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Abstract

Purpose: To identify computer-extracted features for central gland and peripheral zone prostate 

cancer localization on multiparametric magnetic resonance imaging (MRI).

Materials and Methods: Preoperative T2-weighted (T2w), diffusion-weighted imaging (DWI), 

and dynamic contrast-enhanced (DCE) MRI were acquired from 23 men with confirmed prostate 

cancer. Following radical prostatectomy, the cancer extent was delineated by a pathologist on ex 

vivo histology and mapped to MRI by nonlinear registration of histology and corresponding MRI 

slices. In all, 244 computer-extracted features were extracted from MRI, and principal component 

analysis (PCA) was employed to reduce the data dimensionality so that a generalizable classifier 

could be constructed. A novel variable importance on projection (VIP) measure for PCA (PCA-

VIP) was leveraged to identify computer-extracted MRI features that discriminate between cancer 

and normal prostate, and these features were used to construct classifiers for cancer localization.

Results: Classifiers using features selected by PCA-VIP yielded an area under the curve (AUC) 

of 0.79 and 0.85 for peripheral zone and central gland tumors, respectively. For tumor localization 

in the central gland, T2w, DCE, and DWI MRI features contributed 71.6%, 18.1%, and 10.2%, 

respectively; for peripheral zone tumors T2w, DCE, and DWI MRI contributed 29.6%, 21.7%, and 

48.7%, respectively.

Conclusion: PCA-VIP identified relatively stable subsets of MRI features that performed well in 

localizing prostate cancer on MRI.
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DURING THE PAST DECADE multiparametric (MP) magnetic resonance imaging (MRI) 

has emerged as the imaging modality of choice for disease staging in patients with biopsy-

confirmed prostate cancer (1). Additionally, MRI is becoming more popular for prostate 

cancer detection and localization in patients with repeated negative biopsies but elevated 

prostate-specific antigen (PSA) and to facilitate targeted biopsies. Prostate MRI exams 

typically involve a combination of T2-weighted (T2w) MRI, which provides excellent 

contrast of anatomic structures due to its sensitivity to fluid content; diffusion-weighted 

imaging (DWI), which shows tissue microstructure by probing molecular water diffusion; 

DCE MRI, which is used to evaluate tumor microvasculature and angiogenesis; and MR 

spectroscopy (MRS), which assesses the presence of various metabolites in the tissue. 

Prostate cancer manifests on T2w MRI as areas with low signal intensity relative to normal 

peripheral tissue (2); on DWI as areas with low apparent diffusion coefficient (ADC) values 

(3); and on DCE MRI as regions with increased contrast enhancement (4). MRS is not 

routinely acquired at many sites because MRS imaging quality varies greatly between 

institutions and is associated with high interobserver variability (5).

The prostate gland can be divided into two primary anatomical regions: the peripheral zone 

(PZ) and the central gland (CG), comprised of the central and transitional zones. Several 

studies have found that clinical features of prostate cancer vary based on the spatial location 

of the tumor in the prostate (6). For example, PZ tumors tend to be more aggressive than CG 

tumors (7). Seventy percent of prostate tumors occur in the PZ, where they appear on T2w 

MRI as regions of low signal intensity surrounded by brighter normal PZ tissue (8,9). The 

remaining prostate tumors are found in the CG, where they manifest as homogeneous, 

lenticular-shaped lesions with low signal intensity (8,9). Moreover, it was recently shown 

that CG and PZ cancer possess distinct quantitative imaging signatures on MRI (10).

A number of recent studies have shown that computer-extracted MRI features are useful for 

detecting prostate cancer (10–16). It is thought that computer-extracted features are capable 

of quantitatively describing tissue microarchitecture and morphology, which provide clues 

about cancer presence. Most of these efforts have been directed towards training classifiers 

with computer-extracted features to accurately discriminate between cancer regions and 

normal prostate tissue. These studies, which use a combination of first-order statistical 

features, co-occurrence features, and wavelet features, report improved cancer detection 

accuracy compared to MP MRI signal intensities (10–12).

Some of these studies use 50–300 computer-extracted MRI features for prostate cancer 

detection (10–13). While it is important to extract a large pool of features that fully describe 

tissue morphology and microarchitecture on MRI, many of these features may be redundant. 

Moreover, while some computer-extracted features may be useful for cancer detection in the 

PZ, others may be better suited for cancer detection in the CG. According to the Hughes 

effect (17), predictive power reduces as dimensionality increases; this effect, termed the 
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“curse of dimensionality,” is accentuated when the sample size is small. Consequently, when 

only a limited number of training samples are available, a generalizable classifier cannot be 

constructed with more than a handful of features (18). In order to construct a generalizable 

classifier, a small subset of computer-extracted features that best characterize prostate cancer 

must be identified.

There are two overarching methods for overcoming this “curse of dimensionality”: feature 

selection (FS) and dimensionality reduction (DR). Although FS is useful for reducing the 

number of features, both feature ranking processes and greedy FS algorithms tend to be 

unstable, ie, slight perturbations in data may lead to different sets of selected features (19). 

Alternatively, DR transforms high-dimensional features into a series of eigenvectors, which 

are used for classification. However, because eigenvectors are used for classification instead 

of the original features, it is challenging to understand the role that each feature—and MRI 

protocol—plays in cancer detection. This lack of interpretability is a serious drawback of 

DR.

The primary goal of this work is to combine the advantages of both DR and FS to identify a 

small subset of computer-extracted features that collectively characterize prostate cancer 

appearance on MP MRI and to evaluate the performance of these features within a decision 

support classifier for cancer detection and localization. Prostate cancer localization accuracy 

is assessed by comparing voxel-wise classification results with “ground truth” cancer extent, 

delineated by a pathologist on ex vivo histology and mapped to in vivo MRI via nonlinear 

registration (20,21). Toward this end, we present a method for quantifying the extent that a 

particular feature or set of features contributes to classification on a lowdimensional 

embedding obtained by principal component analysis (PCA), a popular linear DR algorithm. 

A secondary goal of this work is to investigate zonal differences in prostate cancer 

characteristics.

MATERIALS AND METHODS

Data Acquisition

This retrospective study was approved by the Institutional Review Board at Beth Israel 

Deaconess Medical Center. This study was an arm of a prospective study that included 108 

subjects (mean age, 58.5 years; age range, 47–72 years) with biopsy-confirmed prostate 

cancer (median Gleason score, 7; range, 6–9) who were scheduled for radical 

prostatectomies. Forty-five subjects were excluded for lack of DCE MRI or corresponding 

digitized whole mount histological sections (WMHS), and another 40 were excluded 

because the pathologist did not annotate cancer on the WMHS. A total of 23 cases were 

included in the current study, of which 15 cases included T2w, DWI, and DCE MRI, while 

the remaining eight cases included only T2w and DCE MRI.

Before surgery, the patients were imaged using a combined torso-phased array and 

endorectal coil (MedRad, Pittsburgh, PA) using a 3T whole-body MRI scanner (Genesis 

Signa LX Excite; GE Medical Systems, Milwaukee, WI). The parameters for axial T2w 

MRI were repetition time / echo time (TR/TE) = 6375/165 msec, slice thickness of 1.5–2 

mm (no gap between slices), and matrix size of 320 × 224–192 voxels with a field of view 

Ginsburg et al. Page 3

J Magn Reson Imaging. Author manuscript; available in PMC 2021 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



(FOV) of 12 × 12 cm. The DCE MRI protocol included two precontrast T1-weighted 

gradient echo images, acquired at 95-second intervals before a bolus injection of 0.1 

mmol/kg of gadolinium-DTPA, and five postcontrast images acquired at the same temporal 

resolution. The DCE MRI parameters were TR/TE = 9.3/4.2 msec, flip angle = 18°, FOV = 

14 × 14 cm and matrix size 256 × 224 (interpolated to 256 × 256 matrix), with no phase 

wrap. Transverse DWI parameters were TR/TE = 6500/80.6 msec, FOV = 24 × 24 cm, 

matrix size 256 × 192, B-value = 0,1000 s/mm2, two averages and 25 directions. Instead of 

using more averages, we used 25 directions to improve results in diffusion tensor imaging 

and anisotropic maps and enhance contrast in ADC maps.

A pathologist (E.M.G., 16 years of experience) and radiologist (B.N.B., 14 years of 

experience) working in unison visually identified 96 corresponding 2D WMHS and axial 

MRI slices from these 23 studies. These correspondences were established by means of 

anatomical fiducials such as the urethra, veromontanum, and prominent nodules of benign 

prostatic hyperplasia that were visually discernible on both histology and MRI. Based on the 

recommendations of McNeal (22), each patient was classified as having CG or PZ cancer if 

more than 70% of the cancer volume was present in a particular zone. To ensure that the sets 

of CG and PZ cancer were distinct from each other, only sections displaying an explicit 

tumor focus in either the CG or the PZ were included in this analysis. Based on the zonal 

locations of the prostate tumors and the MRI protocols available for each patient, four sets of 

patient studies were composed and analyzed separately in this study (see Table 1).

Preprocessing of MRI

T2w and DCE MRI were corrected for acquisition-based MRI intensity artifacts that affect 

image analysis algorithms (16). The most significant artifact is the bias field on T2w and 

DCE MRI, which occurs due to usage of an endorectal probe (23). Bias field artifacts were 

corrected by the N3 algorithm (24), which incrementally deconvolves smooth bias field 

estimates from acquired image data (see Fig. 1). A second artifact, intensity non-

standardness (25), refers to the issue of inter- and intrapatient MRI “intensity drift,” which 

causes MRI intensities to lack tissue-specific numeric meaning (25). This artifact was 

corrected by interactive implementation of the generalized scale algorithm (25), which 

aligns image intensity histograms across different MRI studies, thereby enabling MRI 

intensities to have a consistent tissue-specific numeric meaning (see Fig. 1).

Registration of MRI and WMHS Slices

In order to obtain “ground truth” annotation of prostate cancer extent on in vivo MRI, 

nonlinear registration of MP MRI and WMHS was performed (20,21). First, T2w MRI and 

ADC maps obtained from DWI were spatially aligned with DCE MRI via volumetric affine 

registration, which corrected interacquisition movement and interprotocol resolution 

differences. Slice correspondences between T2w, DCE, and ADC images, as well as relative 

voxel locations and sizes, were determined using DICOM image header information. After 

interprotocol alignment, all MRI data were analyzed at the DCE MRI resolution.

Once T2w, DCE, and ADC images were spatially aligned, in vivo MRI was registered with 

ex vivo WMHS. Registration of WMHS and MRI is complicated by differences in image 
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intensities and nonlinear changes in the shape of the prostate due to both the endorectal coil 

and deformations to the histological sections upon fixation and sectioning. We therefore 

used a nonrigid registration scheme (20) driven by a higher-order variant of mutual 

information that handles images with very different intensities (eg, MRI and WMHS data) 

and deformation characteristics (eg, in vivo to ex vivo). First, affine alignment of WMHS to 

the corresponding T2w MRI slice was performed to correct large translation, rotation, and 

scale differences. Then the rigid alignment of WMHS and T2w MRI was improved by 

means of a fully automated nonlinear hierarchical B-spline mesh grid image warping 

scheme (20).

After corresponding 2D WMHS slices were aligned with MRI, the spatial extent of the 

cancer was mapped from WMHS slices onto corresponding MRI slices. The spatial extent of 

the cancer mapped onto MRI was examined and manually corrected (as required) by a 

radiologist (N.B.B., 14 years of experience) using Photoshop (Adobe Systems, San Jose, 

CA). The final result was a labeling of each MRI voxel within the prostate as corresponding 

to cancer or benign prostate tissue (see Fig. 2).

MP MRI Feature Extraction

Signal intensity (SI) features considered in this study included T2w MRI intensities, time-

resolved DCE MRI signal intensities and tissue concentration curves, estimated using the 

method of Medved et al (26), and ADC values for the studies with available ADC maps (see 

Table 2). Additionally, we computed a large number of computer-extracted features that 

have previously been used for prostate cancer detection on T2w MRI (10). These 112 

features, which we extracted on a per-voxel basis from both T2w MRI and ADC maps, are 

described briefly in Table 3. Additionally, six kinetic features (27) were obtained for each 

DCE MRI voxel (Table 3). All feature extraction was implemented using MatLab 

(MathWorks, Natick, MA).

Notation

We define a voxel in the MR image as c ∈ C. Each c ∈ C is associated with a label y(c) ∈ 
{0,1}, where y(c) = 0 if voxel c is benign and y(c)=1 otherwise. For prostate studies in 

dataset S1 each c ∈ C is also associated with the feature vector F(c) = [FT2w(c), FDCE(c)], 

where FT2w(c) and FDCE(c) are comprised of features extracted from T2w MRI and DCE 

MRI, respectively. For datasets S2, S3, and S4 the feature vector associated with each c ∈ C 
is F(c) = [FT2w(c), FADC(c),FDCE(c)], where FADC(c) contains features extracted from 

ADC maps. A subset of features in F(c) is denoted as FJ(c), where J ⊂ {1, …, M} and M is 

the cardinality of F(c).

Principal Component Analysis

PCA (28) involves finding a linear transformation that maximizes the variance in data and 

applying this transformation to obtain uncorrelated features. The data matrix X is 

constructed with the N M-dimensional feature vectors F(c), normalized to the interval [0,1], 

as rows. The orthogonal eigenvectors of X, which express the variance in the data, become 

the principal components. Thus, PCA forms the following model:
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X = TP ⊺ [1]

where T contains the M principal component vectors ti as columns and P⊺ is comprised of 

the M loading vectors pi as rows. DR is accomplished by retaining only the first m principal 

components and loading vectors, which comprise most of the variance in the data.

Variable Importance in PCA Projections

The importance of a feature to classification on a PCA embedding is a function of its impact 

on the shape of the PCA embedding and its value in predicting class labels. Consequently, 

we propose the following expression to quantify the importance of features to classification 

on the embedding:

ϕj = M
∑i = 1

m bi
2ti

⊺ti
pji
Pi

2

∑i = 1
m bi

2ti
⊺ti

[2]

where bi are coefficients that solve the regression equation

y = Tb⊺, [3]

which relates the principal component scores to the outcome vector y. This expression is 

derived from a similar expression that was introduced to quantify the contributions of 

features to a partial least squares embedding (29). In Eq. [2] the fraction 
pji

∥ pi ∥
2
 reveals 

how much the ith principal component depends on the jth feature. The overall importance of 

the ith feature can be calculated by summing its contributions to each dimension of the PCA 

embedding and weighting these values by 1) the regression coefficients bi, which relate the 

data back to the class labels, and 2) the transformed data ti. Thus, although PCA is itself an 

unsupervised method, the exploitation of class labels in computing the PCA-VIP scores 

leads to the identification of features that provide good class discrimination. The degree to 

which a feature contributes to classification in the PCA embedding space is directly 

proportional to the square of its PCA-VIP score. Thus, features with the highest PCA-VIP 

scores contribute most to class discrimination on the PCA embedding.

Determination of Intrinsic Dimensionality

The intrinsic dimensionality of the data, m, (ie, the number of principal components retained 

during dimensionality reduction) was determined based on the effect of the value of m on 

the resulting PCA-VIP scores, as follows. Beginning with m = 1, m was gradually increased; 

as a result, the PCA-VIP scores fluctuated due to the consideration of features’ effects on 

more principal components. Once varying m no longer significantly impacted the PCA-VIP 

scores (p > 0.05), m was determined to be sufficiently high. This value of m, typically m < 

10, determined how many principal components were retained.
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Relative Importance of Feature Subsets

The importance of a feature subset J is quantified as:

ϕJ = ∑
j ∈ J

ϕj
2 . [4]

It follows that the relative importance of subset J1 compared to subset J2 can be expressed 

as:

ϕJ1 J2 = 100 ×
πJ1

πJ1 ∪ J2
. [5]

Because Σj = 1
M ϕj

2 = M, the relative importance of subset J compared to the entire feature set 

can be expressed simply as ϕJ = 100 × ϕJ M.

Evaluation

PCA-VIP was evaluated in terms of its ability to find a subset of features that 1) remains 

stable (ie, robust to perturbations in the data) and 2) provides high accuracy in cancer 

localization. The stability of PCA-VIP was evaluated by the Jaccard index (30):

J(J1, J2) = ∣ J1 ∩ J2 ∣
∣ J1 ∪ J2 ∣ . [6]

If an FS algorithm is stable, repeated implementations will lead to similar feature subsets 

and a Jaccard index close to 1. In this study we compared the stability of PCA-VIP with 

minimum-redundancy-maximum-relevance (mRMR) (31), a popular FS scheme.

Classification accuracy was evaluated by using two Bayesian classifiers (28): the parametric 

logistic regression classifier and the nonparametric naïve Bayes classifier. Based on the 

voxel-wise prediction results obtained from these classifiers, receiver operating 

characteristic (ROC) curves representing the tradeoff between cancer detection sensitivity 

and specificity were generated. The area under the ROC curve (AUC) was used to evaluate 

classifier accuracy in conjunction with different feature subsets. In order to ensure 

robustness of AUC estimates, a 3-fold randomized cross-validation procedure, using 

approximately 2/3 of the patient studies for training and the remaining 1/3 for testing, was 

repeated 30 times, and the average AUC and J values were obtained.

RESULTS

Features Selected by PCA-VIP

Table 4 lists the 10 features with the highest PCA-VIP scores for PZ and CG cancer 

localization; these features constituted JPZ and JCG, respectively. Note that two features 

are shared by JPZ and JCG: the enhancement ratio from DCE MRI and a Haar wavelet 
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coefficient derived from DWI. Whereas JCG included eight co-occurrence features extracted 

from T2w MRI, JPZ contained mainly Gabor and Haar wavelet features and no co-

occurrence features. Half of the features in JPZ were derived from DWI, three from T2w 

MRI and two from DCE MRI: enhancement ratio and time-to-peak.

Stability of PCA-VIP Feature Subsets

Figure 3 displays the Jaccard index for feature subsets selected by PCA-VIP and mRMR. 

For all four datasets, the Jaccard index was higher for PCA-VIP than mRMR. For datasets 

S2, S3, and S4, this difference was statistically significant. In particular, the Jaccard index 

associated with PCA-VIP for CG cancer localization (dataset S3) was as high as 0.68, 

signifying that the feature subset selected by PCA-VIP for CG cancer localization was 

highly stable and relatively unaffected by perturbations in the data.

Classification Accuracy Provided by Selected Features

AUC values obtained by using JCG and JPZ in conjunction with logistic regression and 

naïve Bayes classifiers followed similar trends (see Fig. 4c,d), although the logistic 

regression classifiers generally provided higher AUC values than the naïve Bayes classifier. 

Figure 5f,l, respectively, illustrate the accuracy with which logistic regression classifiers 

constructed in conjunction with JPZ and JCG localize cancer on MRI. In contrast to 

classifiers using all of the computer-extracted features (see Fig. 5d,j), the classifiers that used 

only the features selected by PCA-VIP accurately identified both the tumor location and the 

approximate size and shape of the lesion. When JCG was used in conjunction with logistic 

regression to classify voxels as cancer or benign, an AUC value of 0.85 was achieved (Fig. 

4d); when a logistic regression classifier was used in conjunction with JPZ, an AUC of 0.79 

was obtained (Fig. 4d). In contrast, when features extracted from DWI were not available 

(dataset S1), the average AUC using the entire JPZ dropped to 0.75. When PCA-VIP was 

used to select features for cancer detection independent of zonal prostate location, AUC 

values were substantially reduced (Fig. 4c,d).

Comparison of Signal Intensity and Computer-Extracted Features

The PCA-VIP scores associated with each of the SI features are listed in Table 2; none of the 

SI features was associated with PCA-VIP scores greater than 1, indicating that they 

contributed less to prostate cancer localization than the feature with the mean PCA-VIP 

score. In contrast, PCA-VIP scores associated with the top-performing computer-extracted 

features, listed in Table 4, ranged from 1.5 to 2.83. Figures 5b and 3f illustrate that logistic 

regression classifiers constructed in conjunction with SI features allowed for localization of 

PZ and CG cancer, respectively, with high sensitivity but poor specificity. In contrast, 

logistic regression classifiers constructed in conjunction with JCG and JPZ localized cancer 

with high sensitivity and specificity (Fig. 5f,l).

Ranking MRI Protocols for Prostate Cancer Localization

The relative contributions of T2w, DWI, and DCE MRI features to cancer localization were 

assessed using Eq. [5]. For CG cancer localization T2w MRI features contributed nearly 
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twice as much to classification accuracy in the PCA embedding space as DWI features (Fig. 

6a). When only features comprising JCG were considered (Fig. 6b), T2w MRI features 

contributed almost 70% of the classification performance, with DCE MRI features 

contributing ~20% and DWI features contributing ~10% (ie, each of the 10 features 

contributes ~10%). For PZ cancer localization, however, features extracted from both T2w 

MRI and ADC maps had nearly identical contributions to classification accuracy in the PCA 

embedding space (dataset S2, Fig. 6a). When only features comprising JPZ were considered 

(Fig. 6b), DWI MRI features contributed almost 50% of the classification performance, with 

DCE MRI features contributing ~20% and T2w features contributing nearly 30%.

DISCUSSION

The primary contribution of this work is a means of identifying computer-extracted MRI 

features for prostate cancer localization while circumventing the “curse of dimensionality.” 

This was made possible via a new PCA-VIP scheme, which involves mapping the high-

dimensional data via PCA and subsequently ranking features based on their contributions to 

both the structure of the PCA embedding and class labels. PCA-VIP was implemented to 

identify computer-extracted MRI features and MRI protocols that are most useful for 

prostate cancer detection and localization depending on zonal tumor location.

It is important to note that PCA-VIP differs from other FS methods, such as stepwise and 

greedy FS algorithms, in two key ways. First, whereas FS algorithms are typically used to 

identify a feature subset that will, in turn, drive a classification task, PCA-VIP is designed 

for interpreting a classifier that was already constructed in a reduced-dimensional setting. 

Second, whereas other FS algorithms select features based on maximizing a criterion like 

mutual information or classification accuracy, PCA-VIP is currently the only FS scheme that 

selects features based on their roles in 1) defining the geometry of an unsupervised low-

dimensional embedding and 2) driving accurate classification.

In order to ensure that features identified by PCA-VIP are truly predictive of cancer 

presence, PCA-VIP was evaluated in terms of its ability to identify a stable set of features 

that provides high accuracy in localizing prostate cancer on MRI. The stability of the feature 

subsets selected by PCA-VIP was assessed using the Jaccard index and compared with 

mRMR, a popular FS method. The Jaccard index was higher for PCA-VIP than mRMR for 

all four datasets considered in this work, and this difference was statistically significant for 

datasets S2, S3, and S4. Nevertheless, while the Jaccard index associated with JCG (dataset 

S3) was especially high (0.68), the Jaccard index associated with JPZ (datasets S1 and S2) 

was only mediocre (0.38–0.43). This may be attributed to the fact that the CG tumors 

considered in this study shared similar characteristics, while the PZ tumors considered in our 

study were more diverse in terms of shape, size, location, and tumor microarchitecture and 

morphology.

The predictive power of the features selected by PCA-VIP was evaluated by AUC values 

associated with naïve Bayes and logistic regression classifiers that were constructed in 

conjunction with JCG and JPZ for voxel-wise cancer localization. Regardless whether a 
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naïve Bayes or a logistic regression classifier was used, AUC values obtained using JCG and 

JPZ were high (0.73–0.85) and comparable with other studies, which reported AUC values 

ranging from 0.73 to 0.86 (10,11). In comparison, studies that used MRI features to 

discriminate between cancerous lesions and normal regions-of-interest reported AUC values 

ranging from 0.71 to 0.94 (13,32,33). Nevertheless, we found that AUC values were higher 

for CG cancer localization than for PZ cancer localization. This trend, which was previously 

reported by Viswanath et al (10), may be attributed to the fact that the CG tumors analyzed 

in our study were similar in size and located in the same region of the CG, whereas the PZ 

tumors varied considerably.

The types of features identified by PCA-VIP as useful for cancer localization were found to 

depend on the spatial location of the tumor in the prostate. For example, while JCG was 

comprised primarily of co-occurrence texture features and included only one wavelet 

feature, JPZ contained many Gabor and Haar wavelet features but no co-occurrence 

features. The importance of these steerable filters suggests that perhaps PZ tumors manifest 

a textural orientedness that is not manifested by CG tumors. Among the features extracted 

from DCE MRI, time-to-peak was found to be useful for cancer localization in the PZ but 

not in the CG. In contrast, the signal enhancement ratio, which was previously shown to be 

informative for breast cancer localization (34), was one of only two features identified by 

PCA-VIP as useful for tumor localization in both the CG and the PZ. It is important to note 

that although time-to-peak was not included in JCG (because co-occurrence features 

extracted from T2w MRI had higher PCA-VIP scores), the PCA-VIP score associated with 

time-to-peak for CG tumor localization (1.86) is higher than the PCA-VIP score associated 

with time-to-peak for PZ tumor localization (1.67). This finding is supported by Sung et al 

(36), who found that time-to-peak was a better independent predictor of cancer presence in 

the CG than in the PZ. Our finding that nearly distinct subsets of computer-extracted 

features are useful for prostate cancer localization in the CG and PZ, respectively, appears to 

corroborate previous studies that have suggested that PZ and CG tumors have distinct 

appearances on MRI (2,8–10).

Previous studies have reported improved prostate cancer detection and localization accuracy 

when computer-extracted MRI features are used in addition to MRI signal intensities 

(11,13). Using the PCA-VIP scheme we quantitatively compared the relative contributions 

of MRI signal intensities and computer-extracted features. Computer-extracted features from 

T2w MRI and ADC maps were found to be more predictive of cancer localization than T2w 

MRI signal intensities and ADC values, which were associated with low PCA-VIP scores 

for both CG and PZ cancer localization. Among DCE MRI features, several computer-

extracted kinetic features were associated with high PCA-VIP scores, while the original 

time-resolved intensity values and tissue concentration curves were not. The relatively low 

importance of many of the DCE MRI features may be attributed to the fact that our DCE 

MRI data were of very low temporal resolution (95 sec).

A number of studies (35–39) have explored the added benefit of MP MRI, in comparison to 

T2w MRI alone for prostate cancer detection but have reported contradictory results. For 

example, while some have reported that combining ADC maps and T2w MRI improves 
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cancer detection when compared to T2w MRI alone (36–39), others found that the addition 

of ADC maps does not significantly improve cancer detection (38). In our study the PCA-

VIP scheme was employed to quantify how much each MRI protocol contributed to accurate 

cancer localization in both the CG and the PZ. For CG cancer localization, T2w MRI 

features contributed almost twice as much as DWI features; when only the features in JCG
are considered, features extracted from T2w MRI contributed more than five times as much 

as DWI features. Thus, although it is well established that ADC values are more predictive 

of cancer presence than T2w signal intensities (32,33), texture features extracted from T2w 

MRI appear to be more predictive of CG cancer presence than both ADC values and ADC 

texture features. In contrast, for PZ tumor localization computer-extracted features from both 

T2w MRI and ADC maps contributed substantially to classification performance. Our 

finding that ADC maps are more beneficial for localizing PZ tumors than CG tumors may be 

attributed to a higher DWI signal-to-noise ratio near the endorectal coil. We note that 

although DCE MRI features comprised only 3% of the features explored in this study, they 

played a large role in localization of both CG and PZ cancer.

There were a few limitations to our study. First, our patient cohort was small, consisting of 

only 10 PZ tumors and 5 CG tumors with T2w, DWI, and DCE MRI and an additional 8 PZ 

tumors with only T2w and DCE MRI. Although this small cohort size is similar to other 

studies (11,13,33), the small sample size does have ramifications with regard to classifier 

generalizability. Applying PCA is helpful for building a classifier when the sample size is 

small and the data dimensionality is high; however, even PCA can be subject to the Hughes 

effect, causing instability of the PCA embedding when the sample size is too small (40). In 

our study, the PCA embedding was somewhat unstable because of the small cohort size; this 

led to some instability in PCA-VIP scores and hence feature sets selected based on PCA-

VIP scores. A second limitation was the fact that we did not quantitatively evaluate the 

coregistration of MRI and histology. Some error may have been introduced in the 

determination of the slice correspondences between histology sections and MRI slices and 

may have affected the determination of “ground truth” cancer extent. Nevertheless, we 

believe that our coregistration was more rigorous than previous studies that manually 

delineated cancer regions on MRI by visual registration with pathology information 

(11,13,33). Third, PCA-VIP is limited by the fact that it is an unsupervised, linear DR 

method. Because PCA is unsupervised, the PCA embedding may be driven by differences 

between normal CG and PZ, as well as differences between cancer and normal prostate 

regions. Consequently, it is possible that some features that are highly predictive of cancer 

presence may not be identified by PCA-VIP. Additionally, because PCA considers only 

linear correlations between features, it is possible that a different set of features may be 

selected if the VIP scheme were applied to an embedding obtained from a nonlinear DR 

scheme. However, currently VIP is only mathematically valid in conjunction with PCA and 

PLS. A final limitation is our choice of computer-extracted features. Although we 

endeavored to extract a comprehensive collection of computer-extracted features, we could 

not include all possible image features, such as local binary pattern and histogram of 

gradient features. Nevertheless, the PCA-VIP scheme is a general framework to identify the 

relative contributions of any available MRI protocols and MRI features to accurate cancer 

localization.
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In conclusion, we presented PCA-VIP for assessing the contributions of individual features 

to classification on a PCA embedding and demonstrated that PCA-VIP enables the 

identification of computer-extracted MRI features that are useful for prostate cancer 

localization. This work is the first attempt to quantify the contributions of individual features 

and MRI protocols to cancer localization when DR is implemented to circumvent the “curse 

of dimensionality.” In addition to identifying computer-extracted features that are predictive 

of cancer presence on MRI, we found that CG and PZ cancer have distinct attributes that do 

not necessarily manifest via the same MRI protocols. Future work will involve the collection 

of data from a larger cohort of patients; this should provide a more generalizable PCA 

embedding and hence a more stable set of selected features. Additionally, future studies will 

assess the benefit of placing maps of the computer-extracted features identified by PCA-VIP 

alongside MP MR images in decision support systems to aid radiologists in prostate cancer 

detection.
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Figure 1. 
A T2w MR image is shown (a) before and (e) after correction of bias field inhomogeneities. 

Signal intensity histograms associated with several patients are shown before and after 

intensity standardization for T2w MRI in (b) and (f), ADC maps in (c) and (g), and DCE 

MRI in (d) and (h), respectively. [Color figure can be viewed in the online issue, which is 

available at wileyonlinelibrary.com.]
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Figure 2. 
Checkerboard images illustrating registration of T2w MRI and DCE MRI images are shown 

in (a) and (f) for patients with PZ cancer and CG cancer, respectively; registration of T2w 

MRI and ADC maps is shown in (b) and (g). The original 2D whole-mount histological 

sections, with prostate cancer extent outlined in blue by a pathologist, are shown in (c) and 

(h), and overlays of WMHS and T2w MRI after nonlinear multimodal registration are shown 

in (d) and (i). Mapped cancer extent on T2w MRI, outlined in red, is shown in (e) and (j). 

[Color figure can be viewed in the online issue, which is available at 

wileyonlinelibrary.com.]
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Figure 3. 
The Jaccard index, used to assess the stability of selected feature subsets, is compared when 

PCA-VIP and mRMR are employed to select the top 10 features. [Color figure can be 

viewed in the online issue, which is available at wileyonlinelibrary.com.]
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Figure 4. 
AUC values, averaged across 30 cross-validation runs, are plotted for each of the top 10 

computer-extracted features for (a) a naïve Bayes classifier and (b) a logistic regression 

classifier. The AUCs that arise when aggregating the top 1–10 computer-extracted features 

for classification are shown in (c) for a naïve Bayes classifier and in (d) for a logistic 

regression classifier.
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Figure 5. 
Ground truth extent of prostate cancer is delineated on T2w MRI in red for a representative 

slice of (a) a PZ tumor and (g) a CG tumor. Corresponding DCE MR images at peak contrast 

enhancement and ADC maps are shown in (b) and (h) and in (c) and (i), respectively. 

Heatmaps representing the pixel-wise probability of cancer presence, obtained via logistic 

regression classification, are shown in (d) and (j) using all of the computer-extracted 

features, (e) and (k) using signal intensity features, and (f) and (l) using JPZ and JCG, 

respectively. Red indicates a high probability of cancer presence, yellow indicates a low 

probability of cancer presence, and blue indicates no cancer presence.
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Figure 6. 
Relative importance of (a) all features and (b) features in JPZ and JCG extracted from T2w, 

DWI, and DCE MRI for each dataset. [Color figure can be viewed in the online issue, which 

is available at wileyonlinelibrary.com.]
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Table 1

Description of Four Sets of Patient Studies That Were Analyzed Separately in This Study

Dataset Tumor Location Number of Patients MRI Protocols

S1 PZ 18 T2w, DCE MRI

S2 PZ 10 T2w, DWI, DCE MRI

S3 CG   5 T2w, DWI, DCE MRI

S4 PZ + CG 15 T2w, DWI, DCE MRI
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