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Abstract

The first structural models of the proposed cis-FeIII(OH)(halide) intermediate in the non-heme 

iron halogenases were synthesized and examined for their inherent reactivity with tertiary carbon 

radicals. Selective hydroxylation occurs for these cis-FeIII(OH)(X) (X = Cl, Br) complexes in a 

radical rebound-like process. In contrast, a cis-FeIII(Cl)2 complex reacts with carbon radicals to 

give halogenation. These results are discussed in terms of the inherent reactivity of the analogous 

rebound intermediate in both enzymes and related catalysts.

Non-heme iron enzymes utilize dioxygen to carry out C–H bond transformations, including 

hydroxylation and halogenation. These enzymes include the αKG-dependent hydroxylase 

TauD, which carries out the hydroxylation of taurine,1 and αKG-dependent SyrB2,2 CytC3,3 

and WelO5,4,5 which carry out the halogenation of natural products.6 The proposed 

mechanisms of these enzymes are similar, relying on an FeIV(O) oxidant to abstract a 

hydrogen atom from the C–H substrate. The nascent carbon radical then recombines, or 

“rebounds”, with either the hydroxyl (FeOH) group in the case of the hydroxylases or the 

halide (FeX) group in the case of the halogenases.7 A simplifed halogenase mechanism is 

shown in Scheme 1. Halogenase activity appears to derive from factors that control the 

selective transfer of Cl· (or X·) to the nearby carbon radical.

The key factors that control the radical rebound process remain under debate,8–13 in part 

because of the lack of a direct methods to study the presumably short-lived, unobserved 

ferric rebound intermediate. A range of different proposals5,14–23 attempting to describe 
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these factors for the halogenases have been put forth. Synthetic iron model complexes also 

exhibit some halogenation activity24–28 together with hydroxylation activity (Scheme 1). For 

both enzymes and models, computational studies have indicated that the thermodynamically 

preferred product should be the alcohol, not the halogenated compound.14,19,22 Thus, 

halogenation is predicted to arise from a kinetic pathway, in which the reaction barrier for 

rebound of the halide is significantly lower than that for the hydroxide.14,22 However, 

addressing the inherent reactivity of FeIII(OH)(X) species experimentally has been out of 

reach until now.

Herein we report the synthesis of two mononuclear FeIII(OH)(X) (X = Cl, Br) complexes 

that to our knowledge are the first structural models of the key ferric intermediate proposed 

for the non-heme iron halogenases. The isolation of these complexes allowed us to examine 

their inherent reactivity with tertiary carbon radicals. In earlier work, we examined the 

rebound reactivity of non-heme FeIII(OMe)29 and FeIII(OH)30 complexes, and the latter 

complex contained pendent H-bond donors to stabilize a terminal OH ligand as well as a 

labile cis coordination site that has now been exploited to prepare the elusive cis-FeIII(OH)

(X) complexes. Reactions with tertiary carbon radicals give exclusively the hydroxylated 

products, showing a preference for the thermodynamic pathway, while an analogous 

FeIII(Cl)2 complex is competent to halogenate the radicals.

The tetradentate ligand BNPAPh2O− was used previously to prepare FeIII(BNPAPh2O)(OH)

(OTf), a terminal FeIII(OH) complex stabilized by the steric protection and H-bonding of the 

pendent neopentylamine groups.30 The triflate ligand is cis to the OH−, and we hypothesized 

that it could be replaced by halide (X−) under suitable conditions. Reaction of BNPAPh2O− 

with ferrous halide salts gives FeII(BNPAPh2O)(X) (1, X = Cl; 2, X = Br). X-ray diffraction 

(XRD) revealed the five-coordinate FeII complexes shown in Figure 1. The halide ligands in 

these approximately trigonal-bipyramidal complexes (τ = 0.626 for 1, τ = 0.635 for 2)31 

occupy the axial positions and form H-bonds with the pendent neopentylamine groups: 

N(H)⋯X(ave) = 3.222 Å in 1 and 3.363 Å in 2 and N–H–X(ave) = 171° in 1 and 166° in 2 
(Figure 1). The remaining Fe–N and Fe–O distances are in the typical ranges for high-spin 

(hs) (S = 2) FeII complexes32–34(Table S1).

The reactions of 1 and 2 with excess O2 in THF at 23 °C lead to a rapid color change from 

yellow to bright orange. Removal of the volatiles gives dark-orange powders, and 

recrystallization from THF/n-pentane yields crystals of 3 and 4, respectively, as dark-orange 

blocks suitable for XRD. The crystal structures of these new species (Figure 2) reveal the 

six-coordinate complexes FeIII(BNPAPh2O)(OH)(X) (3: X = Cl, 4: X = Br), whose metrical 

parameters are consistent with hs ferric (S = 5/2) ions.33–37 The OH ligands occupy the sites 

involved in H-bonding interactions with the pendent amines (3: N(H)⋯O = 2.78 Å, N–H–O 

= 162°; 4: N(H)···O = 2.77 Å, N–H–O = 159°). These H-bonds are relatively tight, as seen in 

previously reported FeIII(OH) complexes.32–36,38,39 The halide ligand is bound cis to the OH 

ligand and exhibits an Fe–X distance that is in the range of those for other hs FeIII(X) 

compounds.28,40,41 Density functional theory (DFT) calculations at the B3LYP/6–311G* 

level give optimized geometries for 1–4 that are in good agreement with the crystal 

structures (Figure S22 and Tables S1 and S2). The formation of 3 and 4 from O2 (Scheme 2) 
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likely follows a mechanism similar to that proposed for FeIII(OH)(OTf)-(BNPAPh2O)30 and 

related compounds.42,43

The UV–vis spectra of 1–4 are relatively featureless in the visible region (Figures S34–S37). 

The 1H NMR and Mössbauer spectra are more informative. The 1H NMR spectra for 

complexes 1 and 2 in CD3CN exhibit similar paramagnetically shifted peaks between −12 

and +85 ppm (Figure 3). In contrast, the hs FeIII complexes 3 and 4 exhibit fewer and much 

more broadened peaks (Figures S3 and S4). Enrichment of 1–4 with 57Fe was accomplished 

by developing an alternative synthetic route involving ligand metathesis of 
57FeII(BNPAPh2O)(OTf) or 57FeIII(BNPAPh2O)(OH)(OTf)30 with Bu4NX (X = Cl−, Br−) in 

2-MeTHF to give 57Fe-labeled 1–4 in situ. Substitution of X− for OTf− was confirmed by 1H 

NMR spectroscopy, which gave spectra identical to those seen for independently prepared 3 
and 4 (Figures S28 and S29). Mössbauer spectroscopy of 57Fe-labeled 1 and 2 in 2-MeTHF 

shows a sharp quadrupole doublet for both complexes, with δ = 1.02 mm s−1 and |ΔEQ| = 

2.65 mm s−1 for 1 and δ = 1.03 mm s−1 and |ΔEQ| = 2.55 mm s−1 for 2 (Figure 4), indicative 

of hs FeII (S = 2). As anticipated, the Mössbauer spectra of 3 and 4 show broadened 

quadrupole doublets with parameters typical of hs FeIII: δ = 0.42 mm s−1 and |ΔEQ| = 1.01 

mm s−1 for 3 and δ = 0.41 mm s−1 and |ΔEQ| = 1.10 mm s−1 for 4 (Figure 4). The significant 

line broadening seen for 3 and 4 can be attributed to population of an intermediate relaxation 

regime, as reported previously44,45,24 (see the Supporting Information for fitting details).

To our knowledge, complexes 3 and 4 are the first structural models of the FeIII(OH)(X) 

intermediates proposed for the non-heme iron halogenases and related catalysts, as shown in 

Figure 1. They also nicely reproduce the H-bonding proposed for the active site in 

SyrB2.14,19 These complexes are excellent starting points for the study of the inherent 

rebound reactivity of FeIII(OH)(X) species.

Reactivity studies for 3 and 4 were initiated with the triphenylmethyl radical derivatives (p-

YC6H4)3C· (Y = OMe, H, Cl). These tertiary carbon radicals are relatively stable and have 

been used to show “rebound”-like reactions with Fe and Cu complexes.29,30,39,46–50 

Addition of (p-YC6H4)3C· to 3 or 4 was followed by stirring for 1–4 h (depending on the 

identity of Y) at 23 °C in THF/toluene (5/2 v/v). The volatiles were removed under vacuum, 

and the reaction mixture was dissolved in CD3CN for analysis by 1H NMR spectroscopy. 

The disappearance of the peaks for 3 and 4 occurred with the appearance of the spectra for 

the one-electron-reduced complexes 1 and 2 (Figure 3). These data suggested that the OH 

group was selectively transferred to the carbon radical.

The reactions with the triphenylmethyl radical derivatives were also monitored by 

Mössbauer spectroscopy. The final reaction mixture of 57Fe-enriched 3 and excess (p-
MeOC6H4)3C·, after removal of the volatiles and dissolution of the resultant solid in 2-

MeTHF, showed a sharp quadrupole doublet with δ = 1.03 mm s−1 and |ΔEQ|= 2.69 mm s−1 

(94% of the total fit), a close match to that seen for 1 (Figure 4, left panel). Similarly, the 

ferric complex 4 shows complete conversion to the FeII(Br) complex 2 upon reaction with 

(p-MeOC6H4)3C· (Figure 4, right panel).
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The tertiary alcohols (p-YC6H4)3COH were identified by 1H NMR spectroscopy of the 

crude reaction mixtures. Peaks arising from the newly formed hydroxyl groups appeared as 

well-separated singlets, and integration gave a high (>90%) yield of the alcohol in all cases 

(Figures S13–S18). The formation of Ph3COH (m/z 260.1) and (p-ClC6H4)3COH (m/z 
362.0) was confirmed by mass spectrometry. Isotopic substitution of the OH group in 3 via 

synthesis with 18O2 led to Ph3C18OH (m/z 262.1) with ≥99% isotopic purity. The same 

reaction with the (p-ClC6H4)3C· and isotopically labeled 4 led to (p-ClC6H4)3C18OH (m/z 
364.0) (Figures S30–S33). The data show that selective hydroxylation occurs in a rebound-

type process with 3 and 4 (Scheme 3), and the 18O labeling supports a mechanism involving 

direct transfer of OH·from FeIII to the carbon radical.

Metalation of BNPAPh2O− with FeCl3 led to the formation of the dichloro analogue 

FeIII(BNPAPh2O)(Cl)2 (Figure 5). The structure of 5 shows that the alkoxide ligand is bound 

trans to the equatorial halide, whereas in complexes 3 and 4 a pyridine arm is bound trans to 

the equatorial halide. It is not yet known whether the nature of the trans ligand has a 

significant impact on the reactivity of these complexes. Reaction of 5 with the p-OMe and p-

Cl trityl radical derivatives showed complete conversion to 1 by paramagnetic NMR 

spectroscopy. The formation of the halogenated (p-YC6H4)3CCl was initially monitored by 

thin-layer chromatography (TLC), and then the products were isolated by silica gel 

chromatography in good yields (75% for Y = Cl and 84% for Y = OMe). Although it is not 

possible to determine which of the Cl ligands is transferred, it is clear from these results that 

halogen transfer occurs easily in the absence of a terminal hydroxide (Scheme 4). This result 

provides the first example, to our knowledge, of the direct reaction of an isolated FeIII(Cl) 

complex with a carbon radical to give FeIIand a new C–Cl bond, a process that mimics 

halogen rebound.

Our findings indicate that the reactions of tertiary carbon radicals with 3 and 4 give 

hydroxylated products with no evidence of halogenation, although the analogous dichloro 

complex 5 is competent to transfer the halogen. The lack of halogen transfer for 3 and 4 
contrasts with what is seen for both enzymes and halogenase models and thus deserves 

further comment. The selectivity seen for 3 and 4 is in line with thermodynamic 

expectations, which are supported by calculations on both enzymes and models that 

uniformly predict hydroxylation to be thermodynamically favored over halogenation by at 

least 15 kcal/mol.14,21,22,26 However, the same computational studies also predict that the 

reaction barriers to halogenation are lower, leading to kinetically favored halogenated 

products. A range of factors have been offered as contributing to the lower kinetic barriers 

for halogenation, including substrate orientation,16,23 relocation of the positioning of the OH 

group on the metal,5,19,20 relative ordering of frontier molecular orbitals,14 relative spin 

densities on OH versus Cl,15 and steric effects.28 It has also been suggested that H-bonds 

between the OH group of the putative FeIII(OH)(Cl) intermediate and Arg254/Glu102/water 

molecules in SyrB2 raise the hydroxylation barrier.14,19

The lack of halogenation seen for 3 and 4 occurs even though OH ligand is held in place and 

deactivated toward the incoming carbon radical by two tight H-bonds. This inherent 

reactivity may be a result of the nature of complexes 3 and 4 or may be related to the nature 

of the radical. It was shown that [FeIV(O)(Cl)(PyTACN)]+ reacts with triphenylmethane to 
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give Ph3 COH,25 suggesting that the tertiary carbon radical may favor hydroxylation. 

However, [FeIV(O)(Cl)(PyTACN)]+ reacts with other C–H bonds (e.g., cyclohexane), but 

still no halogenated products were observed. In contrast, some halogenation has been seen 

for cyclohexane and toluene with a non-heme FeIV(O)(X) (X = Cl, Br) oxidant.24 Reaction 

of Ph3C· with a low-coordinate FeIII(NHAr)(Cl) complex disfavored halogenation, leading 

to amination instead.47 The importance of the nature of the carbon radical remains to be 

determined.

Complexes 3 and 4 are analogous to the key ferric intermediates in non-heme iron 

halogenases and related catalysts. Future plans include computational studies and other 

mechanistic investigations of these rebound reactions to understand the key factors that 

control the rebound selectivity in both enzymes and models.
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Figure 1. 
Displacement ellipsoid plots (50% probability level) for 1 and 2 at 110(2) K. Hydrogen 

atoms (except for N–H) have been omitted for clarity.
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Figure 2. 
Displacement ellipsoid plots (50% probability level) for 3 and 4 at 110(2) K. Hydrogen 

atoms (except for N–H and O–H) have been omitted for clarity.
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Figure 3. 
1H NMR spectra in CD3CN of (a) 1, (b) 3 + (p-MeOC6H4)3C·, (c) 2, and (d) 4 + (p-

MeOC6H4)3C·.
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Figure 4. 
Zero-field 57Fe Mössbauer spectra (80 K) of (a, a′) 1 and 2, (b, b′) 3 and 4, and (c, c′) 3 and 

4 + (p-MeOC6H4)3C·.
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Figure 5. 
Displacement ellipsoid plot (50% probability level) for 5 at 110(2) K. Hydrogen atoms 

(except for N–H) have been omitted for clarity.
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Scheme 1. 
Proposed Rebound Mechanism
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Scheme 2. 
Synthesis of FeIII(OH)(X) Complexes
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Scheme 3. 
Reaction of 3 and 4 with Triphenylmethyl Radical Derivatives
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Scheme 4. 
Reaction of 5 with Triphenylmethyl Radical Derivatives
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