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Abstract

Multi-modal fMRI imaging has been used to study brain development such as the difference of 

functional connectivities (FCs) between different ages. Canonical correlation analysis (CCA) has 

been used to find correlations between multiple imaging modalities. However, it is unrelated to 

phenotypes. On the other hand, regression models can identify phenotype related imaging features 

but overlook the cross-modal data correlation. Collaborative regression (CR) is thus introduced to 

incorporate correlation as a penalization term into the regression model. Nevertheless, the complex 

relationship (e.g., nonlinear predictive relationship) between multiple data yet cannot be captured 

using linear CR models. To this end, we propose a novel method, deep collaborative learning 

(DCL), to address their limitations. DCL first uses a deep network to represent original data and 

then seeks their correlations, while also linking the data representation with phenotypical 

information. Therefore, DCL can better combine complex correlations between multiple data sets 

in addition to their fitting to phenotypes, with the potential to overcome the limitations of several 

current models. Based on DCL model, we study the difference of FCs between different age 

groups and also use FCs as a fingerprint to predict cognitive abilities. Our experiments 

demonstrated higher accuracy of using DCL over other conventional models when classifying 

populations of different ages and cognitive scores. Moreover, our experiments showed that 

different age or cognition groups may exhibit more significant differences of FCs in several 

networks than others. Furthermore, DCL revealed that brain connections became stronger at 

adolescence stage, demonstrating the importance of adolescence for brain development. In 

addition, DCL detected strong correlations between default mode network (DMN) and other 
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networks which were overlooked by linear CCA, demonstrating DCL’s ability of detecting 

nonlinear correlations.
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I. Introduction

BRAIN connectivity depicts the functional relations between different brain regions or 

networks [1]. Different brain regions function and harmonize in a connected network when 

performing a specific brain function [2]. Therefore, studying the connections of different 

brain sub-networks may help understand the functional mechanism of the brain and the 

change of brain connectivity may be a cause of mental disorders. Investigating changes in 

brain functional connectivity (FC) has been increasingly studied in recent years [3], [4]. An 

assumption is that adolescence (age 8-22) is an important stage for brain development and 

brain FC becomes more established around age 12 [5]. A number of studies [6], [7] have 

investigated how brain FC changes during adolescence and how it differs between different 

age groups, e.g., children and young adults, which further contribute to the study of normal 

and pathological brain development. The studies of brain FC have been focused on two 

aspects: to directly compare the difference of FC between different age groups and to use 

brain FC as features for age classification, which in return demonstrate the significant 

difference of FC between age groups. Brain FC have been shown to be discriminative 

regarding age group classification and studies [8], [9] even utilized brain FC as finger-prints 

to identify individuals.

Recent advances in functional magnetic resonance imaging (fMRI), have facilitated the 

production of multiple data for brain FC study. The brain FCs from different fMRI 

modalities, e.g. resting state fMRI (rs-fMRI) and task state fMRI (t-fMRI), may have 

common connections [10] and the fusion of multi-fMRI data can lead to a better 

understanding of the brain. A number of statistical learning models, e.g., canonical 

correlation analysis (CCA) [11], parallel independent component analysis (ICA) [12], deep 

neural networks [13], have been used to integrate multiple brain imaging data to study the 

interactions between different brain regions as well as the interactions between functional 

connectivity (FC) and genetic factors. Among these, CCA has been widely used to detect 

multivariate correlations for multi-modal and imaging genetics studies. Similar to principal 

component analysis (PCA), CCA is also a method for dimension reduction and data 

representation which projects original data into lower dimensional spaces. However, without 

additional processing steps, canonical variables lack phenotype related information which 

may restrict the application of CCA and the interpretation of its results. To address the 

limitation of CCA, Gross et al. [14] proposed a new model, called collaborative regression, 

which incorporated a regression penalty into CCA so that the model can identify correlations 

with discriminative power for phenotypes. As a result, the representation retains information 

relevant to both phenotypes and correlation. However, according to the simulation 

experiments in [14], collaborative regression may result in poor performance for prediction. 
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This may be due to its formulation, in which both the correlation and the prediction 

projection variables are restricted to be the same. Moreover, the complex nonlinear 

relationship between multiple data types is another challenge for linear collaborative 

regression model to capture.

In this paper, we propose a novel model, deep collaborative learning (DCL) for multimodal 

data integration, which uses deep networks to represent multiple data sets while 

incorporating their correlations. The use of deep networks in the model enable it to be more 

flexible in representing complex/nonlinear information in the data. Our application to brain 

imaging studies verified the superior performance of the DCL model over several baseline 

classifiers, which results in lower prediction errors with multiple data sets while detecting 

their correlations. Many interesting findings were also discovered when DCL was applied to 

the brain connectivity study, as presented in the results section.

The rest of the paper is organized as follows. Section II describes the limitations of several 

existing multi-modal fusion methods and how the proposed model addresses the limitations. 

Data collection and preprocessing procedures as well as experiments and results of applying 

DCL to brain connectivity study can be found in Section III. Detailed discussions and 

analysis of the results were in Section IV. The discussion and conclusion of the work were 

given in Section IV.

II. Method

A. Overview of canonical correlation analysis (CCA)

Canonical correlation analysis (CCA) [15] is a model widely used for analyzing linear 

correlations between two data. It provides a way to study complex diseases using multi-

omics data by investigating their cross-covariances.

Specifically, given two data matrices X1 ∈ ℝn × r, X2 ∈ ℝn × s (n represents sample/subject 

size, and r, s represents the feature/variable sizes in two data sets), CCA seeks two 

coefficient vectors u1 ∈ ℝr × 1 and u2 ∈ ℝs × 1 by optimizing the Pearson correlation between 

X1u1 and X2u2, as in Eq. 1.

(u1
∗, u2

∗) = argmax
u1, u2

u1′Σ12u2 (1)

subject to u1′Σ11u1 = 1, u2′Σ22u2 = 1 where u1 ∈ ℝr × 1, u2 ∈ ℝs × 1, Σij ≔ Xi′Xj

The identified canonical vectors X1u1, X2u2 ∈ ℝn × 1 are linear combinations of raw features/

variables in original data X1, X2, which can facilitate multi-omics association interpretation 

due to the reduced dimension. Due to the constraints in Eq. 1, u1′Σ12u2 equals the cross-data 

correlation, i.e., u1′Σ12u2 =
u1′ Σ12u2

u1′ Σ11u1 u2′ Σ22u2
.
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CCA can detect a series of canonical vectors that are pair-wise independent and guarantee 

the highest total correlation, as shown in Eq. 2.

(U1
∗, U2

∗) = argmax
U1, U2

Trace(U1′Σ12U2) (2)

subject to U1′Σ11U1 = U2′Σ22U2 = In; where U1 ∈ ℝr × k,

U2 ∈ ℝs × k, k = min(rank(X1), rank(X2))

As Σ11, Σ22 may be singular but the computation of Σ11
−1, Σ22

−1 is necessary when calculating 

loading vectors, matrix regularization is usually performed on Σ11, Σ22 as follows to ensure 

that Σ11, Σ22 are positive definite

Σ11 = Σ11 + r1Ir
Σ22 = Σ22 + r2Is

(3)

B. Collaborative regression (CR)

CCA is a method of data representation or dimension reduction. However, in the 

representation of CCA, canonical variables, are not phenotype/label related; this is in 

contrast with the widely used PCA that retains label related information in its representation. 

To address the limitation of CCA’s representation, Gross et al. [14] proposed a novel model, 

called collaborative regression, whose formulation is shown in Eq. 4. Given phenotype data 

Y ∈ ℝn × 1, collaborative regression maximizes the following objective function

(u1
∗, u2

∗) = argmin
u1, u2

b1‖X2u2 − X1u1‖2

+ b2‖Y − X1u1‖2 + b3‖Y − X2u2‖2
(4)

Collaborative regression addresses the limitations of CCA by incorporating a regression 

penalty into CCA so that the model can identify correlations with discriminative power for a 

particular phenotype. Therefore, the representation retains both phenotypes related and 

cross-data relationship information. However, when used for classification, collaborative 

regression did not produce higher classification accuracy compared to that of using 

regression and LASSO [16], according to the simulation experiments in [14]. Collaborative 

regression uses the same set of variables to represent both the regression and correlation, 

demanding for best fitting of phenotypes with multiple data sets while incorporating their 

correlations. Despite the success of collaborative regression, a linear relationship is assumed 

in the model, rendering it difficult to capture complex relationship between data sets.

C. Deep CCA

CCA may face another limitation in that it can only capture linear correlations and cannot 

detect complex nonlinear correlations. To address this problem, Deep CCA was proposed by 

Andrew et al. [17] to detect nonlinear correlations. As illustrated in Fig. 1, deep CCA 

introduces a deep network representation before applying CCA framework. Unlike linear 
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CCA, which seeks the optimal canonical vectors U1, U2, deep CCA seeks the optimal 

network representation f1(X1), f2(X2), as shown in Eq. 5.

(f1
∗, f2

∗) = argmax
f1, f2

max
U1, U2

U1′f1(X1)f2(X2)U2
‖f1(X1)U1‖2‖f2(X2)U2‖2

(5)

where f1, f2 are two deep networks as illustrated in Fig. 1.

The introduction of deep network representation leads to a more flexible way to detect both 

linear and nonlinear correlations. According to experiments on both speech data and 

handwritten digits data [17], deep CCA’s representation was more effective in finding 

correlations than other methods, e.g., linear CCA, and kernel CCA. It was also shown in the 

work of [18] that both deep CCA and its extended version, deep canonically correlated auto-

encoders, performed better in terms of both clustering and classification than other methods, 

e.g., linear CCA, kernel CCA. Despite the superior performance of deep CCA in detecting 

complex correlations, it still lacks phenotype related information.

D. Deep collaborative learning (DCL)

To address the limitations of both CCA and collaborative regression method, we propose a 

novel model, deep collaborative learning (DCL), which seeks a deep network representation 

of two data sets while incorporating their correlations into the model at the same time. 

Assume we have two modality data X1 ∈ ℝn × r, X2 ∈ ℝn × s and a phenotype or label data 

Y ∈ ℝn × 1, where n denotes sample size (number of subjects) and r, s are the dimensionality 

of feature of X1, X2 respectively. The formulation of deep collaborative learning is shown in 

Eqs. 6 and 7 and its work-flow is illustrated in Fig. 2.

(Z1
∗, Z2

∗) = argmax
Z1, Z2

{ max
U1, U2

Trace(U1′Z1′Z2U2) −

min
β1

‖Y − Z1β1‖2
2 − min

β2
‖Y − Z2β2‖2

2}
(6)

= argmax
Z1, Z2

{‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr

− ‖Y − Z1(Z1′Z1)−1Z1′Y ‖2
2

− ‖Y − Z2(Z2′Z2)−1Z2′Y ‖2
2}

(7)

= argmax
Z1, Z2

F (Z1, Z2)
(8)

where Z1 = f1(X1) ∈ ℝn × p, Z2 = f2(X2) ∈ ℝn × q, f1, f2 are two deep networks as illustrated 

in Fig. 2, Σij ≔ Zi′Zj, and ‖A‖tr ≔ Trace( A′A) = Σσi; U1, U2 in Eq. 6 subject to 

U1′Σ11U1 = U2′Σ22U2 = I As shown in Eqs. 6 and 7, deep collaborative learning seeks the 

optimal network representation Z1 = f1(X1), Z2 = f2(X2). In comparison, linear CCA and 

linear collaborative regression seek the optimal projection vectors u1, u2, as shown in Eqs. 1, 
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4. Compared to linear CCA and deep CCA, DCL’s representation retains label related 

information for better data fitting. Moreover, unlike linear collaborative regression, DCL 

uses a deep network representation, resulting in better detection of nonlinear relationships in 

the data while fitting to the phenotypes. In particular, DCL relax the requirement of linear 

collaborative regression model that the projection, u1, u2, have to be in the same direction. 

This can result in a better representation of both phenotypical information and cross-data 

correlation in an effective manner.

For the purpose of computational efficiency, we use a first order optimization method, mini-

batch stochastic gradient descent (mini-batch SGD), to solve the optimization problem. 

Back-propagation (BP) algorithm is used to pass the gradient backward to each layer of the 

network during each iteration step. In addition, dropout technique is used to avoid 

overfitting. In order to apply SGD and BP, we need to calculate the gradient of DCL’s 

objective function 7.

The gradient of objective function 7 is

∂ F (Z1, Z2)
∂Z1

= − Z1Σ11
− 1

2UDU′Σ11
− 1

2

+ Z2Σ22
− 1

2V U′Σ11
− 1

2 + 2Y Y ′Z1(Z1′Z1)−1

− 2Z1(Z1′Z1)−1Z1′Y Y ′Z1(Z1′Z1)−1

(9)

∂ F (Z1, Z2)
∂Z2

= − Z2Σ22
− 1

2V DV ′Σ22
− 1

2

+ Z1Σ11
− 1

2UV ′Σ22
− 1

2 + 2Y Y ′Z2(Z2′Z2)−1

− 2Z2(Z2′Z2)−1Z2′Y Y ′Z2(Z2′Z2)−1

(10)

where [U, D, V ] = svd(Σ11
− 1

2Σ12Σ22
− 1

2)

To prove 9, we showed

∂‖Y − Z1(Z1′Z1)−1Z1′Y ‖2
2

∂Z1
= 2Y Y ′Z1(Z1′Z1)−1

− 2Z1(Z1′Z1)−1Z1′Y Y ′Z1(Z1′Z1)−1
(11)

and

∂
∂Z1

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr = − Z1Σ11
− 1

2UDU′Σ11
− 1

2

+ Z2Σ22
− 1

2V U′Σ11
− 1

2
(12)
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The detailed derivation of the gradient can be found in Appendix.

E. Significance test for correlation analysis

Bartlett’s test [19], [20] is used to evaluate the significance of the canonical correlations of 

DCL’s outputs. A statistic for evaluating the significance of canonical correlations is

Λ ≔ ∏
i = 1

k
(1 − σi2) (13)

The distribution of Eq. 13 can be easily computed with Fisher transform z ≔ 1
2 log

1 + σi
1 − σi

when k = 1, and a similar distribution can be derived when k = 2 [20]. However, the exact 

distribution of Λ is not known when k > 2. Bartlett [20] provided a statistic which 

approximately follows a χ2 distribution with freedom of p × q as in Eq. 14

χ2 = − ((n − 1) − p + q + 1
2 )log ∏

i = 1

k
(1 − σi2)

∼ χ2(pq) .
(14)

Algorithm 1 Algorithm for deep collaborative learning

1: InputX1 ∈ ℝn × r, X2 ∈ ℝn × s, label Y ∈ ℝn × 1, initial

networks f1
0, f2

0

2: OutputOptimal networks f1, f2 with Z1 = f1(X1) ∈

ℝn × p, Z2 = f2(X2) ∈ ℝn × q

3: Z1 f1
0(X1), Z2 f2

0(X2)
4: k 0
5: while no convergence and k < maxepoch do
6: ∇F (Z1, Z2) ∣Z1 = Z1, Z2 = Z2 Eq. 9, Eq. 10

7: f1 BackProgation(f1, ∇F (Z1, Z2) ∣Z1 = Z1, Z2 = Z2 )

8: f2 BackProgation(f2, ∇F (Z1, Z2) ∣Z1 = Z1, Z2 = Z2 )

9: Z1 f1(X1) ▷ network forward

10: Z2 f2(X2) ▷ network forward
11: k k + 1
12: return f1, f2, Z1, Z2
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III. Application to brain connectivity study

A. Introduction of brain connectivity

We next apply the DCL model to the study of brain connectivity and development. Brain 

connectivity depicts the anatomical or functional associations between different brain 

regions or nodes [1]. It is of interest to investigate how brain connectivity changes during 

adolescence and how it differs between different age groups, e.g., children, young adults, 

which may further contribute to the study of normal and pathological brain development. 

The proposed model, DCL, is a deep network based model which can both detect strong 

correlations (reflecting brain connectivity) and yield good discriminative power (reflecting 

differences between age groups) due to the incorporation of correlation between multimodal 

and therefore is very suitable for the study of brain connectivity and development.

B. Brain connectivity data

Several brain fMRI modalities from the Philadelphia Neurodevelopmental Cohort (PNC) 

[21] were used in the experiments. PNC cohort is a large-scale collaborative study between 

the Brain Behavior Laboratory at the University of Pennsylvania and the Childrens Hospital 

of Philadelphia. It contains multi-modal neuroimaging data (e.g., fMRI, diffusion tensor 

imaging) and multiple genetic factors (e.g., singular nucleotide polymorphisms of SNPs) 

from 857 adolescents aged from 8 to 21 years. There were three types of fMRI data in PNC 

cohort which were collected during different task states: resting-state fMRI (rs-fMRI), 

emotion task fMRI (emoid t-fMRI), and nback task fMRI (nback t-fMRI).

The duration of the rs-fMRI scan was 6.2 minutes (124 TR), during which subjects were 

asked to stay still, and keep awake with eyes open. The duration of emotion t-fMRI scan was 

10.5 minutes (210 TR), during which subjects were asked to view faces displaying different 

emotions, e.g., angry, sad, fearful, happy, and to label the emotion type of the face. The 

duration of nback task fMRI scan was 11.6 minutes (231 TR), during which subjects were 

asked to conduct standard n-back tasks [22], which was related to working memory and the 

ability of lexical processing.

SPM12 (http://www.fil.ion.ucl.ac.uk/spm/software/spm12/) was used to conduct motion 

correction, spatial normalization, and spatial smoothing with a 3mm Gaussian kernel. 

Movement artefact (head motion effect) was removed via a regression procedure using a 

rigid body (6 parameters) [23], and the functional time series were band-pass filtered using a 

0.01Hz to 0.1Hz frequency range to further control head motion effects. For quality control, 

we excluded high motion subjects with translation > 2mm following the work in [24]. 

Finally, 264 regions of interest (ROIs) (containing 21,384 voxels) were extracted based on 

the Power coordinates [25] with a sphere radius parameter of 5mm.

Two phenotypes, age and Wide Range Achievement Test (WRAT) score, were used for 

classification and correlation analysis. WRAT score [26] is a measure of comprehensive 

cognitive ability, including reading, comprehension, solving math problems, etc.
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C. Data augmentation

The DCL model was applied to three types of fMRI data to study brain functional 

connectivity (FC). It needs a large sample size to train deep networks. However, collecting 

fMRI data of the brain is expensive and therefore the sample sizes of existing brain fMRI 

cohorts are limited. A possible way to generate more available data is data augmentation, a 

widely used strategy in deep learning fields, especially when dealing with images. For image 

classification, data augmentation techniques, e.g., image rotation [18], image reflection [27], 

scaling [28], are frequently used to generate more images. When it comes to brain FC data, 

reasonable data augmentation techniques have also been proposed to generate more data. 

Brain FC reflects the correlation between different brain nodes (ROIs) across a series of time 

points. The time points can be the entire scan period or a shorter window of the scan. 

Therefore, data augmentation can be achieved by calculating the correlations across several 

shorter time slots, which can be obtained by splitting the long time series. A short time 

window based technique has been applied to MRI data for data augmentation [29]. In our 

work we used a sliding window approach [30] to generate more samples. There is a trade-off 

between the authenticity of augmented data and the sample size of the augmented data. 

Shorter time slots lead to larger sample size but lower authenticity of augmented data. 

According to the work [31], the window length of 15 to 30 TR seems reasonable for 

capturing brain functional connectivity (FC) , which has also been used in several other 

works [32], [33]. Based on the recommendations in the work of [31] and the empirical 

experiences in [32], [33], and in order to obtain a more authentic augmented data (i.e., a 

relatively larger window size is preferable), we set the window length to be 30 TR in our 

work. The step size had a considerable effect on classification results. We have tested the 

effect of step size on classification accuracy (age classification using resting state and nback 

task fMRI) and the result was shown in Fig. 3.

From Fig. 3, the performance (accuracy) increases as step size decreases from 100 TR to 30 

TR. This may be due to the increasing sample size of the augmented data, which helps 

relieve the over-fitting problem in deep network training. However, as step size decreases 

from 20 TR to 5 TR, the accuracy even drops a bit. This may be due to the increasing 

overlap between the sliding windows. New augmented sample will become more dependent 

due to the increasing overlap and the network (on training set) may have more potential to 

become over-fitted consequently. As the best performance was achieved at “step size = 20 

TR”, we used 20 TR as the step size.

D. Experiments design and results

The DCL’s experiments on brain connectivity focused on two tasks: classification (i.e., to 

classify different age groups or different cognition/WRAT groups using brain connectivity 

data), and correlation analysis (i.e., to study the correlation between different intrinsic brain 

functional networks). The classification task verifies the classification power of the DCL 

model; and the task of correlation analysis verifies the power of the DCL model in terms of 

detecting correlations. The original 857 subjects were divided into three sets: training set 

(40%), tuning set (20%), and testing set (40%). Data augmentation was applied to training, 

tuning, and testing set separately, and each original subject was augmented by 6-10 folds 

depending on the length of the fMRI scan. The classification of a subject from testing sets is 
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obtained by merging the classification results of his/her augmented subjects, similar to the 

process of cancer classification in [34]. For instance, if a subject is augmented by 9 folds, 

then he/she will be classified to the older age group if more than 5 augmented subjects are 

classified into the older age group.

Mini-batch SGD was used to solve the optimization problem. Hyper-parameters, including 

momentum, activation function, learning rate, decay rate, batch size, maximum epochs, 

number of layers, number of nodes in each layer, and the dimensionality of canonical 

variables, were selected using the tuning set. The final values of hyper-parameters were 0.9 

(momentum), ReLu (activation function), 0.01 (learning rate), 1 (decay rate), 32 (batch size), 

20 (maximum epochs), 10 (number of layers), 1536 (number of nodes in middle layers), 100 

(number of nodes in output layer). Dropout was used to overcome over-fitting and the 

dropout probability of the middle layers was set to be 0.5. Batch normalization was 

implemented after each layer to relieve the scale problem resulting from ReLu activation. 

The experiments were conducted on a computer with an Intel(R) Xeon(R) CPU (E5-2620 v3 

@ 2.40 GHz), a 32G RAM, and a NVIDIA Quadro K2200 GPU.

1) Difference of brain FC between different age groups or different WRAT/
cognition groups – classification: We compared the performance of the DCL model to 

that of other baseline classifiers, including support vector machine (SVM), deep CCA 

(DCCA) + SVM, logistic regression (Logist), decision tree (DT), random forest (RF), deep 

neural network (DNN) + SVM, linear collaborative regression (CR) + SVM. For the 

networks in DNN, DCCA, and DCL, the detailed architectures and key hyper-parameter 

settings are: 0.9 (momentum), ReLu (activation function), 0.01 (learning rate), 1 (decay 

rate), 32 (batch size), 20 (maximum epochs), 10 (number of layers), 1536 (number of nodes 

in middle layers), 100 (number of nodes in output layer). Linear kernel was used for SVM 

classifier due to its better experimental performance over other kernel options. The number 

of trees in RF was set to be 100 considering the trade-off of performance and computational 

cost. Default values were used for other parameter settings for the sake of fair comparison.

As the work endeavors to contribute to the study of brain development during adolescence 

stage, it is therefore preferable to investigate the FC difference between “before 

adolescence” and “after adolescence”. Adolescence is an important stage for both physical 

and psychological development that generally occurs during the period from the beginning 

of puberty (age 11-12) to legal adulthood (age 18) 1. The PNC cohort used in the work was 

collected from subjects aged 8 to 22, among which roughly 20% are in the age range of 8 to 

11 years and roughly 20% are in the age range of 18 to 22 years. In this regard and in order 

to get a balanced data, we selected the top/bottom 20% (in terms of age) as two age groups. 

WRAT scores partially reflect the development of the brain. In order to have the same 

subject group size and to facilitate the comparison (e.g., classifying age groups versus 

classifying WRAT groups), we also selected the top/bottom 20% (in terms of WRAT score) 

as two WRAT groups. For age groups, the top 20% (in terms of age) subjects were extracted 

as young adults group while the bottom 20% were extracted as children group. For cognitive 

ability group, the top 20% (assessed via the WRAT score) of individuals were extracted as a 

1https://en.wikipedia.org/wiki/Adolescence
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high cognition group (WRAT 114-145) while the bottom 20% were extracted as a low 

cognition group (WRAT 55-89). All the pre-processing methods, including data 

augmentation, data standardization, etc, were performed on training set, tuning set, and test 

set separately.

To test the DCL model for multi-modal study, we utilized different data combinations: 

resting state fMRI and nback task fMRI (rest-nback); resting state fMRI and emoid task 

fMRI (rest-emoid); nback task fMRI and emoid task fMRI (rest-emoid). For each data 

combination, we tested the performance of each method, and the results were shown in Fig. 

4, Table I, and Table S1-S5. In the experiments, SVM, DT, RF, logistic regression, and DNN 

concatenated two types of fMRI data as the input, while DCCA, CR, DCL combined two 

fMRI data using either linear collaborative function or a deep network layer (as shown in 

Fig. 2). We only included accuracy as a criterion for evaluating classification performance as 

the two binomial groups had balanced numbers of subjects (top 20% versus bottom 20%). 

Each experiment was replicated 10 times by re-sampling the training, tuning, and testing 

sets.

From Fig. 4, the proposed model, deep collaborative learning (DCL), achieved better 

classification performance than other classifiers for both classifying age groups and 

classifying WRAT groups. Deep CCA obtained the lowest accuracy as it did not capture 

phenotype related information when doing dimension reduction. Compared with the 

performances of logistic regression, SVM, and DNN+SVM, both DCL and linear CR 

achieved better classification performance which demonstrated the correlation information 

can help get a better representation of the brain connection. DCL’s classification is even 

more accurate than linear CR due to the incorporation of deep network representation. The 

high classification accuracy (around 0.95 for age, around 0.80 for WRAT) indicates that both 

different age groups (e.g., preteens and young adults) and different cognition groups (high 

WRAT scores and low WRAT scores) may exhibit significantly different brain FC patterns 

and therefore brain FC may be used as a finger-print to identify different subjects. In 

addition, it can also be seen from Fig. 4 that the classification accuracy of age groups is 

higher than that of cognition groups which may be due to the fact that age is a fixed 

phenotype while cognition score is just a rough measure which is not as accurate and 

consistent as age.

Moreover, as shown in Fig. 4, the combination of two task-fMRI, i.e., nback-emoid, yields 

much higher classification accuracy than rs-fMRI involved combinations. It indicates that 

the associations between emotion task fMRI and memory task fMRI were more 

discriminative and task fMRI may be better for classification or used as finger-print, being 

consistent with the conclusion in [8]. Furthermore, from Fig. 5, the difference of FCs 

between young adults and children may be more significant in some networks (e.g., default 

mode network, sensorimotor network) (because the decreases of accuracy are relatively 

bigger) and may be relatively less significant in others (e.g. visual network, auditory 

network, memory network, cerebellum). Similarly, differences in FC between the high and 

low cognition groups may be more significant in some networks (e.g., default mode 

network, salience network, sensorimotor network) and may be relatively less significant in 

others.
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Besides the comparison of accuracy, we visualized the data representations of all the 

methods. Data visualization was conducted using t-distributed stochastic neighbor 

embedding (t-SNE) [35], which projects high dimensional data into 2D or 3D spaces for 

purpose of visualization. The visualization of data representation is shown in Fig. 6 

(classifying age groups) and Fig. 7 (classifying WRAT groups). From Fig. 6 and Fig. 7, it is 

apparent that the representation of DCL has a better discriminative power compared with 

that of other methods, which also demonstrates the superior performance of the DCL model.

There is great interest in studying how different brain intrinsic functional networks/domains 

impact the classification accuracy of age groups and WRAT groups, which in return 

indicates whether different age groups or WRAT groups exhibit different brain connectivity 

patterns in a specific functional network. However, the data representation of DCL is 

generated by deep networks in which nonlinear activation functions are applied to each 

intermediate layer. As a result, it is difficult to interpret how each original feature/variable is 

represented in the network representation and therefore it is challenging to analyze the 

discriminative power of each original feature. To partially analyze how different brain 

intrinsic networks affect the classification accuracy of age groups and WRAT groups, we 

blocked the signals of each functional network, e.g., DMN, individually and tested how 

DCL’s classification accuracy changed accordingly. The classification accuracy under each 

functional-network-block case was shown in Fig. 5. Larger decrease of the accuracy implies 

that the blocked network/domain is more important for classification and vice versa.

2) Functional connectivity (FC) between different brain networks – 
correlation analysis: It is also of interest to investigate how brain connectivity between 

different functional networks changes and how different brain networks cooperate and 

connect with each other. To study brain FC, both deep collaborative learning (DCL) and 

linear CCA were applied to the PNC data for correlation analysis after preprocessing resting 

state fMRI using group independent component analysis (gICA) [36]. The parameter setting 

and component selection followed those in the work of [30]. A relatively large number of 

ICA components (100 ICA components) were used to achieve a functional parcellation. 

Following the critera in Allen et al.’s work [37], we selected a subset of 50 components as 

intrinsic network components, as opposed to physiological, movement related, or imaging 

artifacts (ARTs). Dynamic range and low frequency to high frequency ratio were used [30], 

[37] as the criteria for component selection. The function of each ICA component was then 

identified based on the Neurosynth database (http://neurosynth.org/) using their coordinates 

in the Montreal Neurological Institute (MNI) space. The locations of the components of 

each intrinsic brain network are provided in Fig. 8.

Both linear CCA and DCL were applied to the training set to train the model and then the 

trained canonical vectors and deep networks were applied to the testing set to calculate test 

correlations. The test correlations between different brain networks were shown in Fig. 9, in 

which sub-fig. (a) described correlations detected by linear CCA and sub-fig. (b) described 

those of DCL. The test correlations shown in Fig. 9 represent multivariate correlations 

between two functional networks since CCA is a multivariate method. The detected 

correlations were significant (with significant value < 1e-5) according to Eq. 14.

Hu et al. Page 12

IEEE Trans Biomed Eng. Author manuscript; available in PMC 2021 June 04.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

http://neurosynth.org/


As shown in Fig. 9, linear CCA detected strong correlations (above 0.7) between some 

functional networks, e.g., visual network (VIS), auditory network (AUD), sensorimotor 

network (SM), and cognitive control network (CCN). However, the correlations between 

default mode network (DMN) and the rest networks were much weaker (0.43 between DMN 

and AUD, ~0.1 between DMN and the rest three networks). It is consistent with the the 

current knowledge about DMN, which exhibits high connectivity within itself but low 

connections with other networks in the brain [38]. Similar to linear CCA, the DCL model 

detected strong correlations (above 0.6) between functional networks VIS, AUD, SM, and 

CCN. However, the DCL model also detected strong correlations between DMN and the rest 

(VIS, AUD, SM, CCN), which was different from the finding of linear CCA and also 

different from the current knowledge of DMN network. The different findings between 

linear CCA and the DCL might indicate that DMN network has some nonlinear correlations 

and complicated connections with other networks in the brain.

3) Age effects – correlation analysis: It is of interest to research the effect of age on 

brain connectivity, which may help better understand the process of brain maturity/

development. To investigate the difference of brain connectivity between different age 

groups, we first selected three age groups: children group (8-11 years), young teenager 

group (13-16 years), young adult group (18-22 years). Subjects aged 12 and 17 years were 

excluded in order to get a clear boundary between different age groups. The DCL model was 

then applied to each age group to analyze the FC between brain networks in resting state. 

The detected connections between brain subnetworks for each age group were shown in Fig. 

10.

From Fig. 10 (a-c), the patterns of the connections differ between different age groups. For 

instance, the overall connections between brain sub-networks are relatively weaker at age 

8-11 but become relatively stronger at age 13-16 and age 18-22. It demonstrates that the 

connections of the brain become stronger and stronger during adolescence, as a result of the 

training and development of the brain with multiple types of brain activities. Moreover, 

several connections show different pattern at different brain maturity stages (or different age 

groups). For example, DMN network shows stronger connection with visual network and 

cognitive network at age 8-11, while its connection with sensorimotor and visual networks 

become stronger at age 13-16, and it becomes more connected with auditory network at age 

18-22. In addition, the connection between cognitive network and visual network is strong 

throughout the adolescence (age 8-22) while the connection between cognitive network and 

auditory network becomes strong at a relatively older age stage (18-22).

IV. Discussion and Conclusion

In this work we propose the DCL model to effectively exploit the information from 

multimodal data using deep networks. DCL seeks the optimal network representation that 

can maximize cross-data correlation while minimize the data fitting error. As we have 

demonstrated, the DCL model overcomes the limitations of several existing models (e.g., 

CCA, deep CCA, collaborative regression) in that it can detect complex/nonlinear cross-data 

correlations, while extract phenotype related information. In this way, the model can lead to 

better performance in both prediction and correlation detection. The superior power of DCL 
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on both correlation detection and classification makes it a suitable model for brain FC study, 

where we apply the model to analyze the correlations of functional networks and the 

difference of brain connectivity patterns between different subject groups.

As a demonstration, the proposed model, DCL, was applied to the PNC cohort for brain FC 

study. DCL, as well as other state-of-the-art methods, was used to classify both different age 

groups and different cognition groups. From the results, DCL performed better than other 

competitive classifiers, which demonstrated that the incorporation of deep networks into 

collaborative regression can help achieve higher classification accuracy. Moreover, brain 

connectivity tends to be more discriminative when used to classify age groups than to 

classify WRAT/cognition groups. Further experiments showed that the FCs in DMN had 

more discriminative power while MEM and CB may be less important for classification, 

which indicated different subject groups exhibited more significant difference in the FC of 

DMN while relatively less significant difference in MEM and CB. In addition, both DCL 

and linear CCA were used to investigate how different brain intrinsic networks interacted 

with each other. In CCA’s results, the correlations between default mode network (DMN) 

and other networks were weak. In comparison, DCL detected stronger correlations between 

DMN and other brain networks. The strong nonlinear correlations between DMN and other 

brain networks might be a new discovery as the connectivity in DMN is normally considered 

to be distinct from that in other brain networks. Furthermore, brain FCs exhibit different 

patterns at different maturity stages and the connections of the brain become stronger and 

stronger during the adolescence stage, according to the analysis of age effects. In summary, 

DCL outperforms other multimodal fusion models, e.g., deep CCA, linear CR, SVM,and 

DNN (using concatenated data), for the integration of multiple brain imaging data.

Both age and WRAT score were used in this work by DCL to learn the deep network 

representation of brain FC. The performance of DCL verified its best network representation 

of multi-modal data and the trained network can be used for further study by serving as the 

initial network, similar to the idea of transfer learning. Moreover, DCL could be further 

improved by employing other network structures, e.g., convolutional neural network (CNN), 

which can take advantage of the local information of images and reduce computational cost 

by enforcing shared weights across all nodes. However, directly applying CNN to brain 

connectivity study may face some difficulties because brain connectivity does not have as 

strong local information (e.g., shapes) as structural brain images have, needed for CNN 

models [39]. Despite the challenges of applying CNN based networks, using graph guided 

network structure [40] may be a promising way to exploit the subtle and complex 

information within brain connectivity data.
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Appendix

The derivation of the gradient of deep collaborative learning

Assume we have two modal data Z1 ∈ ℝn × p, Z2 ∈ ℝn × q and a phenotype or label data 

Y ∈ ℝn × 1, where n denotes sample size (number of subjects) and p, q are the dimensionality 

of feature of Z1, Z2 respectively. Then the objective function of deep collaborative learning 

method is

(Z1
∗, Z2

∗) = argmax
Z1, Z2

{ max
U1, U2

Trace(U1′Z1′Z2U2)

− min
β1

‖Y − Z1β1‖2
2 − min

β2
‖Y − Z2β2‖2

2}
(15)

= argmax
Z1, Z2

{‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr

− ‖Y − Z1(Z1′Z1)−1Z1′Y ‖2
2

− ‖Y − Z2(Z2′Z2)−1Z2′Y ‖2
2}

(16)

= argmax
Z1, Z2

F (Z1, Z2)
(17)

where Z1 = f1(X1) Z2 = f2(X2), Σij = Zi′Zj f1, f2 are two deep networks, 

‖A‖tr ≔ Trace( A′A) = Σσi U1, U2 in Eq. 15 subject to U1′Σ11U1 = U2′Σ22U2 = I

The gradient of objective function 16 is

∂ F (Z1, Z2)
∂Z1

= − Z1Σ11
− 1

2UDU′Σ11
− 1

2 + Z2Σ22
− 1

2V U′Σ11
− 1

2

+ 2Y Y ′Z1(Z1′Z1)−1

− 2Z1(Z1′Z1)−1Z1′Y Y ′Z1(Z1′Z1)−1

(18)

∂ F (Z1, Z2)
∂Z2

= − Z2Σ22
− 1

2V DV ′Σ22
− 1

2 + Z1Σ11
− 1

2UV ′Σ22
− 1

2

+ 2Y Y ′Z2(Z2′Z2)−1

− 2Z2(Z2′Z2)−1Z2′Y Y ′Z2(Z2′Z2)−1

(19)

where [U, D, V ] = svd(Σ11
− 1

2Σ12Σ22
− 1

2)

We will prove Eq. 18 in the following sections, and Eq. 19 is straightforward to get because 

it is a symmetric expression of Eq. 18. Let T1 = Z1(Z1′Z1)−1Z1′ , T2 = Z2(Z2′Z2)−1Z2′ . To 

prove Eq. 18, we just need to prove
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∂‖Y − T1Y ‖2
2

∂Z1
= 2Y Y ′Z1(Z1′Z1)−1

− 2Z1(Z1′Z1)−1Z1′Y Y ′Z1(Z1′Z1)−1
(20)

∂
∂Z1

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr = − Z1Σ11
− 1

2UDU′Σ11
− 1

2

+ Z2Σ22
− 1

2V U′Σ11
− 1

2
(21)

To prove Eq. 20, we have

∂‖Y − T1Y ‖2
2

∂Z1
= ∂

∂Z1
{Y ′T1′T1Y − Y ′T1′Y − Y ′T1Y + Y ′Y } (22)

= ∂
∂Z1

{Y ′T1T1Y − 2Y ′T1Y }
(because T1′ = T1)

(23)

Inserting T1 = Z1(Z1′Z1)−1Z1′  into Y′T1T1Y gives

Y ′T1T1Y = Y ′Z1(Z1′Z1)−1Z1′Z1(Z1′Z1)−1Z1′Y
= Y ′Z1(Z1′Z1)−1Z1′Y
= Y ′T1Y

(24)

From Eqs. 23 and 24, we have

∂‖Y − T1Y ‖2
2

∂Z1
= − ∂

∂Z1
{Y ′T1Y }

= ∂
∂Z1

Y ′Z1(Z1′Z1)−1Z1′Y

= ∂
∂Z1

Y ′Z1
c(Z1

c′Z1
c)−1Z1′Y + ∂

∂Z1
Y ′Z1(Z1

c′Z1
c)−1Z1

c′Y +

(25)

∂
∂Z1

Y ′Z1
c(Z1

c′Z1)−1Z1
c′Y + ∂

∂Z1
Y ′Z1

c(Z1′Z1
c)−1Z1

c′Y

= 2( ∂
∂Z1

Y ′Z1(Z1
c′Z1

c)−1Z1
c′Y + ∂

∂Z1
Y ′Z1

c(Z1′Z1
c)−1Z1

c′Y )
(26)

Note that in Eqs. 25-26 we treat some Z1 as constant by replacing Z1 with Z1
c, and therefore 

Z1
c satisfies 

∂Z1
c

∂Z1
= 0. To prove Eq. 20, from Eqs. 26 and 20, we just need to prove
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∂
∂Z1

Y ′Z1(Z1
c′Z1

c)−1Z1
c′Y = Y Y ′Z1(Z1′Z1)−1

(27)

and

∂
∂Z1

Y ′Z1
c(Z1′Z1

c)−1Z1
c′Y =

− Z1(Z1′Z1)−1Z1′Y Y ′Z1(Z1′Z1)−1
(28)

For the purpose of convenience, we replace Z1 with Z in the following sections. As a result, 

Eqs. 27 and 28 become

∂
∂Z Y ′Z(Zc′Zc)−1Zc′Y = Y Y ′Z(Z′Z)−1

(29)

and

∂
∂Z Y ′Zc(Z′Zc)−1Zc′Y = − Z(Z′Z)−1Z′Y Y ′Z(Z′Z)−1

(30)

To prove Eq. 29

∂
∂Z Y ′Z(Zc′Zc)−1Zc′Y (31)

= ∂
∂Z Trace(Y ′Z(Zc′Zc)−1Zc′Y )

= ∂
∂Z Trace(Z(Zc′Zc)−1Zc′Y Y ′)

(32)

From ∂
∂X Trace(XA) = A′ (Eq. (100) in [41]),

32 = ((Zc′Zc)−1Zc′Y Y ′)′ (33)

= Y Y ′Z(Z′Z)−1 (34)

To prove Eq. 30, following the chain rule of matrix derivative 
∂g(U)

∂X = ∂g(U)
∂xij

= ∑k, l
∂g(U)
∂ukl

=
∂ukl
∂xij

 (Eq. (136) in [41])
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∂
∂Z Y ′Zc(Z′Zc)−1Zc′Y

= ∂
∂Z Trace(Y ′Zc(Z′Zc)−1Zc′Y )

= ∂
∂zij

Trace((Z′Zc)−1Zc′Y Y ′Zc)

= ∑
k, l

∂
∂(Z′Zc)kl

Trace((Z′Zc)−1Zc′Y Y ′Zc∂(Z′Zc)kl
∂zij

(35)

From ∂Trace(AX−1B)
∂X = − (X−1BAX−1)′ (Eq. (63) in [41]) and 

∂ X′A ij
∂Xmn

= JnmA ij, where Jnm 

is the single-entry matrix, 1 at (n, m) and 0 elsewhere (Eq. (75) in [41]), we have

35 = ∑
k, l

{ − ((Z′Zc)−1Zc′Y Y ′Zc(Z′Zc)−1)′}kl
∂(Z′Zc)kl

∂zij

= ∑
k, l

{ − (Z′Z)−1Z′Y Y ′Z(Z′Z)−1}kl (J jiZ)kl

= ∑
l

{ − ((Z′Z)−1Z′Y Y ′Z(Z′Z)−1}jl Zil

= ∑
l

Zil { − (Z′Z)−1Z′Y Y ′Z(Z′Z)−1}lj

= − Z(Z′Z)−1Z′Y Y ′Z(Z′Z)−1

(36)

Thus Eq. 20 is proved.

To prove Eq. 21, we just need to calculate ∂
∂Σ11

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr and ∂
∂Σ12

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr so 

that Eq. 21 can be calculated using the chain rule (the rest of the proof is similar to that in 

[17]). From [42], we have

∀ matrix A, ∂
∂A ‖A‖tr = UV ′, (37)

where [U, D, V] = svd(A), and the trace norm is defined as ‖A‖tr ≔ Trace( A′A).

Using Eq. 37 and the chain rule
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∂
∂ Σ12 ij

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr

= ∑
k, l

∂ ‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr

∂(Σ11
− 1

2Σ12Σ22
− 1

2)kl

⋅
∂ (Σ11

− 1
2Σ12Σ22

− 1
2)kl

∂ Σ12 ij

= ∑
k, l

(UV ′)kl(Σ11
− 1

2)ki(Σ22
− 1

2)jl

= ∑
k, l

(Σ11
− 1

2)ik(UV ′)kl(Σ22
− 1

2)lj

(38)

= (Σ11
− 1

2UV ′Σ22
− 1

2)ij (39)

where [U, D, V ] = svd(Σ11
− 1

2Σ12Σ22
− 1

2).

From [17], we have

∂ Trace(X
1
2)

∂X = 1
2X− 1

2 (40)

Using Eq. 40 and the chain rule

∂
∂ Σ11 ij

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr

= ∂
∂ Σ11 ij

Trace{(Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2)− 1

2}

= ∑
k, l

∂ Trace{(Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2)

1
2}

∂ (Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2)kl

⋅
∂(Σ22

− 1
2Σ21Σ11

−1Σ12Σ22
− 1

2)kl
∂(Σ11)ij

(41)

= ∑
k, l

(1
2(Σ22

− 1
2Σ21Σ11

−1Σ12Σ22
− 1

2)− 1
2)kl

⋅
∂(Σ22

− 1
2Σ21Σ11

−1Σ12Σ22
− 1

2)kl
∂(Σ11)ij

(42)
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Before deriving the final expression of Eq. 42, we calculate 

∂ Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2

kl
∂ Σ11 ij

 using 

∂(X−1)kl
∂Xij

= − (X−1)ki(X−1)jl (Eq. (60) in [41]) and the chain rule,

∂ Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2

kl
∂ Σ11 ij

= ∑
a, b

Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2

kl
∂ Σ11

−1
ab

⋅
∂ Σ11

−1
ab

∂ Σ11 ij

= − ∑
a, b

(Σ22
− 1

2Σ21)ka(Σ12Σ22
− 1

2)bl(Σ11
−1)ai(Σ11

−1)jb

= − ∑
a, b

(Σ22
− 1

2Σ21)ka(Σ11
−1)ai(Σ11

−1)jb(Σ12Σ22
− 1

2)bl

(43)

= − (Σ22
− 1

2Σ21Σ11
−1)ki(Σ11

−1Σ12Σ22
− 1

2)jl (44)

Now we can derive Eq. 42 with the help of Eq. 44,

∂
∂ Σ11 ij

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr

= 42 − ∑
k, l

(1
2(Σ22

− 1
2Σ21Σ11

−1Σ12Σ22
− 1

2)− 1
2)kl

⋅ (Σ22
− 1

2Σ21Σ11
−1)ki(Σ11

−1Σ12Σ22
− 1

2)jl

= − 1
2 ∑

k, l
(Σ11

−1Σ12Σ22
− 1

2)ik

⋅ ((Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2)− 1

2)kl(Σ22
− 1

2Σ21Σ11
−1)lj

= − 1
2{Σ11

−1Σ12Σ22
− 1

2(Σ22
− 1

2Σ21Σ11
−1Σ12Σ22

− 1
2)− 1

2

⋅ Σ22
− 1

2Σ21Σ11
−1}ij

= − 1
2{Σ11

− 1
2UDV ′(V D−1V ′)V DU′Σ11

− 1
2}ij

(45)
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= − 1
2(Σ11

− 1
2UDU′Σ11

− 1
2)ij (46)

With Eqs. 39, 46, now we can calculate Eq. 21

∂
∂ Z1 kl

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr

= ∑
i, j

∂‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr
∂ Σ11 ij

⋅ ∂ Σ11 ij
∂ Z1 kl

(47)

+
∂‖Σ11

− 1
2Σ12Σ22

− 1
2‖tr

∂ Σ12 ij
⋅ ∂ Σ12 ij

∂ Z1 kl

(48)

From Eq. 46 and 
∂ X′A ij

∂Xmn
= JnmA ij, where Jnm is the single-entry matrix, 1 at (n, m) and 0 

elsewhere (Eq. (75) in [41]), the first term in Eq. 48 can be derived as

∑
i, j

∂‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr
∂ Σ11 ij

⋅ ∂ Σ11 ij
∂ Z1 kl

= ∑
i, j

− 1
2{Σ11

− 1
2UDU′Σ11

− 1
2}ij ⋅

∂ Z1′Z1 ij
∂ Z1 kl

= ∑
i, j

− 1
2{Σ11

− 1
2UDU′Σ11

− 1
2}ij ⋅ (J lkZ1)ij + (J lkZ1)ji

= ∑
j

− 1
2{Σ11

− 1
2UDU′Σ11

− 1
2}lj ⋅ (Z1)kj

+ ∑
i

− 1
2{Σ11

− 1
2UDU′Σ11

− 1
2}il ⋅ (Z1)ki

= ∑
j

− 1
2(Z1)kj ⋅ {Σ11

− 1
2UDU′Σ11

− 1
2}jl

+ ∑
i

− 1
2(Z1)ki ⋅ {Σ11

− 1
2UDU′Σ11

− 1
2}il

= − 1
2{Z1Σ11

− 1
2UDU′Σ11

− 1
2}kl − 1

2{Z1Σ11
− 1

2UDU′Σ11
− 1

2}kl

(49)

= − (Z1Σ11
− 1

2UDU′Σ11
− 1

2)kl (50)
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From Eq. 39 and 
∂ X′A ij

∂Xmn
= JnmA ij, where Jnm is the single-entry matrix, 1 at (n, m) and 0 

elsewhere (Eq. (75) in [41]), the second term in Eq. 48 can be derived as

∑
i, j

∂‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr
∂ Σ12 ij

⋅ ∂ Σ12 ij
∂ Z1 kl

= ∑
i, j

(Σ11
− 1

2UV ′Σ22
− 1

2)ij ⋅
∂ Z1′Z2 ij

∂ Z1 kl

= ∑
i, j

(Σ11
− 1

2UV ′Σ22
− 1

2)ij ⋅ J lkZ2 ij

= ∑
j

(Σ11
− 1

2UV ′Σ22
− 1

2)lj ⋅ (Z2)kj

= ∑
j

(Z2)kj ⋅ (Σ22
− 1

2V U′Σ11
− 1

2)jl

(51)

= (Z2Σ22
− 1

2V U′Σ11
− 1

2)kl (52)

From Eqs. 48, 50, and 52, we have

∂
∂(Z1)kl

‖Σ11
− 1

2Σ12Σ22
− 1

2‖tr (53)

= Eq. 48 = Eq. 50 + Eq. 52

= − (Z1Σ11
− 1

2UDU′Σ11
− 1

2)kl + (Z2Σ22
− 1

2V U′Σ11
− 1

2)kl (54)

Thus Eq. 21 is proved.
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Fig. 1: 
The work-flow of deep CCA. Data X1, X2 are input; deep networks f1, f2 work on X1, X2 

and yield Z1, Z2 as output, to which CCA is applied subsequently. The optimization problem 

is to find the optimal network f1, f2 with the highest canonical correlation.
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Fig. 2: 
The work-flow of deep collaborative learning. Data X1, X2 are the input; deep networks f1, 

f2 operate on X1, X2 and yield Z1, Z2 as the output, to which collaborative learning is 

applied subsequently. Collaborative learning layer connects the two deep networks and 

passes two composite gradients mutually during the back-propagation process. The 

optimization problem is to find the optimal network f1, f2 which give both the highest 

canonical correlation and the lowest prediction error regarding label data Y.
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Fig. 3: 
The Effect of step size on classification accuracy (age classification using resting state and 

nback task fMRI).
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Fig. 4: 
The comparison of the ROC curves of different methods in classifying age groups (sub-figs. 

a-c) and in classifying high/low WRAT groups (sub-figs. d-f). The full names of the methods 

are deep CCA (DCCA), logistic regression (Logist), support vector machine (SVM), 

decision tree (DT), random forest (RF), deep neural network (DNN), linear collaborative 

regression (CR), deep collaborative learning (DCL). In the experiments, SVM, logistic 

regression, and DNN concatenate two types of fMRI data as the input, while DCCA, CR, 

DCL combine two fMRI data using either linear collaborative function or a deep network 

layer. Sub-figs.(a-c) describe the results of classifying age groups using the data combination 

of rest-nback fMRI, rest-emoid fMRI, and nback-emoid fMRI, respectively. Older age group 

is defined as positive group. Sub-figs.(d-f) describe the results of classifying WRAT groups 

using the combination of rest-nback fMRI, rest-emoid fMRI, and nback-emoid fMRI, 

respectively. Higher WRAT group is defined as positive group.
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Fig. 5: 
The classification accuracy in different functional-network-blocked cases. Y-axis represents 

the classification accuracy. This experiment used the combination of rest fMRI and nback 

fMRI for classification. In each case, a specific brain subdomain/network was blocked and 

the rest data were used as the input of the trained network. Sub-fig. (a) describes the result of 

classifying ages groups; Sub-fig. (b) shows the resulf of classifying WRAT groups. The full 

names of brain functional networks are sensorimotor network (SM), visual network (VIS), 

default mode network (DMN), cerebellum (CB), auditory network (AUD), memory retrieval 

network (MEM), cingulo-opercular task control (CNG), salience network (SAL), subcortical 

network (SCT), ventral attention (VTRL), dorsal attention (DSL).
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Fig. 6: 
The visualization of data representations of different models for classifying age groups. The 

full names of classifiers can been found in the caption of Fig. 4.
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Fig. 7: 
The visualization of data representations of different models for classifying WRAT groups. 

The full names of classifiers can been found in the caption of Fig. 4.
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Fig. 8: 
A figure showing the sagittal, coronal, and transverse views of brain functional networks 

extracted by group ICA. The color bar indicates different ICA components. The full names 

of the brain functional networks are: visual network (VIS), cognitive control network 

(CCN), auditory network (AUD), default mode network (DMN), and sensorimotor network 

(SM).
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Fig. 9: 
The heatmap showing the correlations (testing set) between different functional networks. 

(a) describes the results by linear CCA; (b) describes the results by deep collaborative 

learning (DCL). The color bar indicates the value of detected correlations. The full names of 

the brain functional networks can be found in the caption of Fig. 8.
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Fig. 10: 
The heatmap showing age differences in brain connectivity links in resting state. Sub-figs. 

(a-d) describes the brain FC for age group 8-11 (years), age group 13-16 (years), age group 

18-22 (years), and age group 8-22 (years), respectively. The color bar indicates the value of 

detected correlations. The full names of the brain functional networks can be found in the 

caption of Fig. 8.
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TABLE I:

The comparison of classification performance (age classification using rest-nback combination). The full 

names of the measures are: area under ROC curve (AUC), accuracy (ACC), sensitivity (SEN), specificity 

(SPF), precision (PRC), F1 score (F1).

Classifier AUC ACC SEN SPF PRC F1

DCL+SVM 0.9870 0.9664 0.9500 0.9836 0.9830 0.9660

DCL+DT 0.9872 0.9641 0.9469 0.9823 0.9813 0.9634

DCL+RF 0.9870 0.9672 0.9487 0.9869 0.9860 0.9667

SVM 0.9516 0.8755 0.9145 0.8411 0.8480 0.8784

DT 0.8884 0.8051 0.8604 0.7517 0.7794 0.8162

RF 0.9728 0.9239 0.9079 0.9424 0.9415 0.9224

Logist 0.8747 0.7985 0.8486 0.7499 0.7681 0.8058

CR+SVM 0.9819 0.9445 0.9565 0.9334 0.9329 0.9443

DNN+SVM 0.9456 0.8776 0.9150 0.8448 0.8564 0.8805

DCCA+SVM 0.6703 0.5759 0.5699 0.6033 0.7465 0.5284
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