) F1-score(%) Accuracy(%)(95% CI)
ECOVNet (Without Augmentation) EfficientNet-B0 93.27 93.29 93.27 93.29± 1.23
EfficientNet-B1 94.28 94.30 94.26 94.30± 1.14
EfficientNet-B2 93.24 93.03 93.08 93.03± 1.26
EfficientNet-B3 95.56 95.57 95.56 95.57± 1.01
EfficientNet-B4 95.52 95.50 95.50 95.50± 1.02
EfficientNet-B5 96.28 96.26 96.26 96.26 ± 0.94
ECOVNet (With Augmentation) EfficientNet-B0 91.71 74.10 79.72 74.10± 2.16
EfficientNet-B1 91.02 86.19 87.67 86.19± 1.70
EfficientNet-B2 93.60 93.10 93.24 93.10± 1.25
EfficientNet-B3 92.60 90.25 90.92 90.25± 1.46
EfficientNet-B4 94.32 93.73 93.89 93.73± 1.20
EfficientNet-B5 94.79 94.68 94.70 94.68 ± 1.11

Note:

Bold indicates that the method has statistically better performance than other methods.