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Abstract
Tooth-related diseases and tooth loss are widespread and are a major public 
health issue. The loss of teeth can affect chewing, speech, appearance and even 
psychology. Therefore, the science of tooth regeneration has emerged, and 
attention has focused on tooth regeneration based on the principles of tooth 
development and stem cells combined with tissue engineering technology. As 
undifferentiated stem cells in normal tooth tissues, dental mesenchymal stem cells 
(DMSCs), which are a desirable source of autologous stem cells, play a significant 
role in tooth regeneration. Researchers hope to reconstruct the complete tooth 
tissues with normal functions and vascularization by utilizing the odontogenic 
differentiation potential of DMSCs. Moreover, DMSCs also have the ability to 
differentiate towards cells of other tissue types due to their multipotency. This 
review focuses on the multipotential capacity of DMSCs to differentiate into 
various tissues, such as bone, cartilage, tendon, vessels, neural tissues, muscle-like 
tissues, hepatic-like tissues, eye tissues and glands and the influence of various 
regulatory factors, such as non-coding RNAs, signaling pathways, inflammation, 
aging and exosomes, on the odontogenic/osteogenic differentiation of DMSCs in 
tooth regeneration. The application of DMSCs in regenerative medicine and tissue 
engineering will be improved if the differentiation characteristics of DMSCs can 
be fully utilized, and the factors that regulate their differentiation can be well 
controlled.

Key Words: Dental mesenchymal stem cells; Regenerative medicine; Tissue engineering; 
Multipotency; Odontogenic differentiation; Osteogenic differentiation

©The Author(s) 2021. Published by Baishideng Publishing Group Inc. All rights reserved.

https://www.f6publishing.com
https://dx.doi.org/10.4252/wjsc.v13.i5.342
http://orcid.org/0000-0002-2102-6686
http://orcid.org/0000-0002-2102-6686
http://orcid.org/0000-0002-2102-6686
http://orcid.org/0000-0002-0386-3827
http://orcid.org/0000-0002-0386-3827
http://orcid.org/0000-0002-2082-9962
http://orcid.org/0000-0002-2082-9962
http://orcid.org/0000-0002-3713-8383
http://orcid.org/0000-0002-3713-8383
http://orcid.org/0000-0002-9986-8023
http://orcid.org/0000-0002-9986-8023
http://orcid.org/0000-0003-4498-5983
http://orcid.org/0000-0003-4498-5983
http://orcid.org/0000-0002-9741-9312
http://orcid.org/0000-0002-9741-9312
http://orcid.org/0000-0003-4484-9455
http://orcid.org/0000-0003-4484-9455
http://creativecommons.org/Licenses/by-nc/4.0/
mailto:mdd@smu.edu.cn


Yin JY et al. Multi-differentiation potential of DMSCs

WJSC https://www.wjgnet.com 343 May 26, 2021 Volume 13 Issue 5

p://creativecommons.org/License
s/by-nc/4.0/

Manuscript source: Unsolicited 
manuscript

Specialty type: Cell and tissue 
engineering

Country/Territory of origin: China

Peer-review report’s scientific 
quality classification
Grade A (Excellent): 0 
Grade B (Very good): B 
Grade C (Good): 0 
Grade D (Fair): 0 
Grade E (Poor): 0

Received: December 21, 2020 
Peer-review started: December 21, 
2020 
First decision: February 14, 2021 
Revised: March 10, 2021 
Accepted: April 4, 2021 
Article in press: April 4, 2021 
Published online: May 26, 2021

P-Reviewer: Niyibizi C 
S-Editor: Fan JR 
L-Editor: Filipodia 
P-Editor: Xing YX

Core Tip: Dental mesenchymal stem cells have been widely used in tissue engineering 
and regenerative medicine due to their multipotential differentiation ability. We herein 
discuss the multipotency of dental mesenchymal stem cells and some related factors 
influencing the odontogenic/osteogenic differentiation, which provide guidance for 
fully utilizing the multipotency of dental mesenchymal stem cells.
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INTRODUCTION
Over the past three decades, in the search for treatments for a variety of degenerative 
diseases and irreversible forms of tissue and organ damage, the emerging field of 
tissue engineering and regenerative medicine (TERM) has attracted a lot of interest, 
and great efforts have been made to realize the regeneration of different types of 
tissues and organs to restore normal physiology and body function. As one of the 
important aspects of regenerative medicine, tissue engineering mainly takes 
advantages of the following three methods: (1) Cell/biomaterial complex systems with 
cell-seeded biomaterials implanted into the body to restore and regenerate 
tissues/organs; (2) Cell systems, such as stem cell transplantation; and (3) Biomaterial 
systems implanted into the body and integrated into tissues[1]. As a vital part of 
TERM, a suitable source of stem cells is a significant initial requirement. Since the 
1990s, the field of stem cell biology has gradually developed and rapidly become a 
main research trend in regenerative medicine. Induced pluripotent stem cells, 
progenitor cells from various tissues, human embryonic stem cells and adult stem cells 
are all potential seed cells for TERM[2]. Cells derived from induced pluripotent stem 
cells or differentiated from human embryonic stem cells can be used to build related 
tissue cell models. Progenitor cells and adult stem cells from various tissues can differ-
entiate into mature tissues.

As adult stem cells, dental mesenchymal stem cells (DMSCs), including dental pulp 
stem cells (DPSCs), periodontal ligament stem cells (PDLSCs), stem cells from apical 
papilla (SCAPs), gingival mesenchymal stem cells (GMSCs), stem cells from human 
exfoliated deciduous teeth (SHED) and dental follicle stem cells (DFSCs) have been 
widely studied because of their ready availability, easy accessibility and lack of 
complex ethical issues. DMSCs have multiple differentiation potential and can differ-
entiate into a variety of tissue-like cells under specific induction conditions, providing 
potential seed cells for TERM. For example, SHED are capable of inhibiting bone loss, 
decreasing neuronal apoptosis and forming pancreatic islet-like clusters[3-5]. DPSCs 
can differentiate into myogenic lineage and corneal stromal-like constructs[6,7] and 
can also reduce bone loss in an osteoporosis mouse model, prevent retinal ganglion 
cell loss and repair spinal cord injury[8-10].

DMSCs, in particular, have great potential for application in engineering 
regeneration of dental tissues. In 2006, Sonoyama et al[11] transplanted a hydrox-
yapatite/SCAP-Gelfoam/PDLSC structure into a swine alveolar socket, which 
regenerated mineralized root-like tissue and formed periodontal ligament space[11]. In 
2012, Guo et al[12] identified a method of combining DFSCs with treated dentin matrix 
scaffolds in the alveolar fossa that proved to be a promising strategy for tooth root 
regeneration[12]. In 2013, Iohara et al[13] transplanted autologous DPSCs with 
granulocyte-colony stimulating factor into a dog pulpectomized tooth and found that 
newly formed pulp tissue, including innervation and vasculature, fully filled in the 
root canal[13].

Efforts have been made to promote tooth regeneration by DMSCs, but many factors 
affect this complex regeneration process, such as correlative non-coding RNAs, 
signaling pathways, inflammation, aging and exosomes. In the process of induced 
differentiation of DMSCs, many non-coding RNAs, including microRNAs and long 
noncoding RNAs (lncRNAs) and related signaling pathways are involved to regulate 
the expression of odontogenic/osteogenic differentiation genes. In addition, donor 
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age, cell senescence and the complex oral inflammatory microenvironment also pose 
great challenges to tooth regeneration by DMSCs. Moreover, the hot topic of research 
in recent years, exosomes, which carry a variety of contents, have also captured the 
attention of researchers in inducing the differentiation of DMSCs. If we can regulate 
these factors well, it will enable a big step forward in the application of DMSCs in the 
field of tooth regeneration. This review focuses on the multidirectional differentiation 
potential of DMSCs and the effect of the above-mentioned factors on the odontogenic/ 
osteogenic differentiation of DMSCs in the field of tooth regeneration, hoping to 
provide a reference for the efficient use of DMSCs.

DIVERSE DIFFERENTIATION OF DMSCS
In addition to the odontogenic differentiation ability of DMSCs, in recent years the 
research on the differentiation of DMSCs into other tissue-like cells, such as 
osteogenesis, chondrogenesis, angiogenesis, neurogenesis and differentiation potential 
toward tendon-like cells, insulin-producing cells, hepatic-like cells, corneal stromal-
like cells, etc. has become popular (Figure 1). To explore the diverse differentiation 
ability of DMSCs is an issue worth exploring.

DPSCs
In 2000, Gronthos et al[14] identified that DPSCs can form alizarin red-positive 
condensed nodules with high levels of calcium cultivated by L-ascorbate-2-phosphate, 
glucocorticoid, dexamethasone and inorganic phosphate[14]. As a seed cell for bone 
regeneration, DPSCs usually attached to some materials for bone defect models. For 
example, Wongsupa et al[15] fabricated a scaffold combination of poly-ε-
caprolactone–biphasic calcium phosphate with the modified melt stretching and 
multilayer deposition technique seeded with human DPSCs (hDPSCs), which 
increased the newly formed bone in calvarial defects rabbit models[15]. However, Jin 
et al[16] showed that adipose tissue-derived stem cells exhibited greater osteogenic 
differentiation potential compared to DPSCs[16].

In vitro, DPSCs can differentiate into chondroblasts, which suggests that it can be 
useful for cartilage injuries[17]. CD146 marked DPSCs can express the chondrogenic 
inducing factor transforming growth factor (TGF)-β3 and form three-dimensional 
cartilage constructs when seeded on poly-L-lactic acid/polyethylene glycol 
electrospun fiber scaffolds[18]. Costal chondrocytes are able to supply a chondro-
inductive niche that promote the DPSCs to undergo chondrogenic differentiation and 
enhance the formation of cartilage[19]. Xenotransplantation of DPSCs in platelet-rich 
plasma and 3% alginate hydrogels significantly regenerated cartilage in rabbit models 
of cartilage damage[20,21].

In 2016, Chen et al[22] first identified expression of tendon-related markers such as 
scleraxis, tenascin-C, tenomodulin, eye absent homologue 2, collagen I and collagen VI 
in dental pulp tissues. Also, DPSCs seeded in aligned polyglycolic acid fiber scaffolds 
can promote the expression of tendon-related markers under mechanical stimulation 
and form mature tendon-like tissue in a mouse model[22]. As neural crest-derived 
cells, DPSCs can be induced to differentiate into neuron-like cells with the use of 
growth factors, including basic fibroblast growth factor and epidermal growth factor, 
which are preferable to the chemical-induction method[23-25]. DPSCs transplanted 
into a rat model of middle cerebral artery occlusion, peripheral nerve injuries and 
retinal injury expressed related neuronal markers[26-28].

Three-dimensional culture promoted the differentiation of hDPSCs into insulin-
producing cells[29], and pancreatic islets were also generated from DPSCs[30]. The 
potential toward insulin-producing cells of hDPSCs was superior to human PDLSCs 
(hPDLSCs)[31]. DPSCs also exhibited angiogenic potential when implanted into 
mouse brain and into a rat model of acute myocardial infarction by promoting 
neovasculogenesis[32,33]. Furthermore, DPSCs differentiated into bladder smooth 
muscle cells in a particular culture medium[34], while the Wnt-GSK3β/β-catenin 
pathway played an important role in this process[35]. DPSCs had the potential to form 
a high-purity hepatic lineage when cultured in serum-free medium[36], and DPSCs 
derived from cryopreserved dental pulp tissue of vital extracted diseased teeth also 
showed the potential to differentiate into hepatic-like cells[37]. Additionally, DPSCs 
had the capacity to differentiate into melanocyte-like cells when cultured in a specific 
melanocyte differentiating medium[38].
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Figure 1  Location of dental mesenchymal stem cells and their diverse differentiation potential. Dental mesenchymal stem cells can be isolated 
from different tissues of the teeth. Dental mesenchymal stem cells have multidifferentiation ability and can differentiate into many tissue-like cells. DPSCs: Dental pulp 
stem cells; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from apical papilla; GMSCs: Gingival mesenchymal stem cells; SHED: Stem cells from 
human exfoliated deciduous teeth; DFSCs: Dental follicle stem cells.

PDLSCs and GMSCs
PDLSCs have great osteogenic differentiation potential. Kato et al[39] observed that 
PDLSCs have the highest levels of some bone differentiation markers without 
osteogenic differentiation among mesenchymal stromal cells derived from bone 
marrow and adipose-derived mesenchymal stem cells[39]. Seeded on nanohydro-
xyapatite-coated genipin-chitosan conjunction scaffold, PDLSCs exhibited significantly 
greater viability and alkaline phosphatase activity and promoted calvarial bone 
repair[40]. Moshaverinia et al[41,42] reported that PDLSCs and GMSCs capsulated in 
an injectable arginine-glycine-aspartic acid tripeptide-coupled alginate microsphere 
delivery system promoted bone regeneration and chondrogenesis, respectively, for a 
calvarial defect animal and subcutaneous implantation of nude mice, and PDLSCs 
showed significantly higher osteogenic and chondrogenic differentiation capability 
compared with GMSCs.

In 2021, Shen et al[43] showed that 6-bromoindir-ubin-3’-oxime promoted 
mineralized nodule formation in PDLSCs[43]. PDLSCs from beagle dogs and humans 
can both be induced to differentiate into neural-like cells by various protocols[44,45], 
and the Wnt/β-catenin signaling pathway has been implicated in this process[46]. 
Bueno et al[47] found that the nuclear shape of hPDLSC-derived neural-like cells was 
similar to cells in neurogenic niches from adult mouse brain, and no cell proliferation 
occurred in the course of neurogenesis. The potential for neurogenesis is improved by 
the addition of specific short peptides or phytocompounds[48-50]. As another stem cell 
type derived from periodontal tissue, GMSCs also have neurogenic differentiation 
potential and displayed action potential capacity when tested by a neurosphere-
mediated induction method[51], while hypoxia preconditioning activated more genes 
associated with neuronal development[52]. In addition, over prolonged passages, 
human GMSCs have been found to spontaneously differentiate into neural precursor 
cells[53].

Encapsulated PDLSCs and GMSCs in an alginate/hyaluronic acid three-
dimensional scaffold promoted the regeneration of neurogenic tissue[54]. Besides, 
PDLSCs had the ability to differentiate into corneal stromal keratocyte-like cells[55] 
and constructed a multilamellar human corneal stromal-like tissue in vitro when 
seeded onto orthogonally aligned, multilayered silk membranes and supplemented 
with the neuropeptide substance P[56]. PDLSCs also could be directed to develop into 
retinal progenitors and islet-like cell clusters with competence for photoreceptor differ-
entiation and secretion of insulin[57,58]. Moreover, both PDLSCs and GMSCs differen-
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tiated into tendon-like cells using an injectable and biodegradable arginine-glycine-
aspartic acid tripeptide-coupled alginate hydrogel scaffold[59]. The GMSCs could also 
be induced to differentiate into functional keratinocytes when treated with Acalypha 
indica in a three-dimensional microenvironment[60].

DFSCs
Human DFSCs can differentiate to osteogenic lineage cells in osteogenic induction 
medium without dexamethasone, and BMP6 is a key gene in the osteogenic 
differentiation[61]. Plasma rich in growth factors and soluble silica can promote 
osteogenic differentiation of DFSCs[62,63]. Lucaciu et al[64] indicated that DFSCs 
could be used for promoting bone regeneration on titanium implant surfaces[64]. 
DFSCs were loaded into poly-ε-caprolactone scaffold and implanted into skulls defects 
of Sprague Dawley rats, and bone regeneration was observed[65]. Undifferentiated 
DFSCs expressed some neural markers, such as nestin, β-III-tubulin and S100β and 
exhibited a spindle-like morphology[66]. Using a two-step strategy for neuronal differ-
entiation, DFSCs could be differentiated into neurosphere-like cell clusters, and finally 
developed a cellular morphology with small bodies and long cellular extrusions while 
exhibiting increased expression of neural cell markers[67].

It has been suggested that human DFSCs may have the potential to differentiation 
toward the glial lineage rather than the neuronal lineage[66]. Induced cardiomyocytes 
derived from DFSCs, which were cultured in medium with suberoylanilide 
hydroxamic acid, could be intraperitoneally injected into experimental mice and 
exhibited homing capacity into the heart muscle[68]. Comparing the differentiation 
potential toward pancreatic β cell-like cells among the stem cells from dental pulp, 
papilla and follicle, the DFSCs demonstrated higher potency and secreted more insulin 
upon glucose challenge[69]. Furthermore, epithelial stem-like cells from the human 
dental follicle were able to differentiate into salivary gland acinar and duct cells[70].

SHED
SHED represent a promising cell source for bone regeneration, which are usually 
combined with many biomaterials. Combined hydroxyapatite scaffold and SHED can 
promote alveolar bone regeneration, and interleukin-17A can enhance osteogenic 
differentiation of SHED, both due to increasing osteoprotegerin/receptor activator of 
nuclear factor κB ligand ratio[71,72]. FGF-2 pretreated SHED represent a faster 
formation of intramembranous bone after implanted in craniofacial bone defects than 
hypoxia pretreated[73]. A carbon nanomaterial named graphene oxide quantum dots 
promotes osteogenic differentiation of SHED via the Wnt/β-catenin signaling 
pathway[74]. In addition, SHED have the chondrogenic differentiation ability. After 
transplantation into the subcutaneous space on the back of nude mice, SHED 
recombined with β-TCP scaffolds were able to produce new cartilage-like tissues[75].

In 2011, SHED were successfully induced to differentiate into neural-like cells by a 
simple short-term growth factor-mediated induction protocol[76], and then in 2013, a 
novel three-stage method was established[77]. Yang et al[78] found that Noggin 
overexpression combined with the Rho kinase inhibitor Y-27632 exhibited a synergistic 
effect in promoting differentiation of SHED into neuron-like cells[78]. The lncRNA 
C21orf121 promotes SHED differentiation into neuronal cells by upregulating the 
expression of BMP2, acting as a competing endogenous RNA to compete with BMP2 
binding to miR-140-5p[79]. SHED in polyglycolic acid tubes combined with 
autografting can regenerate the mandibular branch of the rat facial nerve[80]. Also, 
SHED have been used to repair a Parkinsonian rat model, an acute contused spinal 
cord injury model and a model of diabetic peripheral neuropathy[81-83].

In addition, SHED can differentiate into angiogenic endothelial cells, and when 
cultured with decellularized extracellular matrix of human umbilical vein endothelial 
cells can improve endothelial differentiation[84,85]. Using shear stress via the 
downstream pathway of vascular endothelial-derived growth factor-Notch signaling 
or by inhibiting TGF-β signaling in SHED can enhance endothelial differen-
tiation[86,87]. SHED transplanted into immunodeficient mice using Matrigel with 
human umbilical vein endothelial cells form extensive vessel-like structures[88].

SHED also have the potential for hepatic differentiation, which can be improved by 
using liquorice or angelica extracts in the culture medium[89]. CD117+ SHED 
hepatically differentiated in vitro were used to repair either acute liver injury or 
induced secondary biliary cirrhosis in a rat model[90]. Meanwhile SHED or SHED-
converted hepatocyte-like cell-based spheroids transplanted into a CCl4-induced 
chronic liver fibrosis mouse model improved hepatic dysfunction[91,92].
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Furthermore, SHED can differentiate into epidermal cells and accelerate wound 
repair when seeded onto polyvinyl alcohol/silk fibroin nanofiber dressings[93]. CD117
+ SHED also have the potential to differentiate toward all functional endocrine and 
exocrine subsets of pancreatic cells in serum-free conditions[94]. When cocultured 
with immortal corneal epithelium cells in vitro, SHED display the potential for 
transdifferentiation to corneal epithelium-like cells[95]. Li et al[96] indicated that SHED 
can transdifferentiate into retinal photoreceptor-like cells in vitro and retain good 
viability in vivo after transplantation into mice with a normal immune system[96]. 
Moreover, functional smooth muscle cells can be differentiated from SHED by TGF-β1 
induction, while the ALK5 signaling pathway may regulate this process[97].

SCAPs
In 2020, Deng et al[98] reported that platelet derived growth factor BB promoted 
SCAPs osteogenic differentiation and enhanced bone formation in calvarial defects 
combined with a thermosensitive hydrogel[98]. Both conditioned culture medium 
containing traditional Chinese herbal remedy, Yunnan Baiyao, and high glucose α-
Minimal Essential Medium can promote the odonto/osteogenic differentiation of 
SCAPs through the nuclear factor κB signaling pathway[99,100]. Depletion of lysine-
specific demethylase 2A enhanced the adipogenic and chondrogenic differentiation 
potentials of SCAPs[101]. In 2020, Yang et al[102] reported that DLX5 and HOXC8 
enhanced the expression of chondrogenic markers including type II collagen, type V 
collagen and sex-determining region Y box protein 9[102].

In 2017, Kim et al[103] first formed a three-dimensional cell-based nerve-like tissue 
with axons and myelin structures using SCAPs through a three-dimensional 
organotypic culture method[103]. The secreted frizzled-related protein 2, a Wnt 
signaling modulator, and insulin-like growth factor (IGF)-2 improved the neurogenic 
differentiation potential of SCAPs[104,105]. Adding graphene dispersion and water-
soluble single-walled carbon nanotubes to the neuroinductive medium enhanced the 
neural differentiation of SCAPs[106].

SCAPs show angiogenic potential, and SCAPs and/or DPSCs transplanted in three-
dimensional-printed hydroxyapatite scaffolds can form vascularized dentin/pulp-like 
tissue[107]. Coculture of human umbilical vein endothelial cells and SCAPs under 
hypoxic conditions promotes the construction of vessel-like structures in vitro, and 
ephrinB2 may play an important role in stabilizing the vascular-like struc-
tures[108,109]. Furthermore, erythropoietin enhances the endothelial differentiation of 
SCAPs[110]. In addition, SCAPs also have hepatogenic potential[111], and 
mesenchymal stem cells derived from dental papilla can also be differentiated into 
pancreatic β cell-like cells[69].

MULTIPLE FACTORS INFLUENCING THE ODONTOGENIC/OSTEOGENIC 
DIFFERENTIATION OF DMSCS
MicroRNAs
MicroRNAs (miRNAs) play important roles in regulating the tooth regeneration 
process (Table 1). Downregulation of miR-143-5p and miR-143-3p promotes the 
odontoblastic differentiation of DPSCs through the osteoprotegerin/receptor activator 
of nuclear factor κB ligand signaling pathway[112,113]. Acting via the p38 mitogen-
activated protein kinases (MAPK) signaling pathway, downregulated miR-143-5p and 
miR-488 are capable of inducing DPSCs to differentiate into odontoblast-like cells by 
targeting MAPK14 and MAPK1, respectively[114,115]. Wang et al[116] found that miR-
125a-3p regulates odontoblastic differentiation of DPSCs in an inflammation model by 
targeting Fyn, a member of the protein tyrosine kinase Src family[116].

Meanwhile miR-let-7c-5p can restore the osteogenic differentiation of inflamed 
DPSCs by suppressing the lipopolysaccharide (LPS)-induced inflammatory 
phenomena[117]. In inflamed pulp tissues, miR-223-3p is remarkably upregulated, and 
overexpression of miR-223-3p in DPSCs can increase the protein levels of dentine 
sialophosphoprotein (DSPP) and dentine matrix protein 1[118]. Sun et al[119] found 
that during LPS-mediated odontoblastic differentiation of DPSCs, the expression of 
miR-140-5p is markedly decreased, while when miR-140-5p is expressed in DPSCs 
after LPS treatment, the odontoblastic differentiation ability is inhibited[119].

Additionally, during odontogenesis of hDPSCs, the expression of miR-508-5p 
decreases gradually, while significant inhibition of odontogenesis is observed after 
overexpression of miR-508-5p, which targets glycoprotein nonmetastatic melanomal 
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Table 1 Summary of the microRNAs influencing the odontogenic/osteogenic differentiation of dental mesenchymal stem cells

Ref. MicroRNA Cell type Signaling pathway or 
targets Outcome

Zhan et al[112], 2018 miR-143-5p DPSCs OPG/RANKL Downregulation promoted 
odontoblastic differentiation

Yang et al[113], 2020 miR-143-3p DPSCs OPG/RANKL Downregulation promoted 
odontogenic differentiation

Wang et al[114], 2019 miR-143-5p DPSCs MAPK14 Downregulation promoted 
odontoblastic differentiation

Yu et al[115], 2019 miR-488 DPSCs MAPK1 Downregulation enhanced 
odontoblastic differentiation

Wang et al[116], 2020 miR-125a-3p DPSCs Fyn Regulated odontoblastic differentiation 
in an inflammation model

Yuan et al[117], 2019 miR-let-7c-5p Inflamed human 
DPSCs

- Restored the osteogenic differentiation

Huang et al[118], 2019 miR-223-3p Inflamed human 
DPSCs

- Increased the proteins levels of DSPP 
and DMP-1

Sun et al[119], 2017 miR-140-5p DPSCs - Inhibited odontoblastic differentiation 
after LPS treated

Liu et al[120], 2019 miR-508-5p DPSCs GPNMB Inhibited odontogenic differentiation

Xu et al[121], 2018 miR-21 DPSCs STAT3 Downregulation caused the decreasing 
expression of DMP-1 and DSPP

Qiu et al[122], 2019 miR-146a-5p STRO-1 + human 
DPSCs

- Promoted osteo/odontogenic 
differentiation

Zhang et al[123], 2018 miR-143 DPSCs TNF-α/NF-κB Suppressed the osteogenic 
differentiation

Yao et al[124], 2019 miR-215, miR-219a-1-3p DPSCs HspB8 Inhibited the osteogenic differentiation

Wei et al[125], 2017 miR-21 PDLSCs Smad5 Inhibited osteogenesis

Li et al[126], 2019 miR-24-3p PDLSCs Smad5 Inhibited osteogenic differentiation

Wei et al[127], 2015 miR-21 PDLSCs ACVR2B Performed a positive function in 
mediating the stretch-induced 
osteogenic differentiation

Yao et al[128], 2017; Cao 
et al[129], 2017

miR-214 PDLSCs ATF4, Wnt/β-catenin Downregulation decreased the 
osteogenic differentiation

Bao et al[130], 2019 miR-148a PDLSCs - Downregulation rescued the inhibition 
of osteogenesis triggered by LPS 
stimulation

Yan et al[131], 2017 miR-22 PDLSCs HDAC6 Promoted osteogenesis

Li et al[132], 2018 miR-17 PDLSCs HDAC9 Promoted osteogenesis in an 
inflammation condition

Xu et al[133], 2019 miR-132 PDLSCs GDF5, NF-κB Inhibited the osteogenesis

Zhen et al[134], 2017 miR-31 PDLSCs Satb2 Took part in the high glucose-
suppressed osteogenic differentiation

Wan et al[135], 2012 miR-34a Human dental papilla 
cells

- Increased the expression of DSPP and 
decreased the expression of ALP

Sun et al[136], 2014 miR-34a SCAPs - Upregulated odonto/osteogenic 
markers

Wang et al[137], 2018 miR hsa-let-7b SCAPs MMP1 Suppressed the odonto/osteogenic 
differentiation

Dernowsek et al[138], 2017 miR-450a-5p,miR-28-5p SHED - Supported the osteogenesis

Klingelhöffer et al[139], 2016 miR-101 DFSCs - Enhanced the osteogenic 
differentiation

Han et al[140], 2019 miR-3940-5p GMSCs - Promoted the osteo/dentinogenic 
differentiation
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DPSCs: Dental pulp stem cells; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from apical papilla; MAPK: Mitogen-activated protein kinases; 
OPG/RANKL: Osteoprotegerin/receptor activator of nuclear factor κB ligand; GPNMB: Glycoprotein nonmetastatic melanomal protein B; TNF-α: Tumor 
necrosis factor-α; NF-κB: Nuclear factor κB; ATF4: Activating transcription factor 4; LPS: Lipopolysaccharide; DSPP: Dentine sialophosphoprotein; ALP: 
Alkaline phosphatase; SHED: Stem cells from human exfoliated deciduous; GMSCs: Gingival mesenchymal stem cells; DFSCs: Dental follicle stem cells; 
HspB8: Heat shock protein B8; ACVR2B: Activin receptor type IIB; GDF5: Growth differentiation factor 5; MMP1: Matrix metalloproteinase 1; miR: 
MicroRNA; DMP-1: Dentine matrix protein 1; Smad5: SMAD family member 5.

protein B[120]. Xu et al[121] reported that during odontoblast differentiation of DPSCs, 
the expression of miR-21 can be regulated by treating with TNF-α, while downregu-
lation of miR-21 causes a decrease in the expression of dentine matrix protein 1 and 
DSPP by interacting with STAT3[121]. Moreover, miR-146a-5p promotes odontogenic/ 
osteogenic differentiation of STRO-1+ DPSCs[122]. miR-143 suppresses the osteogenic 
differentiation of DPSCs by regulating the TNF-α/nuclear factor κB pathway[123], 
while miR-215 and miR-219a-1-3p inhibit the osteogenic differentiation capability of 
DPSCs by downregulation of heat shock protein B8[124].

During osteogenic differentiation of PDLSCs, the expression of miR-21 and miR-24-
3p decrease, and their downregulation markedly inhibits osteogenesis of hPDLSCs by 
targeting SMAD family member 5 (Smad5)[125,126]. miR-21 also performs a positive 
function in mediating the stretch-induced osteogenic differentiation of hPDLSCs by 
regulating the expression of activin receptor type IIB[127]. Inhibition of miR-214 in 
PDLSCs can decrease osteogenic differentiation by targeting activating transcription 
factor 4 and regulating the Wnt/β-catenin signaling pathway[128,129]. Downregu-
lation of miR-148a in PDLSCs rescues the inhibition of osteogenesis triggered by LPS 
stimulation[130]. miR-22 and miR-17 promote osteogenesis of PDLSCs by inhibiting 
HDAC6 and HDAC9 expression, respectively, the latter under inflammatory 
conditions[131,132]. In addition, in osteogenic differentiation of PDLSCs, miR-132 
decreases, and overexpression of miR-132 inhibits osteogenesis by targeting growth 
differentiation factor 5 and activating the nuclear factor κB signaling pathway[133]. 
Meanwhile miR-31 plays a role in the high glucose-suppressed osteogenic differen-
tiation of PDLSCs by targeting Satb2[134].

Upregulation of miR-34a in human fetal dental papilla cells increases the expression 
of DSPP and decreases the expression of alkaline phosphatase (ALP)[135]. In addition, 
miR-34a mimic transfection in SCAPs significantly upregulates odontogenic/ 
osteogenic markers[136]. miR-hsa-let-7b suppresses the odontogenic/ osteogenic 
differentiation of SCAPs partly by targeting matrix metalloproteinase 1[137]. 
Moreover, overexpression of miR-450a-5p or miR-28-5p in SHED supports 
osteogenesis[138]. miR-101 enhances osteogenic differentiation in human DFSCs[139], 
and miR-3940-5p promotes the osteo/dentinogenic differentiation of GMSCs[140].

LncRNAs
LncRNAs significantly regulate the multiple differentiations of mesenchymal stem 
cells, and there are several reports of the regulatory effect of lncRNAs in regenerative 
engineering of dental-tissue-derived stem cells (Table 2). In 2020, Liu et al[141] 
identified a total of 89 lncRNAs differentially expressed after osteo/odontogenic 
induction of hDPSCs, and downregulation of lncRNA SNHG7 was found to inhibit the 
differentiation of DPSCs, upregulating the expression of miR-1226-3p and miR-210-5p 
at the same time[141]. In 2020, Chen et al[142] reported that 132 lncRNAs were differ-
entially expressed between the odontoblastic-differentiated and undifferentiated 
hDPSCs and that lncRNA-G043225 exerted a positive regulatory effect through miR-
588 and fibrillin 1[142]. Additionally, 47 lncRNAs were differentially expressed in 
hDPSCs between normoxic and hypoxic induction conditions, and 561 lncRNAs were 
differentially expressed between young and old donors in hDPSCs after osteoin-
duction[143,144]. Overexpression of lncRNAs CCAT1 and lncRNA H19 promotes 
odontogenic differentiation of hDPSCs by inhibiting expression of miR-218 and 
regulating expression of the DLX3 gene, respectively[145,146]. Knockdown of lncRNA 
STL and lncRNA X-inactive specific transcript inhibits the osteogenic potential of 
DPSCs, and the latter is essential for efficient osteogenic differentiation induced by 
TNF-α[143,147].

In 2016, Qu et al[148] demonstrated that 2171 lncRNAs were differentially expressed 
between osteogenic-differentiated and undifferentiated PDLSCs, and 393 lncRNAs 
were strongly associated with osteogenesis-related mRNAs[148]. Zheng et al[149] 
indicated that downregulation of lncRNA maternally-expressed 8 and lncRNA 
MIR22HG markedly suppressed the osteogenic differentiation of PDLSCs[149]. 
Knockdown of lncRNA maternally-expressed 3 inhibits the osteogenesis of PDLSCs in 
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Table 2 Summary of the long noncoding RNAs influencing the odontogenic/osteogenic differentiation of dental mesenchymal stem 
cells

Ref. LncRNA Cell type Signaling pathway or targets Outcome

Liu et al[141], 2020 lncRNA SNHG7 DPSCs miR-1226-3p, miR-210-5p Downregulation inhibited osteo/odontogenic 
differentiation

Chen et al[142], 2020 lncRNA-G043225 DPSCs miR-588, FBN1 Positively regulated odontoblastic 
differentiation

Zhong et al[145], 2019 lncRNA CCAT1 DPSCs miR-218 Overexpression promoted odontogenic 
differentiation

Zeng et al[146], 2018 lncRNA H19 DPSCs DLX3 Upregulation enhanced odontogenic 
differentiation

Shi et al[143], 2019 lncRNA STL DPSCs - Knockdown inhibited osteogenesis

Tao et al[147], 2019 lncRNA XIST DPSCs - Downregulation inhibited osteogenic 
differentiation

Zheng et al[149], 2018 lncRNA MEG8, 
lncRNA MIR22HG

PDLSCs - Downregulation suppressed osteogenic 
differentiation

Liu et al[150], 2019; Deng 
et al[151], 2018

lncRNA MEG3 PDLSCs miR-27a-3p/IGF1 axis, Wnt/β-
catenin

Knockdown inhibited osteogenesis

Wang et al[152], 2016 lncRNA-POIR PDLSCs miR-182 Enhanced osteogenic differentiation

Xu et al[153], 2019 lncRNA-TWIST1 PDLSCs TWIST1 Improved osteogenic differentiation

Jia et al[154], 2019 lncPCAT1 PDLSCs - Reversed the suppression effect of 
osteogenesis caused by miR-106a-5p 
overexpression

Huang et al[155], 2020 lncRNA FER1L4 PDLSCs miR-874-3p Promoted osteogenic differentiation

Feng et al[156], 2020 lncRNA XIST PDLSCs miR-214-3p Enhanced osteogenic differentiation

He et al[160], 2018 lncRNA TUG1 PDLSCs lin-28 homolog A Improved osteogenic differentiation

Wang et al[161], 2020 lncRNA DANCR PDLSCs - Positively regulated osteogenic 
differentiation

Li et al[162], 2019 lncRNA H19 SCAPs lncRNA-H19/miR-
141/SPAG9/MAPK

Promoted the osteo/odontogenesis

Jia et al[157], 2016; Jia 
et al[158], 2015; Peng 
et al[159], 2018

lncRNA ANCR DPSCs, PDLSCs, 
SCAPs

Wnt, lncRNA-ANCR/miR-
758/Notch2 (PDLSCs)

Downregulation facilitated osteogenic 
differentiation

DPSCs: Dental pulp stem cells; FBN1: Fibrillin 1; lncRNAs: Long noncoding RNAs; MAPK: Mitogen-activated protein kinases; MEG3/8: Maternally-
expressed 3/8; miR: MicroRNA; IGF1: Insulin-like growth factor 1; PDLSCs: Periodontal ligament stem cells; SCAPs: Stem cells from apical papilla; XIST: 
X-inactive specific transcript.

periodontitis via the miR-27a-3p/IGF1 axis, while it plays a positive role in human 
DFSCs by activating the Wnt/β-catenin signaling pathway[150,151]. In 2016, Wang 
et al[152] identified a novel lncRNA named lncRNA-POIR, while Xu et al[153] first 
named lncRNA-TWIST1 in 2019; both are osteogenesis impairment-related lncRNAs of 
PDLSCs from periodontitis patients and can enhance the osteogenic differentiation of 
PDLSCs from healthy individuals and periodontitis patients by interacting with miR-
182 and inhibiting TWIST1 expression, respectively[152,153]. Prostate cancer-
associated ncRNA transcript-1 upregulation reverses the suppression effect of 
osteogenic differentiation in PDLSCs caused by miR-106a-5p overexpression[154].

LncRNA FER1L4 and lncRNA X-inactive specific transcript can promote the 
osteogenesis of PDLSCs by sponging miR-874-3p and miR-214-3p, respec-
tively[155,156]. In addition, downregulation of antidifferentiation noncoding RNA can 
facilitate the osteogenic differentiation of DPSCs, PDLSCs and SCAPs[157], while this 
regulatory effect on PDLSCs is related to the canonical Wnt signaling pathway[158]. 
The antidifferentiation noncoding RNA/miR-758/Notch2 axis may also 
participate[159]. Furthermore, lncRNA TUG1 improves osteogenic differentiation of 
PDLSCs by regulating the expression of lin-28 homolog A[160]. Knockdown of 
lncRNA differentiation antagonizing nonprotein coding RNA positively regulates the 
osteogenic differentiation of PDLSCs[161]. Moreover, lncRNA H19 overexpression 
promotes the osteo/odontogenesis of SCAPs via  the lncRNA-H19/miR-
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141/SPAG9/MAPK positive feedback loop[162].

Signaling pathways
Wnt signaling pathway: The Wnt/β-catenin signaling pathway plays an important 
role in regulating DMSC differentiation, which is a key signaling pathway. For 
odontoblastic differentiation, activating the Wnt/β-catenin signaling pathway 
partially reverses the vacuolar protein sorting 4B knockdown-driven suppression of 
odontoblastic differentiation of hDPSCs[163] and rescues the osteoblastic/odonto-
blastic differentiation of stathmin-deletion hDPSCs[164]. These studies revealed that 
activation of the Wnt signaling pathway promotes osteogenic/odontoblastic differen-
tiation of DPSCs. However, Scheller et al[165] first reported that Wnt/β-catenin 
inhibits odontoblastic differentiation of DPSCs in 2008[165]. The reason for the 
conflicting effects of Wnt signaling on odontoblastic differentiation in these studies is 
undefined and needs to be further explored. For osteoblastic differentiation, Rolph 
et al[166] confirmed that ferutinin promoted osteoblastic differentiation of DPSCs by 
modulating the Wnt/β-catenin signaling pathway[166] when Wnt5a was reported to 
inhibit osteoblastic differentiation of human periodontal ligament stem cell-like 
cells[167].

MAPK signaling pathway: The MAPK signaling pathway includes the ERK signaling 
pathway and the p38/MAPK signaling pathway[168]. In odontoblastic differentiation, 
one study showed that a combination of mineral trioxide aggregate and propolis 
significantly promoted the expression of DSPP and Dentine matrix protein 1 as well as 
mineralized nodule formation through activating the ERK signaling pathway in 
hDPSCs[169]. Kong et al[170] confirmed that a magnesium-enriched microenvir-
onment enhanced the odontoblastic differentiation of hDPSCs by activating the 
ERK/BMP2/Smad signaling pathway[170]. In osteoblastic differentiation, berberine 
was reported to bind to epidermal growth factor receptor in hPDLSCs to activate the 
ERK signaling pathway and upregulate the nuclear-related gene FOS, thus promoting 
osteoblastic differentiation of PDLSCs[171]. In addition, mineral trioxide aggregate 
was confirmed to promote osteo/odontoblastic differentiation of SCAP through 
activation of the p38 and ERK signaling pathway. Another study showed that 
parathyroid hormone promoted the osteo/odontoblastic differentiation of DPSCs by 
activating the ERK and p38 signaling pathway[172].

Mechanistic target of rapamycin signaling pathway: Mechanistic target of rapamycin 
(mTOR), a highly conserved serine/threonine protein kinase, is involved in regulating 
interactions between proteins[173]. The mTOR signaling pathway has been confirmed 
to play a significant role in the osteo/odontoblastic differentiation of DMSCs. Tanaka 
et al[174] confirmed that inhibiting mTOR signaling promoted osteo/odontoblastic 
differentiation of SCAPs[174]. However, activation of the mTOR signaling pathway 
promoted osteogenic differentiation of hDPSCs in the process regulated by IGF-1 in 
which rapamycin blocked osteogenic differentiation induced by IGF-1[175] while 
inhibiting mTORC1 limited mineralized nodule formation by SHED[176]. Taken 
together, these data suggest that the mTOR signaling pathway plays different roles in 
different cell types of DMSCs.

AKT signaling pathway: The AKT signaling pathway is critical for cell proliferation, 
growth, metabolism and differentiation, especially in differentiation of DMSCs. Recent 
studies have shown that metformin and miR-let-7c-5p enhance the osteogenic differen-
tiation of PDLSCs by activation of the AKT signaling pathway[117,177]. Another study 
reported that activation of the AKT signaling pathway could enhance the osteogenic 
differentiation of DPSCs in LPS-induced inflammation. In short, the AKT signaling 
pathway may play a positive role in odontogenic/osteogenic differentiation of 
DMSCs.

Notch and shh signaling pathway: The Notch signaling pathway is critical for 
development and cell differentiation. Notch signaling has been confirmed to inhibit 
odontoblastic differentiation of hDPSCs[178]. Interestingly, another study showed that 
overexpression of CCN3 activated the Notch signaling pathway to promote odonto-
blastic differentiation of DPSCs, which suggested that Notch signaling pathway 
activation promotes odontoblastic differentiation of DPSCs[179]. The reasons for these 
contradictory effects in odontoblastic differentiation of DPSCs remain undefined and 
need to be explored.

It is worth noting that the Shh signaling pathway is also involved in odontogenic/ 
osteogenic differentiation of DMSCs. A recent study has shown that stathmin 
regulates odontogenic/osteogenic differentiation of DPSCs via the Shh signaling 



Yin JY et al. Multi-differentiation potential of DMSCs

WJSC https://www.wjgnet.com 352 May 26, 2021 Volume 13 Issue 5

pathway[180].

Inflammation
In an inflammatory microenvironment, DMSCs from inflamed tissue contact and 
interact closely with extrinsic irritants, local cells or their components, immune cells 
and multiple soluble regulatory molecules[181]. For example, dental caries are one 
such gram-negative microbial infection that is primarily responsible for pulpal inflam-
mation. LPS was used to create in vitro inflammatory conditions that initiate infection-
stem cell interaction, which has been used widely to induce an inflammatory 
microenvironment[182].

Immunophenotyping of cell surface antigens by flow cytometry showed that 
DMSCs and inflamed DMSCs have similar expression patterns of surface 
markers[181,183]. The cells are positive for STRO-1, CD105, CD73, CD90, CD29 and 
CD44[184] and negative for CD45, CD34, CD14 and HLA-DR, indicating a 
mesenchymal stem cell phenotype[183,185-187]. In addition, inflamed DMSCs have 
the potential to differentiate into multiple lineages. Mesenchymal stem cells isolated 
from inflamed pulp possess stemness and multidifferentiation potential similar to 
DPSCs from healthy pulp[185]. Like DPSCs, inflamed DPSCs are capable of 
adipogenic and osteo/dentinogenic differentiation under the corresponding in vitro 
induction conditions. However, chronic inflammation impairs differentiation of 
DPSCs[188]. On the other hand, inflamed DPSCs show increased ALP and osteocalcin. 
In the inflammatory microenvironment, PDLSCs from inflamed periodontal tissue 
show higher proliferation rates but express lower levels of osteogenic differentiation 
markers[189-191]. Both inflamed hPDLSCs and hPDLSCs have been successfully 
differentiated under osteogenic and adipogenic conditions[192]. Because of evident 
similarities in their immunomodulatory properties, inflamed PDLSCs can provide a 
promising alternative to PDLSCs[193]. Cells isolated from human periapical cysts 
demonstrate a strong osteogenic but weak adipogenic capacity[184,194]. Osteogenic 
differentiation of inflamed DFSCs results in decreased ALP activity and alizarin red S 
staining compared to normal DFSCs[195]. Similarly, the osteogenic differentiation of 
LPS-treated DFSCs is suppressed, and the cells display low levels of TGF-β1 and high 
levels of TGF-β2.

Aging
Aging is an intricate degenerative process during which the regenerative capacity of 
MSCs progressively declines[196]. Unavoidably, DMSCs also undergo physiological 
age-related changes with declines in proliferation and osteo/odontogenic differen-
tiation potentials with increased age[197,198]. Improving the performance of aging 
DMSCs is important for tissue regeneration engineering. Yi et al[144] demonstrated 
that the osteogenic potential of DPSCs from young donors was superior to that of 
those from old donors, and 304 mRNAs and 561 LncRNAs were differentially 
expressed between age-groups[144]. Wang et al[199] found that miR-433 may be one of 
the important senescence-related miRNAs of human dental pulp cells, which inhibits 
mineralization of human dental pulp cells by negatively regulating GRB2 and the 
RAS–MAPK signaling pathway[199]. SHED and DPSCs undergo senescence, 
including declines in the proliferation rate and osteogenic differentiation capability, 
following serial expansion from P4 to P20. SHED exhibit a better performance than 
DPSCs, which indicates that mineralization capacity is related to replicative senescence 
in vitro and to donor age[200].

As a significant factor regulating the function of differentiated odontoblasts[201], 
sclerostin advances the aging process of human dental pulp cells through the Wnt/β-
catenin pathway and reduces the proliferation and odontoblastic differentiation 
capability of senescent human dental pulp cells[202]. The Wnt/β-catenin signaling 
pathway is one of the important pathways that regulates cell differentiation, increasing 
the osteogenic/dentinogenic differentiation potential of DPSCs[203]. It has been 
reported that the rate of dentin deposition and neurogenic differentiation potential 
declines with advanced age, which may be related to a decrease in endogenous 
Wnt/β-catenin signaling[204,205].

In 2014, Feng et al[206] compared the characteristics of DPSCs from five different 
age groups (5–12 years, 12–20 years, 20–35 years, 35–50 years and > 50 years) and 
found that the expression of p16INK4A markedly increased with age and inhibited 
osteogenic/odontogenic differentiation when upregulated[206]. Then in 2017, Mas-
Bargues et al[207] indicated that p16INK4A also played a part in oxidative stress-related 
premature senescence of DPSCs caused by long-term culture in 21% ambient oxygen 
tension compared with 3%-6% physiological oxygen tension[207]. Replicative 
senescence of DPSCs resulted in decreases of B-lymphoma Mo-MLV insertion region 
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1, organic carbon, DSP and bone sialoprotein compared with rapidly proliferating cells 
and increases of p16INK4A, while B-lymphoma Mo-MLV insertion region 1 transduction 
promoted the expression of organic carbon and DSP, ALP activity and mineralized 
nodule formation. Therefore, this may indicate that the odontogenic differentiation 
potential of DPSCs weakens during senescence, partly due to decreased B-lymphoma 
Mo-MLV insertion region 1 expression[208].

In contrast, Ma et al[209] reported that adult DPSCs cultured in juvenile dental pulp 
cell-conditioned medium demonstrated decreased osteogenic differentiation 
capability, whereas juvenile DPSCs induced by adult dental pulp cell-conditioned 
medium showed improved osteogenic differentiation capability, indicating that the 
activity of DPSCs can be modulated by the extrinsic microenvironment[209]. A certain 
degree of inflammatory stimulation promoted the proliferation and mineralization of 
both adult and juvenile rat DPSCs, but this effect declined with age[210]. Furthermore, 
Horibe et al[211] isolated a type of mobilized dental pulp stem cells induced by 
granulocyte colony-stimulating factor from young and old donors, which showed 
minimal characteristic changes with aging, suggesting that mobilized dental pulp stem 
cells act as an advantaged source in dental pulp regeneration[211].

Exosomes
Exosomes are vesicles secreted by different cells with a diameter of 30–100 nm. They 
can function as carriers for different components to impact intercellular 
communication, including various miRNAs, lncRNAs and proteins. Exosomes play an 
important role in mediating some signaling pathways to influence the physiological 
function of cells. In recent years, increasing research into the effect of exosomes on the 
odontoblastic/osteogenic differentiation of DMSCs has been proposed (Figure 2).

In 2016, Huang et al[212] indicated that the exosomes derived from hDPSCs 
cultured with growth (DPSC-Exo) or odontogenic differentiation media (DPSC-OD-
Exo) enhanced the odontogenic differentiation of DPSCs in vitro, and DPSC-OD-Exo 
showed stronger induction differentiation-inducing ability than exosomes derived 
from hDPSCs cultured with growth media in a three-dimensional environment 
consisting of type I collagen hydrogels and a tooth root-slice regeneration model[212]. 
In 2019, Hu et al[213] further identified the miRNA profile of human exosomes derived 
from hDPSCs cultured with growth media and DPSC-OD-Exo by miRNA sequencing, 
and the results indicated that miR-27a-5p was highly expressed in DPSC-OD-Exo, 
promoting odontogenic differentiation of DPSCs through the TGF-β1/Smad signaling 
pathway[213].

In 2019, Chew et al[214] reported that human MSC exosome-loaded collagen sponge 
used in an immunocompetent rat model with periodontal intrabony defects 
significantly repaired the defects by regenerating newly formed bone and periodontal 
ligament as a result of periodontal ligament cell migration and proliferation[214]. 
Meanwhile in 2020, Wang et al[215] reported that conditioned SHED-Exos derived 
from a 3 d osteogenic supernatant improved the osteogenic ability of PDLSCs by 
activating the BMP/Smad and Wnt/β-catenin signaling pathways and that BMP2 and 
Wnt3a carried by SHED-Exos played a pivotal part in this process[215].

Moreover, extracellular vesicles (EVs) are a type of mixed vesicles, consisting of 
endosome-derived exosomes and cell membrane-derived ectosomes. In 2017, Li 
et al[216] demonstrated that the EVs derived from Schwann cells promoted the 
osteogenic differentiation of hDPSCs[216]. In 2019, Čebatariūnienė et al[217] indicated 
that hPDLSC EVs did not influence osteogenic mineralization of PDLSCs but reversed 
the inhibitory effect on PDLSC osteogenic differentiation of an anti-TLR4 blocking Ab. 
They also revealed that the EVs may have a potential regulatory ability of genes 
related to osteogenesis and interfere with TLR4 signaling[217]. Additionally, 
Pizzicannella et al[218] reported that EVs derived from human GMSCs combined with 
a three-dimensional polylactide biomaterial enhanced the osteogenic differentiation of 
human GMSCs in vitro[218].

CONCLUSION
At present, most studies of the multidirectional differentiation of DMSCs focus on the 
following areas: the regeneration of teeth, bone, cartilage, tendon and blood vessels; 
the repair of nerve injury; the formation of retina and cornea; and the secretion of 
insulin. Different types of DMSCs have different abilities towards differentiation into 
diverse lineages. It is significant to explore the potential of DMSCs to differentiate into 
various tissues. In addition to the application of oral tissue regeneration, these studies 
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Figure 2  Reported extracellular vesicles that mainly contributed to the odontogenic/osteogenic differentiation process of dental 
mesenchymal stem cells. Extracellular vesicles (EVs) from a variety of cell sources can influence the osteogenic, adipogenic and neurogenic differentiation 
process of dental mesenchymal stem cells. Exo: Exosomes; DFSCs: Dental follicle stem cells; LPL: Lipoprotein lipase; MSC: Mesenchymal stem cells; PDLSCs: 
Periodontal ligament stem cells; PPAR-γ: Peroxisome proliferator-activated receptor-γ; SHED: Stem cells from human exfoliated deciduous teeth; TGFβ1: 
Transforming growth factor β1.

are helpful to the future application of DMSCs in neurovascular injury-related 
diseases, retinal and corneal injury-related diseases and endocrine diseases such as 
diabetes. The induction of DMSCs to differentiate insulin-producing cells and neuron-
like cells in vitro requires the conditioned-culture medium with a variety of auxiliary 
inducing factors, like some growth factors and peptides, and sometimes it needs to be 
induced in several steps, which takes a long time and is relatively complex. The cells 
induced by the conditioned culture medium express the specific molecules of related 
tissue-like cells. Researchers detect the specific expression molecules to determine 
whether the cells differentiate into specific tissue-like cells. Such in vitro differentiation 
is often limited and may not represent the true differentiation of the cell itself. It is of 
great significance to improve the induction mode and shorten the induction time for 
the application of DMSCs in the future. In addition, combining DMSCs with materials 
possessing good biological compatibility may provide a better approach to tissue 
regeneration.

Making full use of the odontogenic/osteogenic differentiation ability of DMSCs is of 
great significance to the application of DMSCs in dental tissue regeneration 
engineering. In this review, some factors related to the regulation of DMSCs in 
odontogenic/osteogenic differentiation are reviewed. The regulation process of DMSC 
odontogenic/osteogenic differentiation is complex. A variety of non-coding RNAs and 
multiple signaling pathways participate in the differentiation process of DMSCs. The 
application of DMSCs should consider the donor age and cell aging. With increasing 
donor age and number of cell passages, differentiation ability may decrease 
accordingly. At the same time, the future clinical application of DMSCs should account 
for the impact of the inflammatory microenvironment. How to increase the anti-
inflammatory ability of DMSCs is a difficult problem for clinical application of DMSCs 
in the future. In addition, exosomes, as a crucial medium for communication and 
transmission of information between cells, have become a hotspot in recent years. In 
the process of normal tooth development, exosomes also seem to play an important 
role in regulating gene expression of target cells through their rich and varied 
contents. Utilizing the characteristics of exosomes endocytosed by cells, discovering 
other exosomes or transforming contents to promote DMSC odontogenic/osteogenic 
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differentiation will be a future research direction. If we can positively regulate the 
related factors that advance the odontogenic/osteogenic differentiation of DMSCs and 
make full use of their differentiation potential, there will be great progress in the 
application of DMSCs in dental tissue regeneration engineering. Future research 
should emphasize effectively combining the various types of DMSCs with 
odontogenic/osteogenic, neurogenic, vascularization and other multipotencies to 
provide a potential scheme for dental tissue regeneration with normal functions.
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