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Abstract

Purpose: There is an increasing availability of large imaging cohorts (such as through The 

Cancer Imaging Archive (TCIA)) for computational model development and imaging research. To 

ensure development of generalizable computerized models, there is a need to quickly determine 

relative quality differences in these cohorts, especially when considering MRI datasets which can 

exhibit wide variations in image appearance. The purpose of this study is to present a quantitative 

quality control tool, MRQy, to help interrogate MR imaging datasets for: (a) site- or scanner-

specific variations in image resolution or image contrast, and (b) imaging artifacts such as noise or 

inhomogeneity; which need correction prior to model development.

Methods: Unlike existing imaging quality control tools, MRQy has been generalized to work 

with images from any body region to efficiently extract a series of quality measures (e.g. noise 

ratios, variation metrics) and MR image metadata (e.g. voxel resolution and image dimensions). 

MRQy also offers a specialized HTML5 based front-end designed for real-time filtering and trend 

visualization of quality measures.

Results: MRQy was used to evaluate (a) n=133 brain MRIs from TCIA (7 sites), and (b) n=104 

rectal MRIs (3 local sites). MRQy measures revealed significant site-specific variations in both 

cohorts, indicating potential batch effects. Before processing, MRQy measures could be used to 

identify each of the 7 sites within the TCIA cohort with 87.5%, 86.4%, 90%, 93%, 90%, 60%, and 

92.9% accuracy and the 3 sites within the rectal cohort with 91%, 82.8%, and 88.9% accuracy; 

using unsupervised clustering. After processing, none of the sites could be distinctively clustered 

via MRQy measures in either cohort; suggesting that batch effects had been largely accounted for. 
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Marked differences in specific MRQy measures were also able to identify outlier MRI datasets 

that needed to be corrected for common acquisition artifacts.

Conclusions: MRQy is designed to be a standalone, unsupervised tool that can be efficiently run 

on a standard desktop computer. It has been made freely accessible and open-source at http://

github.com/ccipd/MRQy for community use and feedback.

I. Introduction

The development of public repositories such as The Cancer Imaging Archive (TCIA) have 

enabled significant advances in machine and deep learning approaches via radiographic 

imaging for a variety of oncological applications1. A key aspect to utilizing TCIA cohorts 

for reliable model development and optimization of computational imaging tools is to curate 

datasets with minimal to no artifacts; implying they are relatively homogeneous in 

appearance2. Evaluating variations and relative image quality between cohorts can be critical 

to determine whether a radiomics or deep learning model that was trained on one cohort will 

perform reliably on a different cohort2; which can be impacted by:

• Site- and scanner-specific variations which can cause poor reproducibility of 

machine learning models between cohorts and sites. Beyond just differences in 

image acquisition parameters such as echo and repetition times, there may also 

be systematic occurrences of technical variations (e.g. voxel resolution or fields-

of-view) in subsets of a cohort i.e. batch effects3.

• Presence of imaging artifacts which adversely affect the relative quality of 

clinical MR imaging scans within a cohort and significantly degrade model 

performance4. Issues such as magnetic field inhomogeneity, aliasing, motion, 

ringing, or noise5 can cause datasets to harbor anomalies that need correction 

prior to analysis.

Identification of batch effects and image artifacts in individual MRI datasets (known as 

image quality assessment) may be performed by experts, however, visual inspection is 

known to lack sensitivity to subtle variations between MR images6. Subjective quality 

ratings are also not precise enough to rigorously curate MRI cohorts6 due to inter-rater 

variability. Additionally, it may be infeasible to laboriously and manually assess the quality 

of individual imaging datasets in large public repositories such as TCIA. This underscores 

the need for automated quality control (QC) tools for MRI scans, defined in this context as 

quantitative approaches that can be used to identify ranges of acceptability for MR imaging 

datasets7. Importantly, QC allows a user to efficiently identify when a quality measurement 

falls outside a user-specified range or tolerance, so that an appropriate corrective action can 

be taken8. QC tools also need to work with minimal to no user intervention while enabling 

reliable curation of artifact-free and congruent data cohorts for further computational 

analysis and model development.

Efforts towards automated quality control of MRI datasets has led to development of 

different Image Quality Metrics (IQMs)9 as well as a Quality Assessment Protocol (QAP)10. 

However, most studies evaluating IQMs (e.g. noise ratios, energy ratios, entropy values) 

have focused on supervised prediction of whether a brain MRI should be accepted or 
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excluded, as defined by experts9. IQMs have also been implemented in tools such as 

MRIQC6 which is a supervised quality classification tool for predicting expert quality 

ratings for brain MRIs. Other quality control and prediction tools for brain MRIs include the 

FreeSurfer-specific Qoala-T11 and LABQA2GO12; where the latter outputs an HTML report 

of image quality measures. However, as summarized in Table 1, none of these 

tools6,11,12,13,14 are readily generalizable to MRIs of body regions other than the brain, or 

provide an interactive front-end that can be used to easily interrogate quality issues and 

batch effects that may be present in large-scale imaging cohorts.

In this work, we present a technical overview of MRQy, a new open-source quality control 

tool for MR imaging data. MRQy builds on the digital pathology quality control tool, 

HistoQC15, and has been optimized for analyzing large-scale MRI cohorts through 

development of the following modules: (i) automatic foreground detection for any MR 

image from any body region, from which (ii) a series of imaging-specific metadata and 

quality measures10 are extracted, generalized to work with any structural MR sequence, in 

order to (iii) compute representations that capture relevant MR image quality trends in a data 

cohort. These are presented within a specialized HTML5-based front-end which can be used 

to: (a) interrogate trends in per-site and per-scanner variations in a multi-site setting, (b) 

identify which specific image artifacts are present in which MRI scans in a data cohort, and 

(c) curate together cohorts of MRI datasets which are consistent, of sufficient image quality, 

and fall within user-specified ranges for computational model development. We will 

demonstrate the usage of MRQy via a representative publicly available brain MRI cohort 

from TCIA as well as an in-house multi-site rectal MRI cohort.

II. Materials and Methods

The major components of the MRQy tool are illustrated in Figure 1, which can be sub-

divided into three specific modules: Input, Backend Processing, and Front-end Visualization.

II.A. Input

To ensure MRQy supported popular file formats for storing radiographic data 

(e.g. .dcm, .nii, .mha, and .ima), the packages medpy and pydicom libraries were used. 

MRQy iteratively parses either a single directory input (containing files) or resources 

through a directory of directories, in order to read in the image volume as well as parse 

image metadata.

II.B. Backend Processing

Foreground Detection: As the MRI volume input to MRQy could be acquired from any 

body region, it is crucial to first identify the primary area within the volume from which 

quality measures are to be calculated. An in-house image processing algorithm was 

developed to efficiently and automatically extract and separate the background (outside the 

body) from the foreground (primary region of interest); further details are provided in the 

Supplementary Materials. Representative results of foreground detection are illustrated in 

Figure 2 for MRIs of the brain and the rectum to demonstrate the generalizability of the 
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algorithm across different body regions, including in MR images with minimal background 

(i.e. "zoomed" acquisitions or those with sufficient phase oversampling, see Figure 2(e)).

Information Extraction: Two major types of information were extracted from each MRI 

volume, broadly categorized as Metadata and Measurements. These were saved into a tab-

separated file for further analysis via the specialized front-end interface or commonly 

available analytical tools (e.g., R, MATLAB, Python, Excel). Metadata were directly 

extracted from file headers (see Table 2, rows 1–10), and can include user-specified tags and 

header fields (see Supplementary Materials). Measurements were implemented from a 

survey of the medical imaging literature6,10 for detecting specific artifacts in MRI scans 

(Table 2, rows 10–23).

II.C. Front-end Visualization

The interactive user-interface of MRQy was built as a locally hosted HTML5/Javascript file 

(compatible with web browsers such as Google Chrome, Firefox, or Chromium); specifically 

designed for real-time analytics, data filtering, and interactive visualization by the end-user. 

The goal was to allow end-users to easily investigate trends in site or scanner variations 

within an MRI cohort, as well as identify those scans that require additional processing due 

to the presence of artifacts. The MRQy interface splits into 3 major sections, all of which are 

inter-connected. Any individual section can also be disabled or re-enabled by the end-user to 

provide a fully customizable interface.

Tables: Extracted metadata and measures appear in separate tables within the interface. 

Each table has sortable columns to easily view outliers in numeric values. Any incomplete 

metadata values are displayed as "NA" (as well as being ignored in subsequent 

visualizations). Information can easily be copied out of the tables, which are also fully 

configurable including allowing for removal of specific subjects or specific columns.

Charts: Two interactive trend visualizations were implemented. The parallel coordinate 
(PC) chart is a multivariate visualization tool which has been shown to be effective for 

understanding trends within multi-variate datasets17. For each MRI volume, a polyline is 

plotted (i.e. an unbroken line segment) which connected vertices of patient measurements on 

the parallel axes; i.e the vertex position on each axis corresponds to the value of the point for 

that specific metadata field or measure. The bar chart involves plotting a single bar per MRI 

volume for a selected variable (either metadata or measures). This provides an alternative 

approach to evaluating individual variables, where outliers would be markedly taller or 

shorter than the remainder of the cohort.

Scatter Plots: To examine how the MRI volumes in a cohort relate to one another as well 

as to examine site- or scanner-specific trends, 2 different "embeddings" were computed 

based on the t-SNE18 (using the sklearn.manifold Python package) and UMAP19 (using the 

umap-learn Python package) algorithms within the Python backend. Both these algorithms 

take as an input all 23 measures for each patient and output a 2-dimensional embedding 

space (visualized as a scatter plot) where pairwise as well as global distances between 

patients are preserved.
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II.D. Experimental Design

II.D.1. TCGA-GBM cohort—The Cancer Genome Atlas Glioblastoma Multiforme 

(TCGA-GBM) is the largest available dataset of brain MRI data from the Cancer Imaging 

Archive (TCIA)20, and comprises scans from n=259 subjects. This study was limited to 

subjects for whom a post-contrast T1-weighted MR image in the axial plane was available, 

resulting in a cohort of n=133 T1-POST MRI scans accrued from 7 different sites. As these 

MRI scans were acquired under different environmental conditions and using different 

scanner equipment and imaging protocols, this cohort includes typical data variations and 

image artifacts that may be observed in a TCIA dataset21. All 133 T1-POST studies were 

downloaded as DICOM files from TCIA.

In addition to the original cohort (as downloaded from TCIA), a processed version of the 

TCGA-GBM cohort was obtained from a publicly accessible release21,22. Briefly, processed 

MR volumes had been made available as NIFTI files after undergoing the following steps: 

(1) re-orientation to the left-posterior-superior coordinate system, (2) co-registration to the 

T1w anatomical template of SRI24 Multi-Channel Normal Adult Human Brain Atlas via 

affine registration, (3) resampling to 1 mm3 voxel resolution, (4) skull-stripping, (5) 

denoising using a low-level image processing smoothing filter, and intensity standardization 

to an image distribution template.

II.D.2. In-house rectal cancer cohort—This retrospectively curated dataset 

comprised 104 patients accrued from three different institutions including the Cleveland 

Clinic (CC, n=60), University Hospitals (UH, n=35), and the Cleveland Veterans Affairs 

(VA, n = 9) (further details available in [ 23]). For all patients, a T2-weighted turbo spin-

echo MRI sequence had been acquired from patients diagnosed with rectal adenocarcinoma. 

While all scans were anonymized DICOM files, they had been acquired with different 

sequence parameters and using different scanner equipment; thus making the cohort an 

exemplar of a retrospectively accrued multi-site cohort.

Both the original scans as well as processed scans in this cohort were utilized, where in the 

latter case all MRI datasets had undergone the following sequence of operations: (1) linear 

resampling to a consistent voxel resolution of 0:781 × 0:781 × 4:0 mm, (2) N4ITK bias field 

correction, and (3) image intensity normalization with respect to a muscle region. The 

processed images were available as MHA files.

II.D.3. Evaluation—The MRQy front-end was used to assess each of the two cohorts for 

batch effects as well as image quality artifacts. In order to determine how congruent and 

consistent the cohorts were as a result of processing, the output of MRQy was compared 

between the original unprocessed and the processed scans (i.e. after applying artifact 

correction and normalization operations). All analysis was conducted using Python 3.7.4 for 

backend processing and Google Chrome 80.0.3987.149 for interacting with the front-end on 

a PC with Intel(R) Core(TM) i7 CPU 930 (3.60 GHz), 32 GB RAM, and a 64 bit Windows 

10 operating system.

The performance of MRQy measures in identifying batch effects in each cohort without any 

a priori knowledge was evaluated via consensus clustering24 of all 23 measures using the 
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ConsensusClusterPlus package in R. Hierarchical consensus clustering (with k = 7 for 

TCGA-GBM and k = 3 for the rectal cohort) was performed using Pearson distance and 

1000 iterations, including 80% random dataset resampling between iterations. The result 

was visualized as a consensus cluster heatmap where the shading indicated the frequency 

with which a pair of patients was clustered together. Cluster overlap accuracy was then 

computed by first identifying which cluster corresponded to which site (based on precision/

recall values) and then calculating what fraction of the datasets from each site had been 

correctly clustered together in consensus clustering.

III. Results

III.A. Assessment of TCGA-GBM datasets for batch effects and imaging artifacts

Analysis via MRQy took 93.5 minutes to process all 133 datasets in the original TCGA-

GBM cohort (≈ 42s/dataset) and 101.6 minutes (≈ 46s/dataset) for the processed cohort. As 

an exemplar, we describe usage of the MRQy front-end interface (Figure 3(a)) to identify 

imaging artifacts. The PC chart of the CJV measure (Figure 3(b), unprocessed cohort mean 

CJV=1:30 ± 0:06) shows the presence of a distinct outlier (highlighted in orange + orange 

arrow, CJV=1.64). Further visualizing representative images (Figure 3(c)) from this dataset 

depicts a distinct shading artifact compared to a different dataset from the cohort ((Figure 

3(c), cyan arrow in PC chart, CJV=1.2). Based on the formulation of the CJV measure16, 

this dataset may require bias correction or intensity normalization prior to computational 

analysis. Examining the PC chart of the CJV measure of processed scans (Figure 3(f), cohort 

mean CJV=0:605 ± 0:05) reveals no distinct outliers (the highlighted dataset from Figure 

3(b) has CJV=0.604 after processing). Figure 3(g) and (h) depict processed images 

corresponding to those in Figure 3(c) and (d) respectively, which confirm the processing 

steps have accounted for the intensity artifacts previously identified.

Significant site-specific variations are seen to be present in the embedding scatter plot 

overlaid with different colored symbols for each site (Figure 3(e)). Each of the 7 sites appear 

as a distinct cluster, suggesting batch effects that need to be corrected for prior to model 

development.

After processing, the embedding scatter plot reveals no distinctive clusters corresponding to 

any site, where the colored symbols in Figure 3(i) fall within a single merged cluster; 

suggesting that the processing steps may have successfully accounted for site-specific 

variations.

III.B. Evaluation of multi-site rectal cancer cohort via MRQy

Analysis via MRQy took 51.8 minutes to process all 104 original datasets in rectal cohort (≈ 
30s/dataset) and 60.28 minutes (≈ 35s/dataset) for the processed cohort. Within the MRQy 

front-end (Figure 4(a) for unprocessed data and Figure 4(d), for processed data), the bar 

chart of PSNR values (Figure 4(b)), unprocessed cohort mean PSNR=11:17 ± 2:38) helps 

quickly identify a specific dataset with very poor PSNR (indicated via orange arrow, 

PSNR=0.2). PSNR thus appears to accurately characterize noise artifacts in MR images as 

designed6, suggesting this dataset requires denoising prior to analysis. In the processed 
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cohort, the PSNR value for this dataset (Figure 4(e), orange arrow, PSNR=18.4) is markedly 

higher as well as appears more consistent with the remainder of the cohort (processed cohort 

mean PSNR=17:94 ± 1:42).

Marked batch effects are seen to be present in the scatter plot in Figure 4(e) as each of the 

colored symbols (corresponding to different sites in the unprocessed cohort) appear in 

distinct clusters. By contrast, the scatter plot of the processed cohort in Figure 4(f) reveals a 

single merged cluster suggesting that site-specific differences have been accounted for.

III.C. Quantitative evaluation of batch effects before and after processing

Figure 5 (a) and (b) visualizes the clustergrams for each cohort (based on unprocessed data) 

obtained via consensus clustering of the 23 measures. For the TCGA-GBM cohort, the 

cluster overlap accuracy of MRQy measures with respect to each of the 7 sites is 87.5%, 

86.4%, 90%, 93%, 90%, 60%, and 92.9% respectively. Similarly, MRQy measures are found 

to cluster each of the 3 sites in the rectal cohort with an overlap accuracy of 91%, 82.8%, 

and 88.9%, respectively. The strong co-clustering of datasets from the same site as as well as 

relatively high clustering accuracy of datasets within site-specific groupings are suggestive 

of batch effects in both cohorts.

Corresponding clustergrams for the processed datasets are shown in Figure 5(c) (for TCGA-

GBM cohort) and Figure 5(d) (for rectal cohort). After processing, the cluster overlap 

accuracy of MRQy measures in the TCGA-GBM cohort for each of the 7 sites reduced to 

16.67%, 2.33%, 4.55%, 70%, 10%, 20%, and 7.14% respectively. Similarly, the cluster 

overlap accuracy for each of the 3 sites in the rectal cancer cohort is 1.67%, 0%, and 

88.89%, respectively. This suggests that none of the clusters identified via MRQy measures 

are associated with any specific site after processing, in either cohort.

IV. Discussion

We have presented a technical overview and experimental evaluation of a novel open-source 

quality control tool for MR imaging data; called MRQy. Using cohorts from 2 different body 

regions (brain MRIs from TCIA, in-house rectal MRIs), we demonstrated that MRQy can 

quantify and evaluate (a) site- or scanner-specific variations within an MRI cohort, (b) 

imaging artifacts that compromise relative image quality of MRI datasets, and (c) how well 

specific processing pipelines have accounted for artifacts that are present in an given data 

cohort.

Quality control of MR imaging has long been a topic of active research9,25, but a majority of 

the resulting tools have been specifically developed for brain MRIs6,11,12,13,14 in order to 

identify acceptable scans via supervised learning (based on subjective expert quality 

ratings). By contrast, MRQy represents a unique solution for quality control of MRI datasets 

that has been designed to work with scans of any body region while running in an efficient 

and unsupervised fashion. MRQy has been developed by expanding on an initial framework 

developed as part of a digital pathology quality control tool, HistoQC15, but has been 

evolved significantly to specialize it for MR imaging data by incorporating imaging-specific 

processing steps and quality measures. Unlike existing approaches for MRI quality control, 
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MRQy also includes a specialized interactive front-end which can help quickly identify what 

relative imaging artifacts and batch effects are present in a cohort. While the current work 

has been limited to demonstrating detection of 2 specific artifacts (shading, noise) via 

MRQy, we believe this approach will generalize to other artifacts due to the extensive list of 

extracted quality measures which have been previously validated for this purpose6.

Further development of MRQy has been enabled by its modular design, exemplified by the 

HTML front-end which is already highly customizable by the end-user. One of our planned 

functionalities is to enable real-time generation of the embedding scatter plots directly 

within the MRQy HTML front-end rather than via the backend. Similarly, the Python 

backend can be easily modified via user-developed plugins to use a different foreground 

detection algorithm, compute additional quality measures, or even to integrate quality 

prediction algorithms25 in the future. One of the current limitations of MRQy is that it can 

only be used for quality control of structural MRI data, but we are working on developing 

new measures that could allow MRQy to be used to interrogate non-structural MRIs (e.g. 

diffusion or dynamic contrast-enhanced MRI). Additionally, by modifying the quality 

measures appropriately, this tool could be adapted for quality control of any radiographic 

imaging collection (CT, ultrasound, PET, etc.) housed in public repositories such as TCIA.

V. Conclusions

We have presented a technical overview and experimental evaluation of MRQy, a new 

quality control tool for MR imaging data. MRQy works by computing actionable quality 

measurements as well as image metadata from any structural MR sequence of any body 

region via a Python backend, which can be interrogated via a specialized HTML5 front end. 

MRQy can be executed completely offline and the entire tool requires only a few commands 

to run in an unsupervised fashion, as well as being designed to be easily extensible and 

modular. Our initial results successfully demonstrated how MRQy could be used for (a) 

quantifying site- and scanner-specific batch effects within large multi-site cohorts of MR 

imaging data (such as TCIA), (b) identifying relative imaging artifacts within MRI datasets 

which require correction prior to model development, as well as (c) evaluating how well 

specific processing pipelines have corrected for these issues in a given data cohort. We have 

publicly released results of our QC analysis of MRI studies from 3 different TCIA 

collections (https://doi.org/10.7937/K9/TCIA.2020.JHZ2-T694) to assist researchers in this 

regard. MRQy has been made publicly accessible as an open-source project through GitHub 

(https://github.com/ccipd/MRQy), and can be downloaded as well as contributed to freely by 

any end-user.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1: 
Schematic for overall MRQy workflow and major components.
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Figure 2: 
Representative foreground detection results with the foreground outlined in green for 

representative (a), (b), (c) brain MRI sections, (d), (e), (f) rectal MRI sections. Region 

outside the green outline is considered background. Note accurate delineation of outer 

boundary despite visually apparent shadowing and noise artifacts on all MRIs, regardless of 

body region being imaged.
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Figure 3: 
(a) MRQy front-end interface for interrogating TCGA-GBM cohort before processing. (b) 

Outlier dataset identified on PC chart for the CJV measure found to exhibit shading artifact 

on (c) representative images, especially when compared to (d) a different dataset. (e) Scatter 

plot revealing presence of site-specific batch effects in this cohort before processing (colored 

symbols corresponding to different sites appear in site-specific clusters). (f) corresponds to 

(b) after data processing. (g) Processed images corresponding to (c). (h) Processed images 

corresponding to (d). (i) Scatter plot of the processed data fall with in a single merged 

cluster.
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Figure 4: 
(a) MRQy front-end interface for interrogating rectal cohort before processing. (b) Outlier 

dataset identified on the bar chart for the PSNR measure found to exhibit subtle noise 

artifacts. (c) Scatter plot reveals presence of site-specific clusters in this cohort before 

processing (colored symbols corresponding to different sites appear in site-specific clusters). 

(d) MRQy front-end interface showing results using processed data. (e) Improved PSNR 

value of dataset highlighted in (b) after processing, also more consistent with remainder of 

cohort. (f) Scatter plot a single merged cluster for the cohort, suggesting batch effects and 

site-specific variations may have been accounted for.
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Figure 5: 
Consensus clustegram of all 23 MRQy measures computed for (a) unprocessed TCGA-

GBM cohort, (b) unprocessed rectal cohort, (c) processed TCGA-GBM cohort, and (d) 

processed rectal cohort. In each plot, the colorbar along the right corresponds indicates 

which site each dataset belongs to (legend alongside) while the colorbar at the top is the 

cluster label obtained via consensus clustering. For unprocessed data, precision and recall 

values for each cluster in identifying a specific site are also noted along the left and bottom 

of the clustergram, respectively.
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Table 1:

Feature comparison of open-source MRI quality control tools

Attribute MRIQC6 Qoala-T11 LABQA2GO12 MRIQC-
WebAPI13 Mindcontrol14 VisualQC MRQy

Body part brain brain brain brain brain brain all

Supporting raw data (.dcm,.nii) ✓ ✓ ✓ ✓ ✓ ✓ ✓

Supporting processed 
data (.mha) ✗ ✗ ✗ ✗ ✗ ✓ ✓

Supporting modular plugins ✗ ✗ ✗ ✗ ✓ ✓ ✓

Supporting phantom data ✗ ✗ ✓ ✗ ✗ ✗ ✓

Interactive user interface ✓ ✗ ✗ ✓ ✓ ✓ ✓

Batch effects identification ✓ ✗ ✗ ✓ ✗ ✓ ✓

Measurements 14 185 - 14 3+9 - 13+10
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Table 2:

Summary table of metadata and quality measures extracted within MRQy

Type Metric Description*

MFR manufacturer name from the file header

MFS magnetic filed strength from the file header

VRX voxel resolution in x plane

Metadata

VRY voxel resolution in y plane

VRZ voxel resolution in z plane

ROWS rows value of the volume

COLS columns value of the volume

TR repetition time value of the volume

TE echo time value of the volume

NUM number of slice images in each volume

MEAN
mean of the foreground (m1 = μF = 1

MN ∑i, jF(i, j))

RNG range of the foreground (m2 = max(F) − min(F))

VAR variance of the foreground (m3 = σF
2 )

CV coefficient of variation of the foreground for shadowing and inhomogeneity artifacts (m4 =
σF
μF

)

CPP

contrast per pixel: mean of the foreground filtered by a 3 × 3 2D Laplacian kernel for shadowing artifacts 

(m5 = mean(conv2(F, f1)), f1 = 1
8

−1 −1 −1
−1 8 −1
−1 −1 −1

)

PSNR
peak signal to noise ratio of the foreground (m6 = 10log max2(F)

MSE(F, f2) , f2 is a 5 × 5 median filter)

SNR1 foreground standard deviation (SD) divided by background SD5 (m7 =
σF
σB

)

Measurements

SNR2 mean of the foreground patch divided by background SD6. (m8 =
μFP
σB

)

SNR3 foreground patch SD divided by the centered foreground patch SD (m9 =
μFP

σFP − μFP
)

SNR4 mean of the foreground patch divided by mean of the background patch (m10 =
μFP
σBP

)

CNR

contrast to noise ratio for shadowing and noise artifacts5: mean of the foreground and background patches 

difference divided by background patch SD (m11 =
μFP − BP

σBP
)

CVP

coefficient of variation of the foreground patch for shading artifacts: foreground patch SD divided by foreground 

patch mean (m12 =
σFP
μFP

)

CJV

coefficient of joint variation between the foreground and background for aliasing and inhomogeneity artifacts16 

(m13 =
σF + σB
μF − μB

)
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Type Metric Description*

EFC
entropy focus criterion for motion artifacts6: 

m14 = NM
NM log E

NM , E = − ∑i, j
F(i, j)
Fmax

lnF(i, j)
Fmax

, Fmax = ∑i, jF2(i, j)

FBER foreground-background energy ratio for ringing artifacts10: (m15 = median( |F |2)
median( |B |2)

)

*
All the computed measurements (numbered m1 – m15) are average values over the entire volume, which calculated for every single slice 

separately. Variables M, N, F, B, FP, BP stand for slice width size, slice height size, foreground image intensity values, background image intensity 

values, foreground patch, and background patch respectively. Operators μ,σ,σ2, median stand for mean, standard deviation (SD), and variance 
measures respectively. Foreground and background patches are random 5 × 5 square patches of the foreground and background images respectively. 
Measurements SNR1-SNR4 are all signal to noise ratio with different definitions.
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