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Abstract

Given the aging Baby Boomer generation, changes in cannabis legislation, and the growing 

acknowledgment of cannabis for its therapeutic potential, it is predicted that cannabis use in the 

older population will escalate. It is, therefore, important to determine the interaction between the 

effects of cannabis and aging. The aim of this report is to describe the link between cannabis use 

and the aging brain. Our review of the literature found few and inconsistent empirical studies that 

directly address the impact of cannabis use on the aging brain. However, research focused on long-

term cannabis use points toward cumulative effects on multimodal systems in the brain that are 

similarly affected during aging. Specifically, the effects of cannabis and aging converge on 

overlapping networks in the endocannabinoid, opioid, and dopamine systems that may affect 

functional decline particularly in the hippocampus and prefrontal cortex, which are critical areas 

for memory and executive functioning. To conclude, despite the limited current knowledge on the 

potential interactive effects between cannabis and aging, evidence from the literature suggests that 

cannabis and aging effects are concurrently present across several neurotransmitter systems. There 

is a great need for future research to directly test the interactions between cannabis and aging.
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Introduction

Prevalence of cannabis use in older populations

Cannabis is one of the most commonly abused substances in the United States (Substance 

Abuse and Mental Health Services Administration, 2016), with increasing prevalence of use 

due to legalization and decreasing perception of harm (Carliner, Brown, Sarvet, & Hasin, 

2017; Compton, Han, Jones, Blanco, & Hughes, 2016; Hasin, 2018). Between 2002 and 

2014, cannabis use among adolescents remained fairly constant (Carliner et al., 2017), while 

use among adults over the age of 18 years increased consistently (Carliner et al., 2017; Han 

et al., 2017; Pacek, Mauro, & Martins, 2015). The National Survey on Drug Use and Health 

showed that between 2003 and 2014, the rate of past-year cannabis use rose from 2.95% to 
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9.08% among the 50- to 64-year-old age group and from 0.15% to 2.04% among those older 

than 65 years (Substance Abuse and Mental Health Services Administration, 2016; Salas-

Wright et al., 2017). This indicates a liberalization of cannabis use in the current older-adult 

population (i.e., 50 years or older), referred to as the Baby Boomer generation (born 

between 1946 and 1965; Black & Joseph, 2014). In this report, we define “older adults” as 

individuals 50 years or older (Lloyd & Striley, 2018). Based on the trend of decreased 

perceived harm from cannabis use among older adults (Carliner et al., 2017), the prevalence 

of medicinal and recreational cannabis use is expected to keep increasing.

Similar to other age groups, cannabis use is also associated with vulnerability toward 

comorbid neuropsychiatric and substance use disorders in older adults (Choi, DiNitto, & 

Marti, 2016; Choi, DiNitto, Marti, & Choi, 2016; Han et al., 2017). Wu and Blazer (2014) 

posit that substance use disorder has become one of the most common psychiatric conditions 

found in this population. The prevalence of cannabis use disorder is rising in the general 

population, which increased to 2.9% (2012–2013) from 1.5% in 2001–2002 (Hasin et al., 

2015). The number of older users affected with cannabis use disorder appears to increase 

with the rate of cannabis use in older adults. For example, cannabis abuse and dependence 

based on Diagnostic and Statistical Manual of Mental Disorders (DSM)-IV criteria have 

increased from 0.4% to 1.3% in middle-aged to older adults (45–64 years) and 0.1% to 0.3% 

in those older than 65 years from 2001–2002 to 2012–2013 (Hasin et al., 2015). Kaskie, 

Ayyagari, Milavetz, Shane, and Arora (2017) noted that the increase of cannabis use in older 

adults is attributable to both medicinal and recreational uses that are difficult to distinguish, 

and Arora et al. (2019) found that older adults are currently more accepting about the use of 

medicinal cannabis. Of the older cannabis using population, peak age of first onset of use 

onset is 18–20, suggesting that potential effects in this population are predominantly from 

chronic or long-term use (Choi et al., 2016). This implies that despite the general changes in 

the perception of cannabis use, the cumulative effect of more than 30 years of regular 

cannabis use may be predominant in current older adults, compared to that of older adults 

who report a relatively recent onset of use. This indicates the need for determining the 

effects of long-term cannabis use on aging. Considering the trend of increasing cannabis use 

in older adults, it is essential to provide a prospective insight on the interaction between 

cannabis use and the aging process.

Cannabis mechanisms

The primary psychoactive ingredient in cannabis is delta-9-tetrahydrocannabinol (THC). Of 

the cannabinoids, THC is most widely associated with the negative effects of cannabis 

(Bhattacharyya et al., 2010), such as increased anxiety (Crippa et al., 2009), psychotic 

symptoms (D’Souza et al., 2004), increased impulsivity (McDonald, Schleifer, Richards, & 

de Wit, 2003), loss of learning capability (Grant, Gonzalez, Carey, Natarajan, & Wolfson, 

2003), motor control (Ramaekers et al., 2006), and substance use disorder (Hurd, 

Michaelides, Miller, & Jutras-Aswad, 2014; Stopponi et al., 2014). More recently, there is 

growing recognition that THC also provides therapeutic benefits that includes 

neuroprotection against oxidative stress (Hampson, Grimaldi, Axelrod, & Wink, 1998) and 

from the accumulation of amyloid-β peptides related to Alzheimer’s disease (Cao et al., 

2014). THC acts as a partial agonist at two known endocannabinoid system receptors, 
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cannabinoid receptors 1 and 2 (CB1R, CB2R) and is a comparable affinity analog of the 

endogenous agonists anandamide (AEA) and 2-arachidonyl glycerol (2-AG; Devane, 

Dysarz, Johnson, Melvin, & Howlett, 1988; Felder & Glass, 1998; Paronis, Nikas, Shukla, 

& Makriyannis, 2012; Pertwee, 2008). Although its biochemical affinity is lower, THC also 

acts on the opioid system as an allosteric modulator (Kathmann, Flau, Redmer, Tränkle, & 

Schlicker, 2006; Pertwee, 2008). Thus, cannabis use directly modulates both the 

endocannabinoid and opioid systems. THC also indirectly modulates multiple other 

neurotransmitter systems, such as dopamine, serotonin, acetylcholine, and norepinephrine 

(Al-Hasani & Bruchas, 2011; Castillo, Younts, Chavez, & Hashimotodani, 2012), which 

may be due to CB1Rs being one of the most common G-protein-coupled receptors in the 

brain (Lovinger & Mathur, 2016). Endocannabinoids regulate the activity of the 

aforementioned neurotransmitters in the neocortex, limbic regions, basal ganglia, and 

cerebellum (Fride, 2005; Pazos, Nunez, Benito, Tolon, & Romero, 2005), which are 

disrupted by exogenous cannabinoids such as THC (Mato et al., 2004).

Aging mechanisms

Aging processes increase vulnerability toward some neurodegenerative disorders (Baker & 

Petersen, 2018; Mattson & Magnus, 2006). Fundamental age-related changes in the central 

nervous system (CNS) include cellular degradations due to reductions in energy metabolism 

(Camandola & Mattson, 2017) and accumulated oxidative damages (Peters, 2006; Sohal & 

Weindruch, 1996). Aging affects multiple neurotransmitter systems including the 

endocannabinoid, opioid, and dopamine systems. In the endocannabinoid system, animal 

studies show that CB1R density and its binding decrease particularly in the basal ganglia of 

aged rats, and the activity of messenger RNA expressing CB1R concurrently degrades 

(Romero et al., 1998; Berrendero et al., 1998). Further, the G-protein coupling of CB1R in 

limbic forebrain may decrease in older mice (Wang, Liu, Harvey-White, Zimmer, & Kunos, 

2003). Evidence from humans, on the other hand, indicate that the CB1R density in the basal 

ganglia and hippocampus increases due to aging in females (Van Laere et al., 2008). 

However, there was not enough evidence exists to verify genetic and molecular level 

changes in CB1R. The activity of the opioid system also declines due to aging, as studies 

using rodents have found decreased levels of endogenous opiates and opioid receptor density 

and binding with aging (Agnati et al., 1986; Gambert, Garthwaite, Pontzer, & Hagen, 1980; 

Hess, Joseph, & Roth, 1981; Nagahara, Gill, Nicolle, & Gallagher, 1996; Petkov, Petkov, & 

Stancheva, 1988). These age-related changes in the endocannabinoid and opioid systems 

may be related to these systems’ roles in defense mechanisms against stress factors and the 

management of adaptive responses such as fear and anxiety (Lutz, Marsicano, Maldonado, 

and Hillard (2015); Colasanti, Rabiner, Lingford-Hughes, and Nutt (2011)). Similar to the 

endocannabinoid and opioid systems, the dopamine system also deteriorates with aging in 

terms of concentration of receptors (Bäckman et al., 2011; De Keyser, Ebinger, & 

Vauquelin, 1990; Seeman et al., 1987), receptor binding level (Backman et al., 2000), and 

density of transporters (Ishibashi et al., 2009; Volkow et al., 1994).

At the systems level, neural and synaptic plasticity are significantly affected by normal 

aging. The process of neurogenesis occurs adult linearly with increasing age (Gage, 2002; 

Kuhn, Dickinson-Anson, & Gage, 1996; Manganas et al., 2007), especially in the 
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hippocampus (Gage, 2002; Manganas et al., 2007)—a region rich in endocannabinoids and 

CB1R (Glass, Dragunow, & Faull, 1997). Simultaneously, synaptogenesis also slows down 

due to aging (Luebke, Chang, Moore, & Rosene, 2004; Peters, Sethares, & Luebke, 2008; 

Petralia, Mattson, & Yao, 2014). At the tissue level, gray and white matter in the brain are 

significantly affected by aging, particularly in the hippocampus and frontal cortex (Fjell et 

al., 2009, 2014; Gunning-Dixon, Brickman, Cheng, & Alexopoulos, 2009). Reduction in 

hippocampal volume is found to correlate with memory impairment in normal aging 

(Persson et al., 2012). Age-dependent degeneration in prefrontal gray and white matter have 

been associated with disruptions in executive function, such as attention and working 

memory (Gold, Powell, Xuan, Jicha, & Smith, 2010; Gopher and Koriat, 1999; Grady, 2012; 

Grady, Springer, Hongwanishkul, McIntosh, & Winocur, 2006).

Taken together, cannabis and aging effects are concurrently present across several 

neurotransmitter systems, but especially in the hippocampus and prefrontal cortex, which are 

critical in the interaction between aging and cannabis use.

The current literature on the effects of cannabis use in aging

To date, empirical studies regarding the effect of cannabis use in older adults are sparse. 

Thayer (2018) provided the most comprehensive report on the topic, highlighting significant 

structural and functional loss in individuals older than 60 years of age with a history of 

regular cannabis use defined once or more per week for at least the last year. The authors 

found that older cannabis users showed gray matter decline in the frontal pole and precentral 

cortex and reductions in performance on tasks utilize executive function that correlated with 

years of regular use. On the other hand, Auer et al. (2016) based on a large cohort (N = 

3,385) followed for over 25 years, has shown that verbal memory, which relates closely to 

the hippocampus (Dolan & Fletcher, 1997), is more affected by prolonged cannabis use in 

older adults than executive function, which is subserved by the prefrontal cortex (Fjell, 

Sneve, Grydeland, Storsve, & Walhovd, 2016). Burggren et al. (2018) studied former heavy 

users aged 57 to 75 years old with a history of cannabis abuse during adolescence (20 days 

per month during adolescence that declined to 1–2 uses per month after age 35, with the 

length of abstinence averaging at 29.9 ± 6.0 years). The authors reported significant 

reduction of gray matter in hippocampal subregions (cornu ammonis 1, 2, and 3 and dentate 

gyrus) that corresponded with memory impairment, showing that the effect of cannabis use 

during youth can persist and alter brain function in later life. Animal studies, however, have 

found opposing effects of cannabis in hippocampal volume and memory loss. For example, 

it was found that chronic (defined as 28 days of use) but low-dose exposure (3 mg/kg or 

lower) of THC increased the number of synapses in hippocampus and facilitated memory 

and learning functions in mature to older (12 and 18 months old) mice (Bilkei-Gorzo et al., 

2017) and that a single injection of ultra-low-dose THC (0.002 mg/kg) to elderly mice (24 

months old) achieves the same functional improvement (Sarne, Toledano, Rachmany, 

Sasson, & Doron, 2018). The difference between human and animal studies may be due to 

the potency of THC being examined, where higher doses may have led to the effects 

described in the human literature. Studies are needed to clarify the dose-dependent effects of 

THC in humans. Bilkei-Gorzo (2012) has an extensive review that highlighted the 

importance of the interaction between molecular and cellular processes of aging and changes 
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in the endocannabinoid system, but studies on chronic cannabis use and its interaction with 

aging effects have not been abundant since. In sum, a prospective review on the limited 

knowledge of the interaction between cannabis use and aging and the mismatch between 

preclinical and clinical studies is necessary.

Given the scarce empirical studies on the effects of cannabis in the aging population in 

humans, this review will try to integrate the separate effects of aging and cannabis use. The 

following sections will discuss these effects at the microscopic level (endocannabinoid and 

opioid and indirectly via dopamine, serotonin, acetylcholine, and norepinephrine systems) 

and at the macroscopic level (brain structures, networks, and behaviors).

Molecular level interactive effects of cannabis use and aging

The endocannabinoid system

The primary psychoactive ingredient of cannabis, THC, targets the endocannabinoid system. 

As Pertwee (2008) has extensively reviewed, the two known main functions of the 

endocannabinoid system are (1) regulatory inhibition of various neurotransmitters (i.e., 

dopamine, serotonin, acetylcholine, and norepinephrine) and (2) modulation of the immune 

system, as in inflammatory responses. Two known neuronal receptors in this system are 

CB1Rs, which are ubiquitous in the CNS, and CB2Rs, which are predominantly in 

peripheral immune cells (Pertwee, 2008). Throughout this review, we will describe the larger 

literature on the effects of chronic use of cannabis in the CNS via CB1R (Pertwee, 2006), 

although CB2R changes will be discussed in the section “Effects beyond THC and CB1Rs.”

Chronic cannabis use (see Tables 1 and 2 for study-specific definitions of chronic cannabis 

use) is known to affect the endocannabinoid system at the molecular level, inducing changes 

in endocannabinoids, cannabinoid receptors, and degrading enzymes. In general, the activity 

of the endocannabinoid system seems to be downregulated and the CB1Rs desensitized by 

long-term cannabis use (Gonzalez, Cebeira, & Fernandez-Ruiz, 2005). In the same vein, 

CB1R density has been consistently documented to decrease in animals and humans 

(Ceccarini et al., 2015; D’Souza et al., 2016; De Fonseca, Gorriti, Fernandez-Ruiz, Palomo, 

& Ramos, 1994; Villares, 2007), especially in neocortical regions, anterior cingulate cortex, 

hippocampus, and parahippocampus (Hirvonen et al., 2012). Martini et al. (2007) provided 

molecular evidence using cultured human cells that both internally and externally derived 

cannabinoids can downregulate CB1Rs. In human subjects, endogenous CB1R agonists 

show differential changes following frequent cannabis use, where AEA decreases and 2-AG 

increases in cerebrospinal fluid (Morgan et al., 2013). The level of endocannabinoid-

degrading enzymes seems to diminish with frequent use of cannabis (Boileau et al., 2016). 

Boileau, et al. (2016) indicated that the fatty acid amide hydrolase, the enzyme that degrades 

AEA, is lower in chronic cannabis users than non-users (average duration of regular use = 

17.5 ± 10.8 years). In sum, cannabis-dependent alterations at the molecular level in the 

endocannabinoid system are prominent in CB1Rs.

Some animal studies indicate age-related degenerative changes in CB1Rs that are similar to 

those induced by chronic use of cannabis in humans. In normal aging rodents, the mRNA 

level of CB1R seems to decrease in the hippocampus (Berrendero et al., 1998), as well as its 
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expression in the prefrontal and other cortices (Heng, Beverley, Steiner, & Tseng, 2011). 

The binding level of CB1Rs also seems to decrease in the basal ganglia (Romero et al., 

1998), cerebellum, and cerebral cortex (Berrendero et al., 1998). Results on the density of 

CB1R are regionally specific, showing increases in the dentate gyrus of the hippocampus 

(Berrendero et al., 1998) and temporal cortex (Liu, Bilkey, Darlington, & Smith, 2003). 

However, some studies reported no distinct changes in CB1R densities in older mice (Wang 

et al., 2003). In humans with no history of cannabis use, Van Laere et al. (2008) showed that 

the concentration of CB1R across widespread brain regions seems to increase, although 

genetic and molecular-level changes that require invasive observations are currently 

unknown. Thus, changes of CB1R concentration in older adults, increases in counterbalance 

the decrease caused by chronic cannabis use. Nevertheless, it is probably the case that while 

the density of CB1Rs is at least intact or increasing during aging, there are molecular or 

genetic downregulations underlying CB1Rs (Bilkei-Gorzo, 2012), and future studies are 

required to quantify in vivo age-related effects in CB1Rs.

It is important to note that cannabis-dependent alterations and age-related deterioration may 

have a bidirectional interaction. This is demonstrated in animal studies showing differential 

CB1R effects across age groups. Using mice that genetically lack CB1Rs, a quadratic 

relationship between CB1R signaling and age was found such that 2-month-old animals 

without CB1Rs showed higher learning and memory performance compared to those with 

CB1Rs, while 5-month-old animals without CB1Rs showed performance indistinguishable 

to those with CB1Rs and 12-month-old animals showed worse cognitive performance 

relative to those with CB1Rs (Albayram et al., 2011; Albayram, Bilkei-Gorzo, & Zimmer, 

2012). Neuronal loss in the hippocampus, which underlies memory function, was also noted 

in the 12-month-old animals (Driscoll et al., 2006; Golomb et al., 1996). Bilkei-Gorzo et al. 

(2012) suggested that age-related deterioration in cognition is accelerated in those without 

CB1Rs. This interaction between endocannabinoid system function and aging implies 

potential detrimental effects of cannabis use that can accelerate age-related decline, 

particularly as it relates to cognition.

There are two age-related factors that may modulate the effects of cannabis: regional 

specificity of CB1R changes and age by sex interaction of CB1Rs. Although the 

downregulation of CB1Rs is consistently found in chronic users, the change differs between 

brain regions (Ceccarini et al., 2015; Hirvonen et al., 2012). Using postmortem human 

brains that were cannabis-positive, Villares (2007) showed that the mRNA expression is 

reduced in the basal ganglia and hippocampal regions. For in vivo human brains, decreases 

in CB1R density were more prominent in neocortical regions, anterior cingulate cortex, and 

hippocampus (Ceccarini et al., 2015; Hirvonen et al., 2012; Villares, 2007). Concurrently, 

abstinence from cannabis use normalized downregulation, but the recovery was faster in the 

basal ganglia and slower in the hippocampus (Hirvonen et al., 2012). This indicates that the 

slower molecular adaptation of CB1Rs to THC in hippocampus suggests that it is more 

susceptible to molecular degeneration associated with cannabis use. This is further 

supported by a meta-analysis across 14 studies showing significant volumetric reduction of 

the hippocampus in cannabis users (Rocchetti et al., 2013). Berrendero et al. (1998) noted 

the age-related reduction of mRNA levels in hippocampal CB1R. Thus, the endocannabinoid 

system in the hippocampus is especially vulnerable to both age- and cannabis-related 
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neurodegeneration, suggesting that the effect of chronic cannabis use present in older adults 

may lead to deeper memory dysfunction.

The density of CB1Rs also depends on an age by sex interaction (Cha, Jones, Kuhn, Wilson, 

& Swartzwelder, 2007). It is widely reported that males use cannabis more frequently and in 

higher doses than females (Cuttler, Mischley, & Sexton, 2016) even in the older adult 

population (Choi, DiNitto, & Marti, 2016). While males appear to have denser 

concentrations of CB1Rs than females during earlier adulthood (18–45 years), CB1R 

concentrations remain unchanged in later adulthood in frontal and parietal cortices for males 

(45–70 years), whereas the concentration in females increase throughout brain regions 

across the life-span and eventually surpasses that of males (Van Laere et al., 2008). This 

suggests that normal aging can render the endocannabinoid system more vulnerable toward 

the effects of cannabis in males. Thus, future studies should take sex into account when 

determining the interaction between cannabis and aging on the endocannabinoid system.

The opioid system

THC acts as an allosteric agonist of opioid receptors (Kathmann et al., 2006; Pertwee, 2008) 

whose influence underlies hedonic response (Berridge & Robinson, 1998; Le Merrer, 

Becker, Befort, & Kieffer, 2009). Studies using aging rodents showed that the opioid system 

degrades in receptor density and binding of opioid receptors in the hippocampus (Amenta, 

Zaccheo, & Collier, 1991; Hess et al., 1981; Nagahara et al., 1996). The opioid system also 

significantly interacts with the dopamine system. For example, opioid agonists applied to the 

nigrostriatal pathway seems to increase dopamine metabolism (Wood, 1983), and dopamine 

agonists may briefly facilitate the activity of mRNA that expresses the opioid receptor 

(Azaryan, Clock, & Cox, 1996).

The endocannabinoid system interacts with the opioid system via CB1R and μ-opioid 

receptors that are localized in the striatum (Lopez-Moreno, Lopez-Jimenez, Gorriti, & de 

Fonseca, 2010; Pickel, Chan, Kash, Rodriguez, & MacKie, 2004) and lead to common 

functional outcomes. For instance, agonists for both receptors produce anti-nociceptive and 

sedative effects and drug-related rewards (Corchero, Manzanares, & Fuentes, 2004; 

Maldonado & Valverde, 2003). CB1R agonists have been found to attenuate the opioid 

signals induced via activating μ-opioid receptors, and vice versa; thus, activating two 

receptors simultaneously may reduce signals from both (Rios, Gomes, & Devi, 2006). 

Similarly, CB1R antagonists seem to mimic the inhibitory functions of μ-opioid antagonists 

(Schoffelmeer, Hogenboom, Wardeh, & De Vries, 2006). Using morphine-dependent rats (μ-

opioid agonist), Navarro et al. (2001) found that a CB1R antagonist can cause behaviors that 

resemble opiate withdrawal symptoms, canceling the effect of opioid agonists in a similar 

way as opioid antagonists. A later study using rats showed that a CB1R agonist and 

antagonist can induce differential effects on morphine dependence; a CB1R agonist may 

counteract behavioral dependence toward supra-threshold morphine, while a CB1R 

antagonist may facilitate dependence toward subthreshold morphine (Ahmad, Lauzon, de 

Jaeger, & Laviolette, 2013). Owing to allosteric interactions, an antagonist to either of the 

two systems can modulate dependence on the other. Indeed, Singh, Verty, McGregor, and 

Mallet (2004) showed that a CB1R antagonist can attenuate morphine-related rewards in 
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morphine-dependent rats. In De Vries, Homberg, Binnekade, Raaso, and Schoffelmeer 

(2003), the authors also showed that a CB1R antagonist can be used to prevent the 

reinstatement of behavioral dependence toward opiates in rats after an extinction period of 

heroin (opioid agonist). However, in human cannabis users, the usage dose may affect the 

consequences, as Haney (2007) showed that an opioid antagonist reduces the intoxicating 

effect of low THC dose (20 mg) but not high dose (40 mg) for users (21–45 years old 

without comorbid drug dependence). In short, the endocannabinoid and opioid receptors 

interact as if they are cross-compatible systems that can be modulated by each other’s 

ligands (Cooper and Haney, 2009).

In addition to mediating response to substances, the endocannabinoid and opioid systems 

share a fundamental common ground in modulating stress response, which is also associated 

with age-related alterations. The internal process dealing with external stress is the stress 

response that is centrally modulated by the hypothalamic-pituitary-adrenal (HPA) axis 

(Kandel, Schwartz, & Jessell, 2000). It activates in response to an acute external stress by 

releasing cortisol from the adrenal cortex that provides a negative feedback upon the 

hypothalamus to inhibit the activity of the HPA axis (Kandel et al., 2000). The activity of the 

endocannabinoid and opioid systems both increase in response to external stress (Mansi, 

Laforest, & Drolet, 2000; Patel, Roelke, Rademacher, & Hillard, 2005). Endocannabinoid 

agonists modulate the activity of the HPA axis to adjust the magnitude of the short- and 

long-term stress response (Hill & Tasker, 2012; Morena, Patel, Bains, & Hill, 2016). The 

opioid system also acts to diminish the stress response and normalize its physical and mental 

impacts (Drolet et al., 2001; Ribeiro, Kennedy, Smith, Stohler, & Zubieta, 2005). Because 

enhanced activation of the HPA axis is a risk factor for cannabis and opiate dependence 

(George, Le Moal, & Koob, 2012; Goeders, 2003), functional loss in the endocannabinoid 

and opioid systems may predispose one toward dependence.

While the activity of the HPA axis may vary in aging (Lupien et al., 1996), the level of stress 

response significantly correlates with structural and functional neurodegeneration related to 

aging, such that the stronger response to stress, the greater the hippocampal atrophy and 

corresponding memory loss (Issa, Rowe, Gauthier, & Meaney, 1990; Lupien et al., 1998; 

Lupien, McEwen, Gunnar, & Heim, 2009). Thus, an increase in the stress response may 

result in accelerated cognitive aging via alterations in the functionality of endocannabinoid 

and opioid systems. Because THC acts on both the endocannabinoid and opioid systems, 

long-term effects of cannabis use may exacerbate age-dependent disruptions in the stress 

response. Chronic cannabis users have been reported to show a blunted response toward 

external stress with regard to subjective stress ratings and cortisol levels (Cuttler et al., 

2017). However, it appears that the stress-relieving effects of THC may be present for a brief 

period of time (Mayer, Matar, Kaplan, Zohar, & Cohen, 2014) and that higher doses of THC 

(12.5 mg) are not effective for this purpose and only disrupt cognitive functions (Childs, 

Lutz, & de Wit, 2017). It has been shown that the level of cannabis use correlates with lower 

amygdala activity in response to aversive stimuli (Cornelius, Aizenstein, & Hariri, 2010), 

which reflects attenuation of fear response (Phelps et al., 2001). Chronic cannabis users have 

also shown reduced sensitivity to aversive stimuli and negative affect (Somaini et al., 2012). 

These findings demonstrate that cannabis’ modulatory effect on stress response wanes in 

those with longer duration of use and/or with higher THC potency, which may suggest 
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disruptions in the modulation of stress response following greater cannabis use. Indeed, 

chronic cannabis users show an increased level of cortisol at baseline (King et al., 2011) and 

an attenuated cortisol increase (Ranganathan et al., 2009), providing evidence for a 

compromise in the modulation of the stress response, which may be related to a reduction of 

the “on-demand” recruitment or mitigation of stress response in the users. In regard to aging, 

this can lead to amplified abnormalities especially in the hippocampus and its related 

functions, which increase vulnerability toward age-related degenerations and disorders (i.e., 

Alzheimer’s disease). Importantly, alterations in the hippocampus can drive further 

hyperactivity in the HPA axis because the hippocampus also exerts inhibitory modulation on 

the hypothalamus (Pedersen, Wan, & Mattson, 2001). This can impose a cycle in older 

adults that may be more difficult to resolve.

The endocannabinoid and opioid systems also share endogenous pain analgesic effects 

(Bushlin, Rozenfeld, & Devi, 2010). Specifically, similar to opioid agonist’s anti-nociceptive 

effect (Fields, Heinricher, & Mason, 1991), THC shows comparable analgesic effect in 

animals (Buxbaum, 1972) and in human patients with chronic pain (Ware et al., 2010). 

Further, agonists of these two systems appear to exacerbate each other’s analgesic effect in 

rodents (Cichewicz, Martin, Smith, & Welch, 1999; Cichewicz & McCarthy, 2003), 

although results in humans are not as clear (Nielsen et al., 2017). CB1Rs are found in the 

periaqueductal gray, a midbrain region involved in pain modulation via opioid receptors 

(Basbaum & Fields, 1984). A significant proportion of CB1R and μ-opioid receptors are co-

localized (Wilson-Poe, Morgan, Aicher, & Hegarty, 2012). Applying cannabinoid agonists to 

the periaqueductal gray created an analgesic effect in rats (Finn et al., 2003; Lichtman, 

Cook, & Martin, 1996; Wilson-Poe, Pocius, Herschbach, & Morgan, 2013). Injecting high-

dose THC (at least 4 mg/kg) subcutaneously to mice amplified the effect of morphine and, 

importantly, the synergistic effect was canceled by adding a CB1R antagonist (Smith, 

Cichewicz, Martin, & Welch, 1998). Similarly, κ- and δ-opioid receptor antagonists 

attenuated the synergistic effect of THC and morphine in mice (Pugh, Smith, Dombrowski, 

& Welch, 1996). Together, these indicate that the cross-compatibility between two systems 

can exert similar analgesic outcomes. Cannabinoid agonists alone were also effective in 

reducing chronic neuropathic pain (Guindon, Desroches, Dani, & Beaulieu, 2007; Liang, 

Huang, & Hsu, 2007). Many older adults with chronic pain are prescribed opioids (Chau, 

Walker, Pai, & Cho, 2008), and medicinal use of cannabis appears to help reduce the dose of 

prescribed opiates in practice (Abuhasira, Schleider, Mechoulam, & Novack, 2018). Cross-

sectional data showed that cannabis use was effective in pain relief (on average, 70% 

magnitude of pain relieved; Degenhardt et al., 2015). Longitudinal studies are needed to 

examine the duration of these effects.

The dopamine system

Dopamine is the primary neurotransmitter involved in reward response and substance use 

disorder (Berke and Hyman, 2000), and its signal encodes reward and motivation to achieve 

the reward (Wise, 2009). Endocannabinoids partially interact with the dopamine system in 

processes related to the development of substance use disorders, as Maldonado, Valverde, 

and Berrendero (2006) explain with well-illustrated, deeper discussions. The 

endocannabinoid system is at the balance between inhibition and excitation of the 
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dopamine-releasing neurons, but external application of cannabis seems to consequently 

increase dopamine due to depolarization-induced suppression of inhibition that attenuates 

inhibitory GABAergic inputs onto the ventral tegmental area (Lupica & Riegel, 2005; 

Maldonado et al., 2006), the origin of the dopamine reward pathway. THC also facilitates 

dopamine signals from the nucleus accumbens, a part of the mesolimbic reward pathway 

(Chen et al., 1990). On the other hand, the excitatory glutamatergic inputs that increase the 

release of dopamine are also simultaneously weakened by cannabinoids (Melis et al., 2004; 

Robbe, Alonso, Duchamp, Bockaert, & Manzoni, 2001), and these effects balance the 

concentration of dopamine and the reward signal, illustrated in Maldonado et al. (2006). In 

chronic cannabis users, this balance is compromised because the sensitivity of the 

glutamatergic and GABAergic synapses that modulate the dopamine signal decreases 

(Hoffman, Oz, Caulder, & Lupica, 2003), as well as dopamine synthesis (Bloomfield, 

Morgan, Kapur, Curran, & Howes, 2014). It appears that the effect of cannabis use is crucial 

to these long-term alterations in the dopamine system, because some of the impacts may be 

alleviated using cannabinoid antagonists (Diana, Melis, Muntoni, & Gessa, 1998; Lupica & 

Riegel, 2005).

Normal aging also significantly alters the dopamine system (Luine, Bowling, & Hearns, 

1990). Dopamine receptors continuously decrease in binding level and density with aging 

(Backman et al., 2000; Bäckman et al., 2011; Mukherjee et al., 2002; Seeman et al., 1987), 

and dopamine transporters also decrease (Ishibashi et al., 2009; Volkow et al., 1994). 

However, the level of dopamine synthesis appears to be maintained in the older population 

(Karrer, Josef, Mata, Morris, & Samanez-Larkin, 2017) or even upregulated (Nandhagopal 

et al., 2011). Dreher, Meyer-Lindenberg, Kohn, and Berman (2008) showed that the reward-

related blood-oxygen-level-dependent signal increases with lower basal level of dopamine in 

older individuals, in contrast with the young. The authors explained that this may be due to 

alterations of prefrontal modulation upon striatal dopamine regions. The increase of 

dopamine synthesis in older adults, therefore, may reduce the reward-induced activation. 

However, it was found that the higher level of synthesis in older adults is not significantly 

beneficial for cognitive functions associated with dopamine (Berry et al., 2016).

In sum, the associations between basal dopamine signals and endogenous synthesis of 

dopamine in cannabis users differ between younger and older individuals. In the older 

population, the reduction of dopamine synthesis due to cannabis use (Bloomfield et al., 

2014) may be counterbalanced with the adaptive changes in the aging dopamine system. 

Although Dreher et al. (2008) and Berry et al. (2016) noted that the higher basal level of 

dopamine may not be beneficial for older adults, no expectations can be made on the 

changes of dopamine functions in older cannabis users due to the lack of previous studies. 

Further studies are required to discuss the trajectory of dopamine activity and the behaviors 

in older cannabis users to clarify the consequences in molecular and behavioral levels.

The serotonin system

Endocannabinoid receptors are highly expressed in the dorsal raphe nucleus where serotonin 

originates (Haring, Marsicano, Lutz, & Monory, 2007) and in the prefrontal cortex that 

regulates the activity of serotonin neurons in the dorsal raphe nucleus (Jankowski & Sesack, 
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2004). Cannabinoids modulate serotonin terminals via quadratic relationship, such that the 

repeated use of lower-dose (WIN 55,212-2 of 0.2 mg/kg) cannabinoids appears to enhance 

the activity of serotonin neurons, but a higher dose (WIN 55,212-2 of 2.0 mg/kg) decreases 

it (Bambico, Katz, Debonnel, & Gobbi, 2007). In normal aging, the serotonin system shows 

reduced receptor binding and losses in related functions, such as sleep and its quality 

(Meltzer et al., 1998).

Serotonin activity is associated with depressive disorders (Blier & de Montigny, 1999; 

Levinson, 2006), and cannabis use has been related to the increased risk toward the 

development of depression (Degenhardt, Hall, & Lynskey, 2003). For example, Hill, Sun, 

Tse, and Gorzalka (2006) showed that chronic cannabinoid treatment altered the activity of 

serotonin receptors in a manner similar to that reported in depression. The pathological 

effect of depression appears to resemble, and even accelerate, molecular and behavioral 

aging (Wolkowitz, Epel, Reus, & Mellon, 2010). Within cannabis users (> 50 years) who 

have major depressive episodes, their frequency of cannabis use showed a positive 

correlation with the odds of suicidal thoughts (Choi, DiNitto, Marti et al., 2016). Together, 

these findings indicate that older cannabis users may have disruptions in the serotonin 

system due to the effects of cannabis, which can lead to an increase in the vulnerability 

toward major depressive disorders or deeper symptoms within depression (i.e., suicidal 

ideation).

The acetylcholine system

The endocannabinoid and the acetylcholine systems closely interact with each other, as 

extensively reviewed in Oz, Al Kury, Keun-Hang, Mahgoub, and Galadari (2014). 

Endocannabinoids can bidirectionally modulate the release of acetylcholine (Degroot & 

Nomikos, 2007). The CB1R antagonist seems to increase the release of acetylcholine in the 

hippocampus (Degroot et al., 2006). An acute application of a CB1R agonist may also 

increase the release of acetylcholine (Acquas, Pisanu, Marrocu, & Di Chiara, 2000) via 

modulating μ-opioid and D1 dopamine receptors (Pisanu, Acquas, Fenu, & Di Chiara, 

2006). In rats, this effect was found to be biphasic with a higher dose (5 mg/kg) of a CB1R 

agonist inhibiting acetylcholine projections from the hippocampus but facilitating with 

lower-dose (0.5 mg/kg) CB1R agonists (Tzavara, Wade, & Nomikos, 2003), and the 

inhibition of acetylcholine release due to higher-dose THC does not diminish after chronic 

administration (Tzavara et al., 2003). This suggests that the chronic use of cannabis has 

prolonged influences in reducing the acetylcholine signals in the brain (Carta, Nava, & 

Gessa, 1998).

In aging humans, the nucleus basalis of Meynert, a predominant origin of acetylcholine 

innervations, shows significant cell loss (Szenborn, 1993), which leads to the reduction of 

the activity in the acetylcholine system correlating with age-related cognitive impairments, 

particularly memory functions (Schliebs & Arendt, 2011). Studies testing spatial memory in 

rodents suggest that memory impairments due to cannabis use appear to be attributable to 

the hypo-activity of the acetylcholine system (i.e., the reduction of acetylcholine 

concentration; Mishima, Egashira, Matsumoto, Iwasaki, & Fujiwara, 2002; Nava, Carta, 

Battasi, & Gessa, 2000; Nava, Carta, Colombo, & Gessa, 2001; Varvel, Hamm, Martin, & 
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Lichtman, 2001). Applying a CB1R agonist caused memory impairments in rodents, and the 

deficit was normalized after using an acetylcholinesterase inhibitor (Goonawardena, 

Robinson, Hampson, & Riedel, 2010; Mishima et al., 2002). The effect on the acetylcholine 

system may be more important for memory impairments due to cannabis use than the direct 

alterations in CB1R signals, because Robinson et al. (2010) showed that the negative impact 

of WIN 55,212-2 (a CB1R agonist) upon memory is reversed by acetylcholinesterase 

inhibitors in rodents, but not CB1R blockers. In humans, Theunissen et al. (2015) found that 

applying an acetylcholinesterase inhibitor attenuates verbal memory impairment following 

the acute use of cannabis in occasional cannabis users. Further, a recent pilot study showed 

an improving trend of attention functions in humans with cannabis abuse/dependence 

defined in the DSM-IV, using an acetylcholinesterase inhibitor (Sugarman, De Aquino, 

Poling, & Sofuoglu, 2019). This suggests that some of the memory impairments due to 

cannabis use may be modulated by the functionality of the acetylcholine system in humans. 

Thus, chronic use of cannabis may accelerate the cognitive functional loss in older adults at 

a faster pace than in typical aging. To note, cannabis use is found to be highly comorbid with 

tobacco use (Goodwin et al., 2018), and the effect of cannabis use seems to interact with that 

of tobacco use in verbal learning and memory functions (Schuster, Crane, Mermelstein, & 

Gonzalez, 2015). Since nicotine contains the nicotinic acetylcholine receptor agonist, studies 

are needed to disentangle the interactive effects between cannabis and nicotine use in older 

humans.

The norepinephrine system

Norepinephrine is a neurotransmitter predominantly involved in the arousal and activity of 

the sympathetic nervous system, in addition to stress response, attention, and memory 

functions (Berridge & Waterhouse, 2003; Sara, 2009). Its innervations mainly originate from 

the locus coeruleus in the brainstem (Kandel et al., 2000). The endocannabinoid and the 

norepinephrine systems functionally interact with each other; the direct application of the 

cannabinoid to rats seems to disinhibit and consequently increase the activity of 

norepinephrine neurons (Muntoni et al., 2006) and increase the release of norepinephrine in 

the frontal cortex (Oropeza, Page, & Van Bockstaele, 2005). Further, endocannabinoid 

neurons are co-localized with norepinephrine neurons within the nucleus accumbens, 

nucleus tractus solitarius (Carvalho, Mackie, & Van Bockstaele, 2010), frontal cortex (Page, 

Oropeza, & Van Bockstaele, 2008), and locus coeruleus (Scavone, Mackie, & Van 

Bockstaele, 2010). In healthy older adults, norepinephrine level appears to decline in the 

basal forebrain and cortex, but not significantly in the hippocampus (Luine et al., 1990). In 

the human locus coeruleus (aged 49–98 years), however, the absolute number of neurons 

does not seem to decrease due to aging (Ohm, Busch, & Bohl, 1997). In male rats, while 

basal levels of norepinephrine in plasma remains unchanged, an increase in levels in 

response to external stress seems to be significantly higher in the older than younger adult 

rats (Mabry, Gold, & McCarty, 1995). In humans, the responsivity of the norepinephrine 

system toward external application of epinephrine agonists or antagonists appears to increase 

in normal aging (Peskind et al., 1995).

The endocannabinoid and norepinephrine systems interact in relation to stress response via 

the HPA axis (Gorzalka, Hill, & Hillard, 2008; Hill & McEwen, 2010; Hill et al., 2010; 
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Morilak et al., 2005), as reported in a more extensive review on this topic and well-

documented by Scavone, Sterling, and Van Bockstaele (2013). Chronic application of a 

CB1R agonist (CP-55,940, 1 mg/kg for rats) is known to alter the baseline activity of the 

HPA axis (Corchero, Fuentes, & Manzanares, 1999), and the effect may be attenuated by 

norepinephrine antagonists (the effect of HU-210 of 0.1 mg/kg reduced by prazosin of 1 

mg/kg or propranolol 2.5 mg/kg (McLaughlin, Hill, & Gorzalka, 2009). Interestingly, 

administering a CB1R agonist increased the transient release of norepinephrine, but 

prevented the release of norepinephrine in response to external stress (Reyes et al., 2012), 

indicating that cannabinoid intake can bidirectionally modulate the activity of the 

norepinephrine system. This is in line with changes found in chronic cannabis users, which 

show disrupted HPA axis function, so that it is hyperactive during baseline, yet shows 

attenuated dynamic response (i.e., reduction in on-demand responsivity). However, the age-

related increase of responsivity to external stress in the norepinephrine system seems to be 

the opposite compared to the changes in chronic cannabis users. Thus, chronic cannabis use 

in older adults may have some counterbalancing effect in the norepinephrine system.

In terms of cognitive functions, the norepinephrine system is important in memory 

processing (Chamberlain, Muller, Blackwell, Robbins, & Sahakian, 2006; Murchison et al., 

2004; Przybyslawski, Roullet, & Sara, 1999; Tully & Bolshakov, 2010). Using older rats 

(22–25 months old), Luo et al. (2015) found that downregulation of norepinephrine levels in 

the hippocampus correlates with impaired emotional memory due to aging, which is 

recovered by supplementing norepinephrine. Similarly, Mei et al. (2015) showed that the 

depletion of norepinephrine can impair spatial memory in younger rats (3 months old) to the 

level of the older rats (30 months old). Additionally, memory impairment in the older rats 

was improved by applying exogenous norepinephrine. This indicates that the regulation of 

norepinephrine has important implications in memory functions of older adults, and its 

application may be protective against characteristic memory loss due to aging. Based on the 

fact that cannabis appears to increase circulating norepinephrine levels and reduce on-

demand levels, studies are needed to determine how cannabis may lead to improvements in 

memory in older adults.

Summary

Although chronic cannabis use primarily affects the endocannabinoid system, its impact can 

be widespread across multiple neurotransmitter systems owing to the ubiquity of CB1Rs. 

Furthermore, presynaptic CB1Rs closely interact with other neurotransmitter systems by 

modulating the level of neurochemical signaling. This section described six neurotransmitter 

systems that are affected by both aging and cannabis use. The literature describes differential 

relationships, such as counteracting in the density of receptors (i.e., endocannabinoid) or 

level of synthesis (i.e., dopamine), or biphasic changes (i.e., norepinephrine). In addition, the 

interactive effects of cannabis and other neurotransmitter systems on cognitive functions, 

particularly memory, vary. For example, cannabis use induces a decrease in acetylcholine 

levels that leads to memory impairment, while cannabis upregulates the basal level of 

norepinephrine that leads to memory improvement. In sum, cannabis affects multiple 

neurotransmitter systems such that chronic use can potentially decrease the flexibility of 

neurotransmitter regulation.
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Interactive effects of cannabis use and aging on neural and synaptic 

plasticity

The endocannabinoid system has fundamental functions in the mediation of neurogenesis 

and synaptic plasticity especially in the hippocampus (Harkany, Mackie, & Doherty, 2008; 

Heifets & Castillo, 2009; Mulder et al., 2008), as reviewed by Heifets and Castillo (2009). 

Neurogenesis, particularly in the hippocampus, plays a role in encoding new information 

and forgetting past memories (Akers et al., 2014). The mechanism of neurogenesis involves 

the activity of nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF; 

Conner et al., 2009; Park & Poo, 2013; Rossi et al., 2006) and its interactions with the 

endocannabinoid system (Ferreira, Ribeiro, Rodrigues, Sebastiao, & Xapelli, 2018; Luongo, 

Maione, & Di Marzo, 2014; Keimpema, Hökfelt, Harkany, & Doherty 2014). The 

endocannabinoid signal appears to be functionally similar and temporally concurrent with 

that produced by the BDNF system. During neurogenesis, BDNF facilitates intracellular 

production of endocannabinoids and the expression of cannabinoid receptors (Lemtiri-

Chlieh & Levine, 2010; Maison, Walker, Walsh, Williams, & Doherty, 2009). The initiated 

endocannabinoid signals may control growth, migration, and targeting of neuronal cells 

along with BDNF signaling (Berghuis et al., 2005; Mulder et al., 2008) and the survival of 

neurons (Galve-Roperh, Aguado, Palazuelos, & Guzman, 2008). Thus, activation of the 

endocannabinoid system is critical in the general process of neurogenesis (Aguado et al., 

2005) and synaptogenesis (Berghuis et al., 2007).

The effect of external THC administration on neurogenesis seems to depend on two major 

factors: chronicity of administration and dose. Acute application (5 or 10 mg/kg) of THC 

increases the intracellular signaling of phosphorylated cAMP response element binding 

protein (CREB) that is associated with neurogenesis in the rats’ granule cell layer of the 

cerebellum (Casu et al., 2005), but repeated/chronic use of a low-dose CB1R agonist (i.e., 

THC) appears to increase the same signal in the nucleus accumbens (1.5 mg/kg of THC for 

7 days), the hippocampus (0.1 mg/kg of HU 210 for 10 days), and the prefrontal cortex (2.0 

mg/kg of THC every 48 hours for 21 days) of rats (Butovsky et al., 2005; ElBatsh, Moklas, 

Marsden, & Kendall, 2012; Jiang et al., 2005). Finally, studies using rodents’ brains show 

that while low-dose THC (3 mg/kg for 28 days) was found beneficial for neurogenesis 

(Bilkei-Gorzo et al., 2017), a higher dose or increasing doses seem to be ineffective 

(increasing from 20 to 80 mg/kg for 3 weeks; Kochman, dos Santos, Fornal, & Jacobs, 2006) 

or even produce impairments in hippocampal synaptogenesis (10 mg/kg for 7 days; Fan, 

Yang, Zhang, & Chen, 2010). The translation of the aforementioned results using animals to 

the case of humans, however, requires caution because of not only the systematic differences 

but also that animal studies lack the qualitative analyses on complex changes in cognitive 

functions after applying THC. Prenderville, Kelly, and Downer (2015) introduced more 

relevant examples in this area. Calabrese and Rubio-Casillas (2018) and Sarne, Asaf, 

Fishbein, Gafni, and Keren (2011) provided comprehensive perspectives on how chronicity 

and dose can render differential effects in cellular and functional levels.

The endocannabinoid system is an important mediator of synaptic plasticity in the brain. As 

mentioned earlier, endocannabinoids are ubiquitous retrograde ligands, which release upon 
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postsynaptic excitation, then reduce the presynaptic release of various neurotransmitters, 

thereby modulating short-term synaptic plasticity (Alger, 2002; Katona and Freund, 2012; 

Pertwee, 2008). Further, endocannabinoids are involved in prolonged synaptic plasticity 

largely via long-term depression (LTD) by inhibiting presynaptic glutamatergic signaling 

shortly after it was received in the postsynaptic neuron (Ghosh, Reuveni, Zidan, Lamprecht, 

& Barkai, 2018; Heifets & Castillo, 2009). The endocannabinoid system is also implicated 

in modulating long-term potentiation (LTP) induced by a fast train of presynaptic excitatory 

signals. This modulation can be primed by external cannabinoids. Upon administration, the 

resulting cannabinoid signals may exert retrograde inhibition upon excitatory synapses to 

reduce LTP (Davies, Pertwee, & Riedel, 2002) or selectively facilitate the synaptic LTP by 

inhibiting synapses that oppose the excitatory connections (Chevaleyre, Takahashi, & 

Castillo, 2006). In the hippocampus, studies using mice showed that not having CB1R 

relates to higher capability to strengthen synaptic connections and form new memories 

(Bohme, Laville, Ledent, Parmentier, & Imperato, 1999) and being protective against 

neuronal damages due to ethanol (Subbanna, Shivakumar, Psychoyos, Xie, & 

Basavarajappa, 2013). Slanina, Roberto, and Schweitzer (2005) also showed that blocking 

CB1R enhances LTP by lowering activation thresholds using rat hippocampal slices. Thus, 

endocannabinoid signaling may have a double-edge effect in neural and synaptic plasticity 

by both increasing neurogenesis but also disrupting synaptic transmission.

The processes of neurogenesis and synaptogenesis are intact in older adults (Burke & 

Barnes, 2006), albeit downregulated (Kuhn et al., 1996; Luebke et al., 2004; Manganas et 

al., 2007; Martin-Pena et al., 2006; Olariu, Cleaver, & Cameron, 2007; Peters et al., 2008; 

Petralia et al., 2014). Activity of BDNF, an important factor for the two processes, is 

significantly affected in normal aging. While the decrease of BDNF concentration is 

restricted to the midbrain, the expression of BDNF receptors that initiates the signals is 

reduced in widespread areas, as discovered in rats (Croll, Ip, Lindsay, & Wiegand, 1998). In 

rats’ hippocampus, levels of BDNF mRNA appear to be stable in normal aging (Lapchak et 

al., 1993), and Katoh-Semba and colleagues showed that the level of BDNF in hippocampus 

is upregulated in older rats and mice (Katoh-Semba, Semba, Takeuchi, & Kato, 1998). It is 

noteworthy that not all subdivisions of the hippocampus undergo age-related neuronal loss 

(West, 1993). While physiological properties of the healthy older adults’ hippocampus are 

largely preserved (Burke & Barnes, 2006; Lister & Barnes, 2009), changes in synapses were 

more prominent. The excitatory postsynaptic field potential in the perforant path of the 

hippocampus seems to decrease in amplitude in older rats (Barnes & McNaughton, 1980); 

therefore, the number of synapses appears to be reduced by normal aging (Geinisman, de 

Toledo-Morrell, Morrell, Persina, & Rossi, 1992). In terms of synaptic plasticity, normal 

aging contributes to a lower threshold for LTD while causing the reversal of LTP to be 

easier, thus increasing the ratio of LTD over LTP in the hippocampus (Norris, Korol, & 

Foster, 1996). Further, the threshold for inducing LTP in the hippocampus increases, making 

LTP more difficult to happen (Barnes, Rao, & Houston, 2000), leading to reductions in 

encoding and consolidation efficiency and deletion of past memories in the older population. 

Indeed, behaviorally, the tendency to develop more LTD is associated with impaired 

memory functions (Foster & Kumar, 2007).
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In normal aging, the most important age-related neurodegeneration may influence 

generation and maintenance of hippocampal cell synapses versus neurogenesis. It has been 

widely reported that to overcome this loss in hippocampal function, compensatory 

mechanisms through the recruitment of prefrontal regions are utilized in older adults 

(Bartsch & Wulff, 2015; Dennis, Daselaar, & Cabeza, 2007; Gutchess et al., 2005; Miller et 

al., 2008; Persson et al., 2006). However, this compensation does not seem as efficacious as 

relying on hippocampal activity for memory encoding (Miller et al., 2008; Persson et al., 

2006). This suggests that maximizing the synaptic plasticity in the hippocampus during 

memory processing can be beneficial for older adults to attenuate potential functional 

decline.

Recent studies using old rodents reported that long-term low-dose exposure to THC (3 

mg/kg for 28 days) enhances the synaptogenesis and the level of dendritic spine density in 

hippocampal neurons of 12- to 18-month-old mice (Bilkei-Gorzo et al., 2017), and even a 

single injection of the low-dose THC (0.002 mg/kg) may normalize memory and learning 

impairment of 24-month-old mice (Sarne et al., 2018). The mechanism of action in the 

above-mentioned benefits in synaptogenesis is dependent on the agonistic effect of 

endocannabinoid upon BDNF signaling (Berghuis et al., 2005; Mulder et al., 2008). 

However, D’Souza, Pittman, Perry, and Simen (2009) found lower baseline BDNF without 

an expected BDNF increase following THC administration in human cannabis users 

diagnosed with cannabis abuse disorder. On the other hand, Angelucci and colleagues did 

not find the reduction of BDNF in cannabis-dependent users, but reported that the NGF 

decreased in concentration (Angelucci et al., 2008). Regular use of high-dose THC (10 

mg/kg for 7 days), which is more in line with typical human levels of consumption, also 

seems to reduce intracellular signals and synaptic currents gated by glutamatergic receptors, 

consequently decreasing the hippocampal LTP in rodents (Fan et al., 2010; Hoffman, Oz, 

Yang, Lichtman, & Lupica, 2007). From these, it can be presumed that older cannabis users 

may have reduced neuronal and synaptic plasticity due to altered baseline capability for 

synaptogenesis and that further use of cannabis in a controlled dose might not be beneficial 

due to potential tolerance in both endocannabinoid and BDNF systems.

To summarize, neurogenesis and synaptogenesis are cellular processes important in the 

preservation of brain function. Synaptogenesis degrades with age and leads to the loss of 

memory functions. The literature demonstrates an important regulatory role of 

endocannabinoid signaling in memory function such that downregulation of the 

endocannabinoid system caused by chronic cannabis use can impair memory similar to 

aging. On the other hand, low-dose THC aids hippocampal synaptogenesis in rodents.

Effects of cannabis use and aging on brain structures, networks, and 

behaviors

Macroscopic effects of normal aging have been extensively documented using behavioral 

tasks coupled with neuroimaging techniques that can observe brain structures and networks 

associated with specific functions. Two of the most distinct structural changes in the brain as 

a result of aging relate to the hippocampus and the prefrontal cortex. Notably, brain regions, 
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networks, and functions predominantly altered by normal aging overlap with those affected 

by chronic cannabis use (Broyd, van Hell, Beale, Yucel, & Solowij, 2016) because these 

regions are rich with cannabinoid receptors (Lorenzetti, Solowij, & Yucel, 2016).

As already mentioned in detail in the above sections, gray matter loss in the hippocampus is 

one of the primary degenerations associated with normal aging (Driscoll et al., 2006), with 

its degenerative pace increasing with age (Raz, Rodrigue, Head, Kennedy, & Acker, 2004). 

Hippocampal decline is directly related to deficits in learning and memory (Driscoll et al., 

2006), as described above. Gray and white matter in the prefrontal cortex seem to be highly 

susceptible to age-related degenerations (Allen, Bruss, Brown, & Damasio, 2005; Gunning-

Dixon et al., 2009; Raz et al., 1997; Salat, Kaye, & Janowsky, 1999; Salat, Kaye, & 

Janowsky, 2001). Among brain networks, the prefrontal cortex and frontoparietal network 

develop later in life, with the frontoparietal network being more susceptible toward 

degeneration with increasing age (Douaud et al., 2014; Zhang et al., 2014). Prefrontal cortex 

and frontoparietal network functions, such as executive function (Miller & Cohen, 2001), 

most vulnerable to normal aging (Buckner, 2004; Grady, 2008; Salthouse, 2009). Executive 

function includes performance in external tasks, inhibition, attention, cognitive flexibility, 

and working memory (Braun et al., 2015; McNab et al., 2008; Miller and Cohen, 2001; 

Schulze et al., 2011). The integrity of frontoparietal network fibers are critical in tasks 

related to control and cognitive flexibility, which also deteriorate with aging (Fjell et al., 

2016; Gallen, Turner, Adnan, & D’Esposito, 2016; Gold et al., 2010).

In terms of the effects of cannabis on brain structure, although some cross-sectional studies 

found no difference in chronic cannabis users (Koenders et al., 2017; Matochik, Eldreth, 

Cadet, & Bolla, 2005; Tzilos et al., 2005), the majority of studies report that hippocampal 

volume is reduced in both chronic and light users (Chye et al., 2017; Cousijn et al., 2012; 

Demirakca et al., 2011; Orr, Paschall, & Banich, 2016; Yücel et al., 2008). White matter 

connected to the hippocampus also show decreases in heavy cannabis users (Zalesky et al., 

2012). Significant memory deficits were found in chronic cannabis users (Bolla, Brown, 

Eldreth, Tate, & Cadet, 2002; Solowij and Battisti, 2008), with memory loss being one of the 

most robust functional findings in both acute and chronic cannabis users (Broyd et al., 

2016). Cannabis users may compensate for memory impairments by recruiting 

parahippocampal activity during memory encoding. This tendency was found greater in 

higher-frequency cannabis users than lower-frequency users (Becker, Wagner, Gouzoulis-

Mayfrank, Spuentrup, & Daumann, 2010). A recent study in older adults with a history of 

long-term cannabis use added that while most parts of the hippocampus exhibit gray matter 

loss, neocortical regions surrounding the hippocampus (i.e., entorhinal, perirhinal, and 

parahippocampal cortices) do not (Burggren et al., 2018). Thus, it appears that the initial 

compensatory mechanism for the hippocampal decline due to cannabis use involves para-

hippocampal regions that are relatively preserved.

Chronic cannabis users have also demonstrated gray matter loss in the orbitofrontal cortex 

(Arnone et al., 2008; Filbey et al., 2014; Gruber, Silveri, Dahlgren, & Yurgelun-Todd, 2011). 

They also show white matter degenerations in frontal regions (Brumback, Castro, Jacobus, 

& Tapert, 2016), but these results are less consistent. Jakabek, Yücel, Lorenzetti, and 

Solowij (2016) have shown that the cannabis-related changes in the integrity of white matter 
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may be complicated by the aging effect, so that the diffusivity within white matter increases 

toward different directions due to cannabis use and aging. This partly explains the 

inconsistency of the results on white matter changes due to chronic cannabis use. Cannabis 

users show disruptions in the frontoparietal functional network (Chang, Yakupov, Cloak, & 

Ernst, 2006). Resting-state functional connectivity in prefrontal regions was found to be 

hyperactive in cannabis users (Filbey et al., 2014; Filbey & Yezhuvath, 2013). During 

behavioral tasks, cannabis users have shown hyperconnectivity in the frontoparietal network 

(Harding et al., 2012), with decreased network activation during a visuomotor task, 

suggesting that the functional connectivity changes may imply compensatory recruitment to 

maintain task performance.

These studies show that cannabis-related macroscopic changes in gray matter and functional 

networks are concordant with age-related structural and functional alterations. Thus, it is 

likely that chronic cannabis use coupled with normal aging may increase vulnerability 

toward degenerative disorders. In addition, prefrontal degeneration in older adult users due 

to aging (Fjell et al., 2016) could lead to a greater imbalance between prefrontal cognitive 

control and reward response. In the Impaired Response Inhibition and Salience Attribution 

model, prefrontal dysfunction could lead to exaggerated craving-related attention (i.e., 

biased attention) that is unmatched by prefrontal cognitive control (Goldstein and Volkow, 

2011). This imbalance has been noted as a key mechanism behind substance use disorders, 

including cannabis use disorder (Volkow, Wang, Fowler, Tomasi, & Telang, 2011; Zehra et 

al., 2019). Some effective treatment strategies in cannabis use disorder, such as cognitive 

behavioral therapy and contingency management (Sherman & McRae-Clark, 2016), are 

indeed dependent on prefrontal cortical functions, such as executive function (Mohlman & 

Gorman, 2005; Takeuchi et al., 2013). Although a longitudinal study on middle-age to older 

adults has shown that the integrity of executive function may not necessarily decrease due to 

the length of cannabis use (Auer et al., 2016), aging may still have a detrimental effect (Fjell 

et al., 2016). Due to these aging effects on prefrontal cortical functions, response to 

treatment in older chronic cannabis users may be more challenging.

Finally, it is noteworthy that the functional loss in the hippocampus in older adults induces 

an alternative mechanism in memory processing, recruiting prefrontal neurons, and 

establishing the new functional connectivity between the hippocampus and prefrontal cortex 

(Bartsch & Wulff, 2015; Dennis et al., 2007; Gutchess et al., 2005; Miller et al., 2008; 

Persson et al., 2006). This compensation in chronic cannabis users, however, may be less 

efficient, because both the prefrontal cortex and hippocampus experience faster degeneration 

than in healthy older adults. In other words, chronic cannabis use in older adults may reduce 

the capacity of functional scaffolding (Park & Reuter-Lorenz, 2009) that can aid in 

sustaining memory performance.

Cannabis use in age-related neurodegenerative diseases

Dementia is one of the most prevalent age-related neurodegenerative disorders. In 2010, 

4.7% of those 60 years or older worldwide were diagnosed with dementia (Sosa-Ortiz, 

Acosta-Castillo, & Prince, 2012). Alzheimer’s disease is the most common form of 

dementia, populating around 70% of dementia cases (Reitz, Brayne, & Mayeux, 2011). 
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Some of its behavioral symptoms include progressive loss of episodic memory, difficulties in 

daily life and learning process, and psychological aspects such as depression (Amieva et al., 

2008).

There has been an extensive amount of studies on the cause and treatment for Alzheimer’s 

disease, although a clear understanding has not yet been fully determined. The molecular-

level pathology of Alzheimer’s disease has been identified by an increase in specific 

molecules in the brain (i.e., neurofibrillary tangles and amyloid-beta plaques; Alzheimer, 

1911; Jack et al., 2016). Kinney, Bemiller, Murtishaw, Leisgang, and Lamb (2018) also 

noted that the prolonged inflammatory responses in the brain may be also an important 

underlying mechanism of the onset of Alzheimer’s disease. Chronic neuroinflammation 

relates to the neuronal damages characteristic to Alzheimer’s disease (Akiyama et al., 2000; 

Heneka et al., 2015). In particular, a distinctive cellular feature in Alzheimer’s disease is 

hippocampal cell loss (Apostolova et al., 2006; Fjell et al., 2014), which correlates with 

memory impairment in healthy older adults (Golomb et al., 1993; Golomb et al., 1996).

Medicinal use of cannabis may be effective in alleviating neuroinflammation found in 

Alzheimer’s disease. Using low-dose synthetic cannabinoid for a short period of time (WIN 

55,212-2 0.01 mg, 7 days) prevented inflammatory responses in rodents’ brains affected by 

Alzheimer’s disease (Ramirez, Blazquez, Gomez del Pulgar, Guzman, & de Ceballos, 2005). 

Low-dose administration of synthetic cannabinoid for a longer time (JWH-133 0.2 mg/kg, 4 

months) was also effective in reducing neuroinflammatory responses (Martin-Moreno et al., 

2012). Importantly, using naturally available THC and cannabidiol (CBD) together showed 

efficacy in preserving memory functions in mouse model of Alzheimer’s disease. A single 

application of an ultra-low dose (0.002 mg/kg) of THC was also found to be protective 

against artificially induced inflammatory responses in mice (Fishbein-Kaminietsky, Gafni, & 

Sarne, 2014). Such benefits of cannabinoids may be due to its antioxidative effects (Bonnet 

& Marchalant, 2015; Carracedo et al., 2004).

Cannabis also showed therapeutic effects in reversing functional and structural damages in 

the hippocampus. Again, low-dose administration (0.1 mg/kg) of synthetic cannabinoids for 

a short time (10 days) was found to promote neurogenesis in the hippocampus (Jiang et al., 

2005). Both acute (7 days) and chronic (21 days) applications of low-dose (1.5 mg/kg) THC 

was also reported to facilitate steps in neurogenesis (Suliman, Taib, Moklas, & Basir, 2018). 

The similar treatment using THC (3 mg/kg) for a longer time (28 days) reversed age-related 

deficits in learning and memory as well as enhancing synaptogenesis in the hippocampus 

(Bilkei-Gorzo et al., 2017). Even using a single injection of ultra-low-dose THC (0.002 

mg/kg) in mice was capable of increasing tissue volume of the posterior hippocampus, 

which is involved in spatial memory and learning functions (Sarne et al., 2018). Despite the 

discrepancies in dosage, these findings suggest that repeated use of controlled low-dose 

cannabinoids, synthetic or natural, might provide a preventive effect on the pathologies of 

Alzheimer’s disease, particularly in regard to reducing neuroinflammatory responses and 

facilitating hippocampal neurogenesis (Marchalant, Baranger, Wenk, Khrestchatisky, & 

Rivera, 2012). It is noteworthy that all of these findings were in rodents and potential 

contributions of the individual cannabinoids (e.g., THC, CBD) and their entourage effects in 

human subjects are yet to be elucidated.
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Parkinson’s disease is another prevalent neurodegenerative disorder, occurring in 1% of 

adults older than 60 years of age (Erkkinen, Kim, & Geschwind, 2018). It is characterized as 

significant loss in dopamine cells with pronounced deficits in motor functions, and the most 

severe loss of neurons occurs in the substantia nigra, where dopamine projections targeting 

upper motor system originate (Alexander, DeLong, & Strick, 1986; Ross et al., 2004). 

Although the degeneration in the dopamine system is not enough to fully explain the 

pathology (Lang & Obeso, 2004), supplementing the precursor of dopamine (L-DOPA) or 

dopamine agonist alleviates some of the symptoms (Cools, 2006; Hornykiewicz, 1974). 

Thus, treatment of Parkinson’s disease has been focused on replenishing dopamine signals 

in the brain and enhance the associated functions, particularly those that are motor-related.

Because THC increases dopamine release in the striatum, it is worth considering its 

therapeutic potential in Parkinson’s disease (Bloomfield, Ashok, Volkow, & Howes, 2016; 

Bossong et al., 2009; Stokes et al., 2010). In a rat model, daily administration of THC for a 

medium length of time (3 mg/kg for 2 weeks) was found to reduce the pace of dopamine cell 

death (Lastres-Becker, Molina-Holgado, Ramos, Mechoulam, & Fernandez-Ruiz, 2005). 

Garcia-Arencibia et al. (2007) found in rats that a synthetic cannabinoid reversed the loss of 

dopamine signals (HU-308, 5 mg/kg). Further, in a human cell culture model, a single 

injection of THC (0.01 mM) was found to result in neuroprotective effects to cells against 

toxins that induce Parkinson’s disease via upregulating CB1R (Carroll, Zeissler, Hanemann, 

& Zajicek, 2012). Animal models using marmosets (van Vliet, Vanwersch, Jongsma, Olivier, 

& Philippens, 2008) and drosophila (Jimenez-Del-Rio, Daza-Restrepo, & Velez-Pardo, 

2008) further indicated that cannabinoid agonists may recover motor functions in 

Parkinson’s disease.

Despite the neuroprotective effect of THC or the other cannabinoids in Parkinson’s disease, 

it is essential to note that most of the previous studies were regarding acute damages that 

induce Parkinsonian symptoms and target the dopamine system only. A real-life model of 

Parkinson’s disease takes lifelong accumulated damages and compensations in multiple 

systems (Dauer & Przedborski, 2003). Furthermore, an important risk to note is that 

dopamine therapy for Parkinson’s disease increases susceptibility toward development of 

impulse control disorder, which is a behavioral addiction that relates to pathological 

gambling or compulsive behaviors reported in Parkinson’s disease patients (Weintraub et al., 

2010). Impulse control disorder shares pathophysiological features with substance use 

disorder, especially in the loss of sensitivity in reward pathways (Brewer & Potenza, 2008). 

This may occur because of an imbalance in Parkinson’s disease patients’ functions of the 

ventral striatum, which underlies reward processing, and the dorsal striatum that underlies 

motor control due to dopamine agonist “flooding” of the reward pathway (Voon, Mehta, & 

Hallett, 2011). It is reported that chronic use of THC upregulates BDNF in ventral tegmental 

area and nucleus accumbens, which may result in enhanced reward response (Butovsky et 

al., 2005). Thus, the application of cannabinoids for treating the human model of 

Parkinson’s disease shows great promise, although more research is needed.

This section focused on Alzheimer’s disease and Parkinson’s disease given their high 

prevalence rate (Erkkinen et al., 2018). In the United States, around 9.74% of the older 

adults aged older than 70 years have Alzheimer’s disease (Plassman et al., 2007), and 
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around 1% to 2% of those older than 65 years have Parkinson’s disease (Kowal, Dall, 

Chakrabarti, Storm, & Jain, 2013). Because of their prevalence, there is greater literature on 

these two diseases relative to other neurodegenerative diseases. FTD is another form of 

dementia common in those younger than the age of 60 (Ratnavalli, Brayne, Dawson, & 

Hodges, 2002; Seelaar, Rohrer, Pijnenburg, Fox, & van Swieten, 2011). There are two 

studies on its potential treatment via activating CB2R in peripheral nervous system on 

transgenic mice that show characteristics of FTD (Espejo-Porras et al., 2015, 2019). They 

found that the mouse model of the disorder shows increased concentration of CB2R in the 

spinal cord. However, further studies are needed to confirm that modulating CB2R will be 

effective to mitigate changes in CNS. Cannabinoids have also been tested to treat some 

symptoms of Lewy body dementia. Cannabidiol (CBD) may be effective in reducing 

psychotic symptoms in Lewy body dementia (Zuardi et al., 2009), as well as alleviating 

ischemic, perfusion-related damages in vascular dementia (Roman, 2003). Mechanisms for 

these effects may be due to alleviation of autophagy and inflammatory responses induced by 

neurovascular damages that can then exert neuroprotective effects (Wang et al., 2018).

Effects beyond THC and CB1Rs

Given that the majority of the literature has described the effects of THC, we largely focused 

on the effects of THC and the activation of CB1R in older cannabis users. However, THC is 

not the only compound in cannabis that has known effects on the brain. There is also 

emerging literature on CBD, an allosteric antagonist of CB1R and CB2R with lower binding 

affinity than THC that exhibits no psychoactive properties (Pertwee, 2008). CBD may 

counterbalance some of the undesired effects of THC (Hermann & Schneider, 2012). Thus, 

CBD may have a potential use in reversing THC-induced damages in older adults, along 

with other therapeutic benefits. At the molecular level, despite its relatively lower affinity to 

cannabinoid receptors, CBD is known to significantly antagonize the effect of THC 

(Pertwee, 2008). For example, cannabis users who predominantly have residual THC seem 

to show higher psychotic symptoms that resemble schizophrenia (Morgan and Curran, 

2008), while those with more CBD show less cognitive impairment (Morgan, Schafer, 

Freeman, & Curran, 2010). In addition, chronic THC administration was shown to induce 

hippocampal atrophy and cognitive loss, while CBD showed a protective effect against 

hippocampal degeneration (Demirakca et al., 2011; Lorenzetti et al., 2016; Yücel et al., 

2016). CBD and THC have “entourage effects” such that pretreating CBD before THC can 

increase the remaining concentration of THC by attenuating its metabolism in the brain 

(Klein et al., 2011). However, when the behavioral effect was measured per separate use of 

THC or CBD, a single administration of THC was found to facilitate anxiety, intoxication, 

and positive psychotic effects compared to CBD (Fusar-Poli et al., 2009; Winton-Brown et 

al., 2011). In addition, CBD shows the opposite activity patterns during various cognitive 

tasks in comparison to THC (Bhattacharyya et al., 2010).

As reviewed above, preclinical studies show that a controlled use of THC may enhance 

neuroprotection and functional compensation in the hippocampus, but CBD alone can exert 

therapeutic effects, as reviewed in Chye, Christensen, Solowij, and Yücel (2019). CBD was 

found to reduce the inflammatory responses, protect against cell death (Castillo, Tolón, 

Fernández-Ruiz, Romero, & Martinez-Orgado, 2010; El-Remessy et al., 2006), and prevent 
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hippocampal neurodegeneration (Schiavon et al., 2014). CBD even appears to reverse 

neurodegenerations in hippocampus caused by chronic cannabis use, which may be useful to 

alleviate the accumulated damages of cannabis use in older adults (Beale et al., 2018). This 

evidence suggests that the presence of CBD is a beneficial complement to THC, which can 

increase the therapeutic effects and reduce undesired psychoactive effects and cognitive 

deficits in older adults. However, a longitudinal study in older adults should be performed 

controlling the dose of cannabis with a consistent ratio of CBD over THC to clarify the 

medicinal benefits cannabis can provide.

It is also noteworthy that the chemical composition of cannabis has changed over time, with 

different strains containing higher THC levels. Cascini, Aiello, and Di Tanna (2012) 

reviewed studies worldwide and found the mean percentage of THC included in consumed 

cannabis has risen from 0.93% in 1970 to 9.75% in 2010. ElSohly et al. (2016) further noted 

that in recent years, from 2009 to 2014, the average potency of consumed THC is an 

increasing trend (9.75%–11.84%), whereas the trend of CBD is decreasing (0.39%–0.15%) 

in the United States. Higher-potency cannabis has been associated with greater negative 

impact on users’ behaviors (Volkow, Baler, Compton, & Weiss, 2014). Thus, the effects of 

long-term use in older adults may differ from those in younger adults simply due to the fact 

that younger adults may have had access to higher-potency THC longer than older adults. 

The varied potency of THC and other cannabinoid levels in cannabis over the last few 

decades is important to consider when extrapolating differences between younger and older 

adults, as well as when determining the effects of long-term use in older individuals.

Unlike CB1R that is prominent in the CNS, CB2R is an endocannabinoid receptor type 

found mostly in the peripheral nervous system and immune cells (Pertwee, 2006; Pertwee, 

2008). Although its role is not as well-documented as CB1Rs, some of the important 

therapeutic effects of cannabis appear to involve changes in the neuroimmune system (Aso 

et al., 2015; Martin-Moreno et al., 2012; Ramirez et al., 2005), where CB2R signaling is 

important. As one ages, oxidative stress accumulates over time and attacks the mitochondrial 

function that processes metabolism so that the neurons in older populations have less energy 

efficiency and are more susceptible to further damages (Lu et al., 2004). In this regard, the 

neuroimmune activity represented as microglial activity also increases in normal aging 

(Schuitemaker et al., 2012). Neuroinflammation is not significantly increased in normal 

aging (Suridjan et al., 2014), but those with neurodegenerative disorders, such as 

Alzheimer’s disease and Parkinson’s disease (Heneka et al., 2015; Hirsch & Hunot, 2009), 

show distinct neuroinflammatory responses in regions associated with corresponding 

functional loss (Ownby, 2010).

The neurodegenerative diseases associated with aging are attributable to changes in the 

mitochondrial DNA (Wilkins & Swerdlow, 2016). They can further lead to accumulation of 

damaged mitochondria or cell death, both of which can trigger inflammatory responses that 

link to neurodegenerative diseases (Green, Galluzzi, & Kroemer, 2011). CB2R is expressed 

in glial cells in the CNS and is thought to modulate inflammatory response (Ashton & Glass, 

2007). For instance, the activation of CB2R seems to prevent glial activation and increase 

cytokines and chemokines associated with inflammation (Chung et al., 2016). Thus, external 

modulation of CB2R activity may help reduce the neuroinflammatory responses that lead to 
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cell damage. CB2R agonists were further found to be protective to ischemic damages in 

neurons (Choi et al., 2013; Fujii et al., 2014) and degeneration in white matter fibers 

(Arévalo-Martín et al., 2008). Further, activating CB2R may increase the cell proliferation in 

the brain (Galve-Roperh et al., 2013). Palazuelos et al. (2006) and Palazuelos, Ortega, Diaz-

Alonso, Guzman, and Galve-Roperh (2012) showed that applying CB2R agonists can 

increase the hippocampal cell proliferation. In sum, administration of CBD may reduce 

neuroinflammation by binding to the peripheral CB2R in immune cells (Turcotte, Blanchet, 

Laviolette, & Flamand, 2016) or aid the neurogenesis in the CNS. CB2R agonists, including 

CBD, may be effective for targeting age-related neurodegeneration.

Summary and conclusions

The challenge in the literature is in determining the specific effects of cannabis from specific 

effects of aging. To date, there have been few empirical studies that have addressed this 

question. The study by Burggren et al. (2018) compared older individuals who formerly 

used cannabis (length of abstinence averaging at 29.9 ± 6.0 years) against age-matched 

individuals who never used cannabis to disentangle the effects of cannabis from aging. Their 

findings showed reductions in gray matter of hippocampal subregions in former chronic 

users compared to the non-using older adults. Such hippocampal reductions have also been 

reported in younger chronic cannabis users, suggesting that this effect is present in chronic 

cannabis users independent of aging effects (Chye et al., 2017; Cousijn et al., 2012; Yücel et 

al., 2008, 2016). Nevertheless, there is paucity of studies that compare longer- (onset in 

younger age) and shorter-duration (onset in older age, i.e., older than 50 years) cannabis use 

among the older population that could further address unique effects of cannabis use in older 

adults. Current findings from existing human studies show that prefrontal structure and 

function are vulnerable to the effects of aging and those of hippocampus are susceptible to 

degenerations due to both aging and cannabis use. We identified preclinical studies, 

however, that demonstrated a protective effect in hippocampal structure and potential 

procognitive results owing to long-term use of low-dose cannabis in the aging brain. 

Together, this indicates that there are complex consequences of chronic cannabis use that 

interact with the different aspects of aging, which cannot be fully addressed by animal 

models. Future studies should target older cannabis users with shorter and longer duration of 

regular use, using multimodal approaches to identify the interaction of cannabis use and 

aging in micro- and macroscopic viewpoints. A longitudinal design for shorter- and longer-

span effect of cannabis use may also be beneficial.

Our examination of the concordant effects of the aging process and cannabis use suggests 

that effects of chronic use of cannabis and aging have complex interactions in molecular/

cellular level. The main effects of both aging and cannabis use seem to compromise the 

structure and function of the hippocampus, thus cannabis use may accelerate age-related 

degenerations in the hippocampus. Nevertheless, it may indirectly lead to the functional 

states more vulnerable to cannabis-related problems in older adults. The ubiquity of 

endocannabinoid receptors in the brain and their regulatory roles upon various 

neurotransmitters as well as essential cell functions of neurons can further result in global 

changes in brain structures and behaviors. Interestingly, these diffused effects lends the use 
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of a cannabinoid marker for age-related changes in multiple systems clinically useful for 

understanding the general changes in the older adult’s brain.

Despite its widely reported harms in chronic use for humans, cannabis has also been shown 

to alleviate functional loss in aging under controlled usage. Preclinical studies indicate that if 

used in a healthy population and with a restricted low dose, cannabis may be neuroprotective 

and aid in maintaining neurogenesis in older adults. Further, the controlled use of cannabis 

may be selectively beneficial for alleviating chronic pain disorders in place of opioid 

medications. Taken together, the therapeutic benefits of cannabinoids hold promise, 

especially if the benefits of cannabis use outweigh the risks (e.g., increased probability of 

experiencing substance use disorder). Further investigations are essential on this cost–benefit 

ratio that includes determination of the effect of low-dose cannabis should be performed 

using healthy human subjects to extend the preclinical outcomes to clinical uses.

While beyond the scope of this review, it is important to note the high comorbidity of 

cannabis use with other substances, such as alcohol and nicotine (Degenhardt, Hall, & 

Lynskey, 2001; Goodwin et al., 2018). Subbaraman and Kerr (2015) analyzed the 2005 and 

2010 National Alcohol Surveys and showed that 60% to 70% of cannabis users also use 

alcohol. For many of the human studies reviewed in this manuscript, co-use of other 

substances, including alcohol and nicotine use, were not controlled for (i.e., exclusionary 

criterion or covaried in analyses). Thus, any unique versus combined contributions of 

cannabis in aging is not known given differential effects of isolated versus combined 

cannabis use reported in the literature (Filbey, Gohel, Prashad, & Biswal, 2018; Filbey, 

McQueeny, Kadamangudi, Bice, & Ketcherside, 2015; Hartman & Huestis, 2013). Future 

studies should take into account other substance use when determining the specific effects of 

cannabinoids in aging.

To conclude, we summarized the previous literature on the effect of cannabis use and normal 

aging, respectively, and aimed to provide the integrative viewpoint on these two factors. 

Future empirical studies on the effects of cannabis use on the aging brain are critical. These 

studies could include (1) determining the difference between acute and chronic effects of 

cannabis use in normal aging; (2) pinpointing the risks and benefits of cannabis in the aging 

population; (3) optimizing the dose for therapeutic benefits (particularly in those with 

neurodegenerative and chronic pain disorders); and (4) identifying the modulatory factors 

that affect the interaction of cannabis use and aging effect (e.g., cognitive reserve and 

gender).
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