Table 5. Prediction performance of proposed ECOVNet without using ensemble.
Method | Pre-trained Weight | Precision(%) | Recall(%) | F1-score(%) | Accuracy(%)(95% CI) |
---|---|---|---|---|---|
ECOVNet (Without Augmentation) | EfficientNet-B0 | 93.27 | 93.29 | 93.27 | 93.29± 1.23 |
EfficientNet-B1 | 94.28 | 94.30 | 94.26 | 94.30± 1.14 | |
EfficientNet-B2 | 93.24 | 93.03 | 93.08 | 93.03± 1.26 | |
EfficientNet-B3 | 95.56 | 95.57 | 95.56 | 95.57± 1.01 | |
EfficientNet-B4 | 95.52 | 95.50 | 95.50 | 95.50± 1.02 | |
EfficientNet-B5 | 96.28 | 96.26 | 96.26 | 96.26 ± 0.94 | |
ECOVNet (With Augmentation) | EfficientNet-B0 | 91.71 | 74.10 | 79.72 | 74.10± 2.16 |
EfficientNet-B1 | 91.02 | 86.19 | 87.67 | 86.19± 1.70 | |
EfficientNet-B2 | 93.60 | 93.10 | 93.24 | 93.10± 1.25 | |
EfficientNet-B3 | 92.60 | 90.25 | 90.92 | 90.25± 1.46 | |
EfficientNet-B4 | 94.32 | 93.73 | 93.89 | 93.73± 1.20 | |
EfficientNet-B5 | 94.79 | 94.68 | 94.70 | 94.68 ± 1.11 |
Note:
Bold indicates that the method has statistically better performance than other methods.