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Abstract
Ethical concerns about stem cell-based research have delayed important advances 
in many areas of medicine, including cardiology. The introduction of induced 
pluripotent stem cells (iPSCs) has supplanted the need to use human stem cells 
for most purposes, thus eliminating all ethical controversies. Since then, many 
new avenues have been opened in cardiology research, not only in approaches to 
tissue replacement but also in the design and testing of antiarrhythmic drugs. This 
methodology has advanced to the point where induced human cardiomyocyte cell 
lines can now also be obtained from commercial sources or tissue banks. Initial 
studies with readily available iPSCs have generally confirmed that their 
behavioral characteristics accurately predict the behavior of beating cardio-
myocytes in vivo. As a result, iPSCs can provide new ways to study arrhythmias 
and heart disease in general, accelerating the development of new, more effective 
antiarrhythmic drugs, clinical diagnoses, and personalized medical care. The 
focus on producing cardiomyocytes that can be used to replace damaged heart 
tissue has somewhat diverted interest in a host of other applications. This 
manuscript is intended to provide non-specialists with a brief introduction and 
overview of the research carried out in the field of heart rhythm disorders.
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Core Tip: The introduction of induced pluripotent stem cells (iPSCs) has supplanted the 
need for human stem cells, thus eliminating most ethical controversies. This 
methodology has advanced to the point where induced human cardiomyocyte cell lines 
can also be obtained from commercial sources or tissue banks. iPSCs can predict the 
behavior of cardiomyocytes in vivo, so that new ways are paved in cardiology research 
to study arrhythmias and heart disease in general, accelerating the development of new, 
more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care.
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INTRODUCTION
Human induced pluripotent stem cells (iPSCs) are produced by reprogramming adult 
mesenchymal cells, most often fibroblasts. The process is complicated, requiring the 
introduction and activation of four gene regulatory networks, each comprised of 
molecular regulators that interact with each other and with other substances in the cell 
to control gene expression of mRNA and protein-specific genes. Acting together these 
four transcription factors can produce mature cells that behave in a completely 
different manner to the original fibroblasts used to form them, leading to the 
formation of multiple cell types[1-3].

Myocytes created from fibroblasts are basically identical to native cardiomyocytes. 
There are three different types of native cardiomyocytes, and iPSC production yields 
all three types in variable and unpredictable proportions, presenting difficulties for 
researchers. The most obvious and most publicized cardiological application of iPSCs 
is the production of new cardiac tissue to replace tissues destroyed by infarction or 
other diseases[4-9], but this goal has yet to be successfully realized in humans. 
Initially, this was partly because the subtype of iPSCs could not be assured. Obviously, 
atrial cardiomyocytes would not be a suitable substitute for damaged ventricular 
cardiomyocytes and, regardless, there is always the danger that introducing a mixture 
of cells might lead to teratoma formation[10]. Nonetheless, substantial advances have 
already been made, and success seems to be mainly a matter of time. Once these 
problems have been fully resolved, iPSCs, in various configurations, could be used to 
repair damaged hearts. They could also be used to predict interactions between drugs 
and the cardiac conduction system.

The occurrence of any specific conduction abnormality - including QT prolongation, 
altered action potential duration, triggered activity, the blockade of human-ether-a-go-
go-related channel (hERG) and other ion conduction channels-and the occurrence of 
lethal arrhythmias-such as Torsades de Pointes (TdP)-cannot reliably be predicted 
with currently available screening methods (Langendorf preparations, patch-clamp, or 
even arterially perfused isolated rabbit left ventricular wedge)[11]. Animal models are 
problematic predictors of arrhythmia occurrence because of anatomic varia-
tions[12-16]. Such an issue poses a huge difficulty for drug makers trying to produce 
effective antiarrhythmic drugs; animal-to-human extrapolation is an uncertain process, 
which can pose a danger to patients if unrecognized differences emerge between 
animal and human models[17].

The problems associated with the use of amiodarone and sotalol illustrate the 
difficulties of drug development[18,19]. Both drugs are used to treat atrial and 
ventricular tachyarrhythmias and can be life-saving, but can also produce lethal side 
effects. Unfortunately, predicting side effects is, at this moment, impossible. 
Amiodarone’s most feared side effect is fatal pulmonary interstitial fibrosis, but 
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hepatitis, hypothyroidism (probably irreversible) and mixed sensorimotor 
polyneuropathy have all been reported with some regularity. Amiodarone’s most 
important complications are QT prolongation and TdP[20]. If new and safer 
replacement drugs are ever to be developed and approved by the United States Food 
and Drug Administration and the European Medicines Agency, developers will first 
have to establish that new drugs do not produce predictable untoward side effects or 
exacerbate the conditions they were designed to treat.

The availability of iPSCs allows researchers to make reasonably accurate predictions 
about what effect any new drug will have on the heart and its electrical system. 
Cultured iPSCs, can be used to construct in vitro models of the human cardiac 
conduction system. The effects observed in vitro can then be used to predict how, 
and/or whether, a drug will alter electrical conduction, or produce structural 
alterations in humans. The process is not as simple as it sounds and some knowledge 
of the subject is crucial to clinicians for the safe use of new drugs.

UNDERLYING PHYSIOLOGY AND CLINICAL MANIFESTATIONS
Cures for cardiac conduction diseases will only be found when their root causes are 
fully elucidated. Even physicians who have nothing to do with arrhythmia research 
should retain some knowledge of the molecular biology that underlies cardiac 
conduction.

The cardiomyocyte repolarization/depolarization cycle begins with a current 
generated by the outward flow of potassium ions through specific pores or channels. 
Potassium pores exist in all life forms and many different types have been identified 
(more than 20). Two types of potassium channels are absolutely critical to the process 
of cardiac repolarization: The rapid delayed rectifier current (identified as IKr) and the 
slow delayed rectifier current (identified as IKs). If a drug or a mutation disrupts either 
of these two currents, the action potential of the cell is prolonged with an increase in 
the time required for electrical depolarization and repolarization of the ventricles[21]. 
Prolonged repolarization leads to the occurrence of early after depolarization (EAD) 
currents. EADs are dangerous because they favor the occurrence of triggered activity 
(defined as the occurrence of spontaneous action potentials occurring during phase 2 
or phase 3 of repolarization, leading to the production of inappropriate action 
potentials and arrhythmia)[12]. Blockade of the IKr also causes the QT interval to be 
prolonged, leading to the triggered activity via a slightly different mechanism[22]. 
Such a situation is likely to occur when a drug molecule interferes with potassium 
channels as in the case of type III antiarrhythmic drugs. Slowing of the potassium 
current is associated with a repolarization dispersion, where one area of the 
myocardium recovers from depolarization faster than an adjoining region, which also 
makes TdP more likely to occur[23]. Repolarization dispersion is thought to be the 
reason that myocardial hypertrophy is associated with arrhythmias[24]. The farther 
the depolarization front has to travel, the greater the interval between depolarization 
and repolarization. Dispersion is especially likely to occur if the area of abnormal 
delay and dispersion is located within the Purkinje system or, alternatively, if the area 
is located in the mid-wall of the left ventricle where the “M cells” are located. These 
cells have prolonged action potentials that act to further increase the dispersion of 
repolarization, making the occurrence of TdP ever more likely[25]. For a new antiar-
rhythmic drug to be introduced, it must first be proven that it exerts none of the effects 
enumerated above.

Sudden cardiac death (SCD) due to ventricular tachycardia (VT) or ventricular 
fibrillation (VF) accounts for approximately half of all deaths in patients with heart 
failure (HF) and may be considered a heritable trait[26-32]. Current guidelines[33] 
recommend an implantable cardioverter-defibrillator (ICD) in patients with 
symptomatic and severe left ventricular dysfunction of any origin. However, SCD may 
occur in asymptomatic patients with only mild HF. On the contrary, as many as two-
thirds of patients with severe HF implanted with an ICD do not experience device 
interventions over 3 to 5 years follow-up[34]. A similar clinical scenario leaves 
unanswered the question of whether selected gene variants may affect the risk of SCD 
in HF patients. Genomic science provides us with new approaches to identify gene 
variants or mutations that predispose patients with inherited electrical diseases to 
SCD. However, a growing body of evidence suggests that DNA changes in the same 
genes that convey risk in primary electrical diseases may enhance susceptibility to 
VT/VF even in a polygenic condition such as HF. Sustained VT and VF often occur as 
a consequence of delayed after-depolarizations triggered by diastolic sarcoplasmic 
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reticulum (SR) calcium leak[35]. Genes encoding calcium handling proteins involved 
in electrical homeostasis of the failing heart may represent suitable candidates for 
defining individual susceptibility to life-threatening arrhythmia[26,27]. However, only 
very few genes belonging to the major candidate systems have been characterized and 
screened for possible association with SCD in HF. The cardiac ryanodine receptor 2 
(RyR2), a calcium-releasing channel located in the SR membrane, plays a key role in 
the electrical homeostasis of cardiomyocytes. RyR2 dysfunction has been described in 
both HF patients and animal models and is critical to many of the aspects of the 
disease, including life-threatening arrhythmia[36]. In a large cohort of HF patients, 
Ran et al[37] found that the A allele of RYR2 c.5656G>A was associated with an 
increased risk of SCD. Arvanitis et al[38] reported that the Ser96Ala variant in 
histidine-rich calcium-binding protein was associated with ventricular arrhythmia in 
idiopathic dilated cardiomyopathy. It is known that a serine residue replacing glycine 
at position 1886 (G1886S or rs3766871) in the RyR2 gene prompts a significant increase 
in intracellular calcium oscillation and creates a site of phosphorylation for protein 
kinase C (PKC) entailing PKC-mediated calcium diastolic leak from the SR[39,40]. 
While the RYR2 rs3766871 variant has been previously described only in the setting of 
arrhythmogenic right ventricular cardiomyopathy, a role of RyR2 rs3766871 minor 
allele for increased susceptibility to VT/VF has been recently reported also in patients 
with HF[41]. The SERCA calcium ATPase (ATP2A2) belongs to a large family of P-
type cation pumps that couple adenosine triphosphate (ATP) hydrolysis with cation 
transport across membranes[42]. Alternative splicing of the ATP2A2 gene produces 
two isoforms, SERCA2a (primarily located in the heart and slow-twitch skeletal 
muscle) and SERCA2b (present in smooth muscle and non-muscle tissues). Mutations 
in the ATP2A2 gene affect the expression level, ATP affinity, calcium affinity, and 
phosphorylation of ATP. In an attempt to investigate whether variants of the genes 
encoding major calcium handling proteins affect the occurrence of VT/VF in HF 
patients, it was found that the ATP2A2 c.2741+54G>A gene variant was associated 
with decreased susceptibility to life-threatening arrhythmia. Indeed, patients carrying 
the ATP2A2 c.2741+54A allele variant had an approximately 70% reduction in the 
relative risk of VT/VF during follow-up[43]. Defective calcium handling in failing 
cardiomyocytes has long been recognized as a cause of ventricular arrhythmia, and 
recent evidence suggests that selected calcium gene variants may modify the risk of 
SCD even in a complex and polygenic disease such as HF. While statistically 
associated with a modified risk of SCD, the biological role of many of these gene 
variants is presently unknown. The recent breakthrough discovery of iPSCs could 
enable the investigation of mutated cardiomyocytes generated from patient’s somatic 
cells, allowing functional characterization of iPSC-derived mutated cardiomyocytes. A 
similar approach represents an interesting and promising solution for the biological 
relevance of genetic substrates in secondary arrhythmogenic conditions.

Microelectrode array
Microelectrode arrays are used in many fields of study, although the basics of the 
system are the same no matter what kind of test is being performed; improvements 
and refinements in this methodology are being reported almost continuously. These 
tests are performed in wells that look just like those in any clinical laboratory test plate 
used to observe chemical reactions, however, they differ in one important respect; 
electrodes are located at the bottom of each well.

When the electrodes and iPSCs are joined together they form the backbone of the 
system. The idea was derived from earlier networking studies, designed to test neural 
interactions. Networking electrodes were originally made of titanium salts and gold 
conductors[44], but other materials have been used. The system is now so advanced 
that these wells, indeed, the entire networking system, including software, are all 
available off the shelf.

IPSCs, can either be studied singly or as part of an integrated network. For most 
intents and purposes these cells have all the same capabilities as embryonic stem cells 
that have been allowed to mature. In 2012, Shinya Yamanaka outlined a method to 
induce pluripotency by inserting genes that acted as reprogramming factors, also 
called transduction factors, by attaching them to carrier viruses and inserting the virus 
into the cells, which eventually causes the cells to express the exogenous genes. The 
cells are then cultured and finally harvested[45]. Since the technique was first 
introduced, many other iPSCs, and related transcription factors, have been identified 
and used, including, miRNAs (a type of non-coding RNA that inhibits translation in 
many species). Whatever the precise role of these diverse factors, other epigenetic 
processes are critical for the process of converting maturing stem cells back to 
inducible pluripotent cells[46].
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Once the multiple electrode arrays have been constructed, beating cardiomyocytes, 
derived from pluripotent stem cells are plated over each well, without the electrodes 
ever actually penetrating the cells. Such a methodology essentially recreates many 
aspects of a working myocardium, including the generation of waveforms not very 
different from those seen on clinical electrocardiograms. Introducing an experimental 
drug into the system, the probable effect on a beating human heart can be confirmed 
with a high degree of accuracy.

For example, experimental drugs have been tested in networked iPSCs that alter the 
duration and shape of the QT interval in almost exactly the same pattern as seen in 
humans. Not only do drugs produce the same electrocardiographic changes, but 
physiological stressors also produce changes similar to those that occur in vivo with the 
same rate and QT interval alterations seen in humans[47,48]. If animal studies suggest 
that a drug can cause dangerous QT prolongation, it is simple enough to test the drug 
on networked beating human cardiomyocytes. Another obvious application of this 
technology is the measurement of calcium transients by using fluorescence 
microscopy. Calcium indicators are introduced into the cells and the resulting 
fluorescence can be quantitated noninvasively and used to measure calcium ion flux, 
which controls inotropy. In the past, such experiments required the use of isolated 
small animal muscle[49].

The same type of cellular network can be used to study the effect of genetic 
mutations known to cause cardiac arrhythmias, including channelopathies such as 
hERG; more than 90 long QT syndrome (LQTS) mutations have been mapped to date. 
It is possible to measure the effect of mutations on IKr and IKs, although debate still 
exists over the exact mechanism by which some mutations alter potassium flow, 
answers to at least some of these questions should soon be forthcoming[50]. With the 
availability of high-throughput networked cardiomyocytes, it is now possible to 
evaluate a drug’s effects on potassium flow before it is ever given to an animal, let 
alone evaluated in human clinical trials.

IPSCs from a patient with a novel KCNQ mutation were used by Egashira et al[51] to 
identify the mutation. The patient had survived VF, thanks to the nearby presence of 
an automated external defibrillator. Using a slight variation multi-electrode array 
system (where the electrical activity of clumps of cells, rather than sheets of cells was 
measured), abnormal repolarization, as manifested by electrical field potential 
duration, was observed in the spontaneously beating iPSC cardiomyocytes. Egashira 
et al[51] then added an assortment of potassium ingress and egress blockers to prove 
that the repolarization abnormality lay within the slow inward potassium channel[51]. 
At present, the technology is too cumbersome for routine clinical use. In the future, 
however, it should be possible to use this approach when exome screening fails to 
identify one of the usual culprits.

The recent discovery of the TECRL gene, an arrhythmia-inducing gene that 
produces features of catecholaminergic VT (CPVT) and LQTS, was accomplished 
using much the same technology[52]. Three patients were studied; two with a history 
of cardiac arrest and one with an episode of recorded CPVT. Once iPSCs had been 
produced and the mutation identified and sequenced, electrophysiological studies 
were then performed. These demonstrated exactly the same features (catecholamine 
sensitivity, triggered activity, delayed afterdepolarizations as had been seen in the 
patients. The abnormalities were all reversed by the addition of flecainide, a class 1c 
antiarrhythmic drug. Had iPSCs not been available, finding a remedy would have 
been purely by empiric trial and error. However, the real significance of the study is 
that there is now a reliable methodology with which to screen drugs for effectiveness.

Even without going to the effort of creating an entire iPSCs network, it is still 
possible to clinically diagnose some disorders from the electrical behavior of a single 
iPSC. A very recent report describes two patients with known Brugada Syndrome. 
When compared to the findings in two healthy controls, it was observed that each of 
the Brugada Syndrome patients carried one of two different sodium voltage-gated 
channel alpha and subunit 5 variants. The electrical characteristics of iPSCs produced 
from the patient's own skin fibroblasts were studied. The studies showed reductions in 
inward sodium current density and reduced maximal upstroke velocity of action 
potential when compared with healthy controls. Furthermore, iPSC cardiomyocytes 
from the Brugada Syndrome patients demonstrated increased triggered activity, 
abnormal calcium (Ca2) transients, and beating interval variation, the very same 
abnormalities previously reported in other studies, using different methodologies[53]. 
Late in 2016, a study using individual iPSCs was used to confirm results observed in a 
previous knock out mouse study. The studies had suggested the existence of a new 
cardiac regulatory mechanism that appeared to play a key role in the association 
between arrhythmias and myocardial hypertrophy. When the mouse studies were 
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repeated in human iPSCs, it was possible to confirm that the same stress-activated 
kinase was operative in human cells[54].

Heart disease screening
Another obvious application for iPSCs is screening for suspected heart disease, and for 
determining the significance of a mutation once it has been identified. Hypertrophic 
cardiomyopathy (HCM) is a very good example. The clinical diagnosis can be difficult 
to make (left ventricular hypertrophy with wall thickness > 15 mm, in the absence of 
ventricular dilation or any apparent disease that could cause hypertrophy)[55]. 
Unfortunately, it is not uncommon for there to be a complete disconnect between 
phenotype and genotype: Abnormal genes may be present but symptoms and signs 
absent.

Both sarcomeric mutations and non-sarcomeric mutations in HCM can be identified 
by whole-exome sequencing, and these studies demonstrate that the same genotype 
may be responsible for sudden death in one individual, but remain asymptomatic in 
another[56]. Multiple mutations have been detected in patients with HCM: Nine 
sarcomeric genes are known to carry most HCM-related mutations and encode 
sarcomeric mutations, while an additional nine mutations code for sarcomeric Z-disc 
proteins such as muscle LIM protein, α-actinin, or telethonin[57,58].

Since iPSCs cardiomyocytes became available, the pathogenic effects of some 
mutations (MYH7 and MYBPC3) associated with HCM have already been 
identified[59], and calcium blockade has been found to be an effective treatment for 
another HCM mutation (MYH7-R663H)[60]. Whole-exome sequencing almost never 
yields the identity of a single culprit gene, but rather detects multiple mutations, some 
of which may be relevant and some not. If one single mutation is responsible for the 
obvious phenotype of HCM, it has yet to be identified. It hardly needs saying, but 
exactly the same methodology used to identify culprit genes could be applied to 
genomic studies of countless other disorders, just by inducing the required cell type 
from transformed fibroblasts.

DISCUSSION
Overcoming the ethical problems related to the use of stem cells through the 
introduction of iPSCs opens up an interesting scenario on the study of the cellular 
basis of diseases[61,62]. The use of pluripotent cells makes it possible to reproduce 
models for the study of cardiological pathologies which frequently cause SCD and are 
often diagnosed post-mortem such as structural cardiomyopathies and channel-
opathies[63-66].

Furthermore, iPSCs can be exploited in the personalization of therapies in relation 
to the possibility of carrying out pharmacological tests on cells derived from the 
patient[67-70].

Although the principles are easy to understand, at present there are some important 
caveats. One is that fibroblast generated iPSCs demonstrate an immature phenotype so 
that they more closely resemble mid-gestation human fetal hearts[71-73]. These 
differences may well alter final experimental and clinical results, depending on the 
stage of development of the iPSCs being used. When used in other fields, the same 
caveat applies. Now that this difference has been recognized, finding ways to make 
sure the cells are organized and function as adult cells is the object of intense research, 
which has already begun to generate results. Recent reports indicate that iPSCs can be 
stimulated and made to mature by a combination of pacing and increasing mechanical 
stress[74-77].

Another issue that had been delaying progress is that protocols used to produce 
iPSCs do not produce just one kind of cell, but rather yield a mixed population of 
cardiomyocyte subtypes including ventricular-, atrial- and pacemaker-like 
cells[78-81]. Birket and colleagues[82] made the early observation that even though the 
iPSCs can behave like normal human cardiomyocytes, the production process leads to 
unequal numbers of each of the subtypes. Obviously, different results will be 
generated depending on which type of cell predominates. Many laboratories are 
working on effective cell separation methods and standardized methods should soon 
be available.
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Figure 1 Induced pluripotent stem cells can provide new ways to study arrhythmias and heart disease in general, accelerating the 
development of new, more effective antiarrhythmic drugs, clinical diagnoses, and personalized medical care. iPSCs: Induced pluripotent stem 
cells. Figure created with BioRender (https://biorender.com).

CONCLUSION
In summary, the main applications of stem cells include disease modeling, cell 
diagnostics, and therapy personalization (Figure 1). Such tasks involve molecular 
profiling, the identification of biomarkers of the expression of the pathological 
phenotype, as well as the identification and testing of targeted therapies. The 
availability of pluripotent cardiac stem cells, especially networked beating 
cardiomyocytes, is likely to revolutionize our understanding of many cardiac rhythm 
disorders and diseases, provide a rational testing method for the development of 
drugs, permit clinicians to assess effectiveness before drug administration and, most 
importantly, save lives.
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