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Abstract

Small-cell lung cancer (SCLC) represents about 15% of all lung cancers and is marked by an 

exceptionally high proliferative rate, strong predilection for early metastasis and poor prognosis. 

SCLC is strongly associated with exposure to tobacco carcinogens. Most patients have metastatic 

disease at diagnosis, with only one-third having earlier-stage disease that is amenable to 

potentially curative multimodality therapy. Genomic profiling of SCLC reveals extensive 

chromosomal rearrangements and a high mutation burden, almost always including functional 

inactivation of the tumour suppressor genes TP53 and RB1. Analyses of both human SCLC and 

murine models have defined subtypes of disease based on the relative expression of dominant 

transcriptional regulators and have also revealed substantial intratumoural heterogeneity. Aspects 

of this heterogeneity have been implicated in tumour evolution, metastasis and acquired 

therapeutic resistance. Although clinical progress in SCLC treatment has been notoriously slow, a 

better understanding of the biology of disease has uncovered novel vulnerabilities that might be 

amenable to targeted therapeutic approaches. The recent introduction of immune checkpoint 

blockade into the treatment of patients with SCLC is offering new hope, with a small subset of 

patients deriving prolonged benefit. Strategies to direct targeted therapies to those patients who are 

most likely to respond and to extend the durable benefit of effective antitumour immunity to a 

greater fraction of patients are urgently needed and are now being actively explored.

Small-cell lung cancer (SCLC) is a high-grade neuroendocrine carcinoma arising 

predominantly in current or former smokers and has an exceptionally poor prognosis1. 

SCLC makes up about 15% of lung cancer cases. Patients with SCLC typically present with 
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respiratory symptoms, including cough, dyspnoea (laboured breathing) or haemoptysis 

(coughing up blood), with imaging revealing a centrally located lung mass and often bulky 

thoracic lymph node involvement; two-thirds of patients have distant metastatic disease at 

initial diagnosis. The most common sites of metastasis include the contralateral lung, the 

brain, liver, adrenal glands and bone. Mirroring its high metastatic predilection, the 

concentration of circulating tumour cells (CTCs) in SCLC is among the highest of any solid 

tumour2 (FIG. 1). Despite emerging recognition of distinct biological subtypes of SCLC 

based on the transcription factor expression profile, the current clinical approach to SCLC 

treatment is consistent irrespective of subtype3. In the rare patients who present with very 

early-stage disease at diagnosis, treatment can include surgery and adjuvant platinum-based 

chemotherapy although, more typically, patients with early-stage or locally advanced disease 

are treated with concurrent radiation and platinum-based chemotherapy. Patients with 

metastatic disease are treated with systemic chemotherapy with or without immunotherapy. 

SCLC is initially exceptionally responsive to cytotoxic therapies — up to 25% of patients 

with early-stage SCLC achieve long-term control of disease with concurrent 

chemoradiotherapy (CRT) and response rates are consistently over 60%, even in patients 

with metastatic disease. However, in the vast majority of patients, these responses are 

transient, resulting in a median survival duration of <2 years for patients with early-stage 

disease and of ~1 year for patients with metastatic disease. In this Primer, we present an 

overview of the current understanding of SCLC from both the clinical and biological 

perspectives and focus in particular on how analyses of both mouse models and human 

tumours are informing new directions of therapeutic research in SCLC.

Epidemiology

Incidence and prevalence

Lung cancer is the leading cause of cancer mortality worldwide, with an estimated 2.1 

million new cases and 1.8 million deaths in 2018 (REF.4). SCLC comprises an estimated 

250,000 new cases and at least 200,000 deaths globally each year5. Lung cancer, including 

all histological subtypes, is more prevalent in high-income countries/regions, reflecting 

relative levels of tobacco consumption4,6. However, the specific incidence of SCLC in 

different countries/regions or continents is not well described. As with lung cancer in 

general, SCLC is most prevalent in men but the proportion of cases in women compared to 

men has risen worldwide over the past 50 years, again reflecting tobacco consumption 

trends7. SCLC incidence in the USA has been declining over the past three decades in 

parallel with the decreasing prevalence of cigarette smoking8. In the USA, the proportion of 

elderly patients with SCLC (>70 years of age) has increased from 23% in 1975 to 44% in 

2010 (REF.9). Despite a higher prevalence of smoking in African-American men and 

women, SCLC is less prevalent in African-American individuals than in white 

Americans10,11.

Risk factors

SCLC is among the cancers with the strongest epidemiological link to tobacco, and its 

prevalence tends to mirror the prevalence of smoking, with a lag time of about 30 years12. 

SCLC incidence in the USA peaked in men in 1986 and in women in 1991 and has steadily 
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declined since that time (FIG. 2). Only 2% of SCLC cases arise in never-smokers (defined as 

lifetime smoking of fewer than 100 cigarettes)13. Studies suggest possible links between 

exposure to air pollution14 and to radon15 and SCLC in never-smokers but evidence for both 

is limited. Inherited genetic factors are thought to play a minor role in the susceptibility to 

developing SCLC16. Genetic variation does contribute to risk of nicotine addiction17 and 

might thereby indirectly influence SCLC risk. In addition to rare cases of de novo SCLC 

arising in never-smokers, some cases of SCLC in never-smokers arise through histological 

transformation of EGFR-driven or ALK-driven lung adenocarcinoma to SCLC18, as 

discussed below.

Chronic obstructive pulmonary disease is a common comorbidity in smokers and an 

independent risk factor for SCLC12. A Dutch registry study reported that the proportion of 

patients with SCLC with comorbidities increased between 1995 and 2012 (REF.19). The 

likelihood of having a comorbidity or comorbidities increased with age and the increase in 

risk associated with having comorbidities was greater for women than for men. 

Multimorbidity was associated with a small increase in the risk of death, independent of 

treatment in patients with limited-stage disease. In a French registry study, the presence of 

comorbidity was associated with lower 8-year survival rates in patients with SCLC after 

adjustment for age, sex, stage and diagnostic modality. The hazard ratios were 1.6 (95% CI 

1.1–2.3), 1.7 (95% CI 1.1–2.7) and 2.7 (95% CI 1.7–4.4) for Charlson comorbidity index 

(which predicts the 1-year mortality of a patient with a range of comorbidities) grades 1, 2 

and ≥3, respectively20.

SCLC has an exceptionally high mortality rate relative to other common solid tumours. In a 

US Surveillance, Epidemiology, and End Results (SEER) registry data analysis, although the 

5-year survival rate was marginally improving, the median survival for the 1983–2012 

period was just 7 months21. Clinical trial data in the past decade (discussed below) suggest 

that outcomes are improving but entry to these studies is notably delimited by performance 

status (a patient’s ability to function in daily life) and other criteria that restrict the 

participation of patients with comorbidities. Current CT screening recommendations that 

demonstrably reduce overall lung cancer mortality do not seem to improve SCLC 

outcomes22,23.

Mechanisms/pathophysiology

SCLC tumour mutational profiling reveals a clear smoking signature, providing direct 

evidence that tobacco carcinogens are responsible for the initiation of SCLC24. Concomitant 

inactivation of two tumour suppressors, p53 and RB (encoded by TP53 and RB1, 

respectively), is found in the vast majority of SCLC cases24. This dual inactivation of 

tumour suppressors is distinct from the primary oncogenic drivers of many other solid 

tumours, notably non-small-cell lung cancers (NSCLC), in which activating oncogenic 

mutations seem to be essential for tumorigenesis. Changes in the lung stroma and immune 

microenvironment also presumably contribute to SCLC tumorigenesis12. However, overall, 

how these tumour-intrinsic and tumour-extrinsic factors affect the cell type from which 

SCLC initiates, and how these tumours grow, metastasize and respond to therapy, remains 

incompletely understood.
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Key genetic lesions underlying SCLC

It has been known for several decades that the loss of p53 and RB1 occurs frequently in 

SCLC25,26. Other early studies described the amplification of MYC family genes (MYC, 

MYCL and MYCN) in a subset of SCLC tumours27–29. These observations have been 

validated in DNA and RNA sequencing analyses of larger cohorts of primary tumours and of 

patient-derived and CTC-derived xenograft models24,30–33. These studies also identified 

other recurrent alterations (Table 1). Among the few that have been functionally validated in 

mouse models or cell culture assays are loss-of-function events in RB family members p107 

and p130 (encoded by RBL1 and RBL2, respectively)34–36, the tumour suppressor 

PTEN37,38, NOTCH receptors24,39,40 and the chromatin regulator CREBBP41. In addition to 

recurrent amplification of MYC family genes42–44, amplification of FGFR1 (encoding 

fibroblast growth factor receptor 1)45 and GNAS (encoding the α-subunit of the 

heterotrimeric G protein Gs)46 also occurs. The histone methyltransferase KMT2D (also 

known as MLL) is mutationally inactivated in 8% of SCLC tumours47. Importantly, primary 

tumours and patient-derived xenograft models often correspond to early stages of SCLC 

development, which may introduce a bias in the identification of genetic drivers. However, 

genetic analysis of more advanced cancers has, thus far, not identified new drivers, except 

possibly a role for WNT signalling in chemoresistant SCLC48.

Genomic profiling has not identified obvious mutationally defined subtypes of SCLC, but 

this negative result may be due to the low number of tumour samples that have been 

analysed. Consistent mutational differences have not been defined based on ethnicity or 

smoking status, although the prevalence of oncogenic drivers might be anticipated to be 

higher in the rare never-smokers with SCLC than in tobacco users with SCLC49. A growing 

number of reports have characterized the histological transformation of lung 

adenocarcinoma to an aggressive neuroendocrine phenotype resembling SCLC, which is 

associated with acquired resistance to inhibitors of EGFR or other tyrosine kinase receptors 

but, again, tumour sample numbers are too small to make strong conclusions regarding 

specific genetic or epigenetic alterations beyond the ubiquitous loss of p53 and RB in this 

transition50–52.

A prevalent problem in the SCLC field has been the small amounts of material available for 

histological diagnosis and subsequent research. The ability to isolate CTCs from the blood 

of patients with SCLC can alleviate the lack of tumour material53. However, there is a still 

great need for clinical trials that include the collection of tumour material to identify key 

genetic drivers of SCLC and accelerate both clinical and basic research.

In addition to the analysis of human material, genetically engineered mouse models have 

provided an invaluable pre-clinical platform to identify and characterize the molecular and 

cellular mechanisms of SCLC initiation, progression, metastasis and response to treatment. 

The requirement for the genetic inactivation of both p53 and RB for the initiation of SCLC 

was demonstrated in mice54, and mouse tumours acquire genetic alterations similar to those 

found in human tumours24,37. The histopathological analysis of tumours in these mice shows 

strong similarities with the range of histological features seen in human tumours55. Mouse 

models of SCLC were recently reviewed56 and many of the molecular and cellular 
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mechanisms of SCLC development described below have been identified using these mouse 

models.

Molecular pathways affected in SCLC

Both RB and p53 play key roles in regulating cell cycle progression: RB is a major inhibitor 

of S phase entry, whereas p53 is integral to multiple cell cycle checkpoints, triggering cell 

cycle arrest or inducing apoptosis in response to various cellular stresses, for example, 

aberrant replication. The loss of p107 or p130, amplification of MYC family members, 

alterations in the PTEN pathway, and a high expression of BCL-2 have all been implicated 

in promoting cell growth, proliferation and survival in SCLC57–59.

The abrogation of the G1–S cell cycle checkpoint associated with the loss of p53 and RB 

results in an increased reliance on subsequent cell cycle checkpoints to ensure genome 

stability and correct chromosomal segregation. Accordingly, the inhibition of kinases that 

are important for the G2–M transition, such as ATR, WEE1 and CHK1, promotes mitotic 

catastrophe in SCLC cells, and these kinases are being explored as therapeutic 

targets44,60–65. Similarly, the dysregulated cell cycle progression in SCLC and the resulting 

DNA damage may render SCLC vulnerable to multiple strategies that inhibit DNA repair 

pathways66–68. The activation of the PI3K–AKT–mTOR pathway has been implicated in 

proliferation and resistance to apoptosis in SCLC69,70.

A number of the alterations found in SCLC cells affect factors involved in stem cell biology, 

cell fate decisions and lineage plasticity. Both p53 and RB are directly involved in the 

regulation of these processes in multiple contexts (reviewed elsewhere71,72), including 

increased lineage plasticity and neuroendocrine differentiation in TP53-deficient and RB1-

deficient prostate cancer73,74. High levels of the stem cell transcription factor SOX2 

downstream of p53 and RB loss73–75 or as a consequence of genomic amplification31 may 

further contribute to lineage plasticity in SCLC cells. Mutations in chromatin modifiers are 

frequent in SCLC, suggesting that alterations in epigenetic regulation may contribute to cell-

fate changes24,47,76,77.

The engagement of stem and progenitor pathways in SCLC may facilitate intratumoural 

plasticity, including through the expression of the REST transcription co-repressor, which 

may promote the loss of neuroendocrine features in a subset of SCLC cells39. Heterogeneity 

is prominent in SCLC tumours and may represent a major mechanism by which SCLC 

tumours evade treatment; additionally, heterogeneity increases in response to treatment78,79. 

One mechanism might be that the various molecular and cellular fates adopted by SCLC 

provide reservoirs of cells with intrinsic resistance to treatment, which can then allow for the 

emergence of acquired resistance mechanisms driven by additional genetic or epigenetic 

changes over time. The development of strategies to restrict the plasticity of SCLC tumours 

may restrict the emergence of therapeutic resistance.

In addition to being involved in SCLC evolution and response to therapy, alterations in 

lineage plasticity and cell fate regulators may also influence the ability of SCLC tumours to 

develop from diverse cell types (including from lung adenocarcinoma cells)50. Although 

SCLC has long been assumed to initiate in neuroendocrine lung epithelial cells, observations 
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from mouse models suggest that other lung epithelial cells, in addition to a subset of 

neuroendocrine cells80, may serve as cells of origin56,81–83. An epigenetic memory of the 

cell of origin may strongly influence tumour progression, metastasis (see below) and 

response to therapy.

The extent of genetic heterogeneity within a SCLC tumour seems to be, on average, less 

than that of NSCLC24. As discussed below, there may still be selection for new genetic 

drivers during the process of metastasis, but the current observations are consistent with a 

model in which SCLC tumours have already acquired a set of genetic alterations allowing 

for rapid growth and rely more on epigenetic mechanisms to generate heterogeneity and 

respond to their microenvironment.

Cellular pathways affected in SCLC

Although SCLC tumours are highly metastatic, how cell adhesion and cell migration are 

affected by the genetic and transcriptional changes in SCLC cells is not completely 

understood. It is possible that the migration potential of SCLC cells is inherently related to 

the striking migratory phenotypes of neuroendocrine cells during lung development84. 

Interactions between laminin and fibro nectin in the extracellular matrix and adhesion 

molecules, such as integrins, have been associated with survival and resistance to therapy85. 

Similarly, high levels of CXCR4, a receptor for the chemokine stromal cell-derived factor 1 

(SDF1; also known as CXCL12), promote the migration and survival of SCLC cells86–88. 

Interestingly, α3β1 integrin-mediated adhesion stimulates the growth of axon-like 

protrusions on SCLC cells89, which might promote cell migration by mechanisms similar to 

those observed in the migration of neuronal progenitors during brain development90. The 

epithelial-to-mesenchymal transition has been implicated in the resistance to treatment in 

SCLC77,91,92 but has not been explored as a driver of cell migration. The interplay between 

adhesion, migration, survival and proliferation may be relevant to the strong metastatic 

potential of SCLC cells.

SCLC cells have the capacity to communicate with their microenvironment in an autocrine, 

paracrine and endocrine manner. Several studies suggest that neuropeptides produced by 

SCLC cells promote tumour cell survival and proliferation by autocrine and paracrine 

loops93–96. Autocrine KIT, Hedgehog and IGF1 signalling can enhance SCLC cell 

growth97–99 and paracrine FGF signalling between neuroendocrine and non-neuroendocrine 

SCLC cells might promote survival and metastasis100. The presence of endocrine 

paraneoplastic syndromes in patients with SCLC101,102 imply that long-range 

communication exists between SCLC cells and other cells in the body but it is unclear if 

these systemic effects have a role in SCLC growth. Overall, the extent of the molecules 

secreted by SCLC cells, the cell types reached by these molecules, and the effects of these 

interactions on tumour growth and response to treatment remain largely unknown.

The exceptionally rapid proliferative rate of SCLC cells suggests that they might be 

selectively dependent on the biosynthetic pathways required for cell replication. Most 

therapeutic agents commonly used in patients with SCLC, including DNA cross-linkers 

(such as cisplatin), topoisomerase inhibitors (such as etoposide or topotecan) or γ-radiation, 

directly or indirectly target DNA synthesis, replication and repair. Additional potential 
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metabolic vulnerabilities in SCLC have begun to be explored, including glycolytic and lipid 

synthesis pathways103–105. The recurrent mutations in mTOR signalling pathway 

components24,106 warrant studies of amino acid metabolism in SCLC cells, and a study 

revealed a key role for arginine in MYC-high SCLC tumours107. Nevertheless, the 

metabolism of SCLC cells is only beginning to be investigated.

Drivers and trajectories of metastasis

SCLC metastases are rarely resected in patients but insights into the biology of SCLC 

metastasis have come from both the study of CTCs and the development of mouse models. 

Patients with SCLC have exceptionally high numbers of CTCs, providing a unique 

opportunity to investigate possible drivers of metastatic seeding, including genomic 

alterations, expression changes and heterogeneity2,32,53,108–110. The CTC abundance in 

SCLC suggests that the circulation is a major route of metastatic transmission, although 

lymph node metastases are also frequent in patients with SCLC111 and in mouse models of 

SCLC42,83. Small clusters of malignant cells have been observed in both blood and 

lymphatic vessels in patients with SCLC: adhesion between CTCs in these small clusters 

may be an important aspect of cell survival during metastasis2.

SCLC tumours growing in the lungs of genetically engineered mice often metastasize to the 

pleural space, lymph nodes and distant organs, including the liver, similar to what is 

observed in patients54. One notable exception is the lack of brain metastasis in SCLC mouse 

models, which might reflect either biological differences between human and mouse 

tumours or the relatively rapid death of mice from their primary tumours and liver 

metastases. The analysis of primary tumours and metastases in mouse models identified the 

transcription factor NFIB as a major determinant of SCLC metastasis112–114. NFIB levels 

are also elevated in human SCLC metastases compared with primary tumours112,113. One 

mechanism underlying the pro-metastatic role of NFIB in SCLC is by the induction of gene 

expression programmes related to cell adhesion, cell migration and neuronal 

differentiation90,112. Mechanisms other than NFIB remain poorly understood but factors 

associated with neuronal differentiation and migration are also implicated in SCLC 

metastatic potential83,115.

Immune evasion

SCLC cells have a high tumour mutation burden and, on this basis, are predicted to induce 

strong T cell responses. Indeed, some patients with SCLC with paraneoplastic neurological 

syndromes exhibit high immune activity and tend to have a better prognosis than patients 

without these syndromes116. Immunotherapies that enhance the activity of T cells against 

cancer cells, such as blockade of CTLA4, PD1 or PDL1, have some beneficial effects in 

patients with SCLC117,118. However, the response to T cell checkpoint blockade is limited to 

~15% of patients with SCLC119,120. The limited efficacy of T cell-based immunotherapies 

against SCLC can be explained by multiple mechanisms, including the low expression of 

major histocompatibility complex (MHC) class I molecules on the surface of SCLC 

cells121–124. The presence of immune cells with suppressive properties, such as regulatory T 

cells, in the SCLC tumour microenvironment may further promote immune evasion125,126. 

Other mechanisms include the suppression of antigen-presenting cells by neuropeptides 
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secreted by SCLC cells127. It remains unknown whether the interactions between immune 

cells and SCLC cells are similar in human tumours and genetically engineered mouse 

models. Of note, mouse tumours have a low tumour mutation burden whereas human SCLC 

is among the most highly mutated cancers24,37, which could substantially affect T cell 

responses. The activation of macrophages128 and the development of chimeric antigen 

receptor-expressing T cells specifically targeting SCLC129 might help to bypass some of the 

current lack of efficacy of T cells against SCLC.

An emerging molecular classification

While the SCLC tumour mutational landscape does not seem to define subtypes, the 

expression of specific transcription factors provides a first framework to differentiate 

biologically distinct SCLC subtypes. Four major subtypes of SCLC are defined based on 

high levels of ASCL1 (SCLC-A subtype), NEUROD1 (SCLC-N), POU2F3 (SCLC-P) or 

YAP1 (SCLC-Y)130. Subsequent analyses have suggested a division of SCLC-A into two 

clusters (SCLC-A and SCLC-A2) differing in their expression of HES1 (REF.131) and a rare 

subtype demonstrating elevated expression of the transcription factor ATOH1 (REF.79) (FIG. 

3). Among other differences, these subtypes tend to reflect the differential expression of 

MYC family members, with increased MYCL expression being associated with SCLC-A 

and increased MYC expression occurring in the other subtypes. Data from both mouse 

models and clinical trials suggest that Aurora kinase inhibitors might be selectively effective 

in MYC-high SCLC44,132,133. Differences between the transcription programmes of these 

four subtypes include distinct degrees of neuroendocrine differentiation and differences in 

metabolism. This emerging molecular classification also serves as a framework within which 

to further refine additional subtypes131 (FIG. 3). Importantly, single-cell analyses are likely 

to help define how intratumoural heterogeneity is connected to these and possibly new 

subtypes109,110. Analogous to the transition of lung adenocarcinoma to SCLC, an important 

aspect of future studies will be to monitor how SCLC tumours of certain subtypes evolve 

with time and treatment. Data from mouse SCLC cell lines suggest a possible developmental 

hierarchy among subtypes, with SCLC-A evolving to SCLC-N and subsequently to SCLC-

Y134. Of note, mouse models generated to date only model the SCLC-A and SCLC-N 

subtypes130, and the development of new models combining various genetic alterations and 

different putative cell-of-origin types56 will be key to modelling all subtypes, possibly 

helping to define new subtypes and to investigate intratumoural and intertumoural 

heterogeneity in SCLC.

The identification of molecular subtypes of SCLC and the association between these 

molecular subtypes and cellular programmes (such as ‘stem cell’, ‘mesenchymal’ or 

‘neuronal’ programmes) may help to focus the development of therapies targeted to subsets 

of patients that are most likely to benefit from a given therapeutic approach. This 

personalized approach would of course require the development of a number of new 

therapeutic approaches and these approaches are likely to have to be combined to combat the 

plasticity of SCLC cells and the heterogeneity of SCLC tumours. A key aspect of such 

therapeutic approaches will also be to block the transitions between different states, which 

might be achieved through the targeting of epigenetic regulators.
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Diagnosis, screening and prevention

SCLC is a high-grade malignant epithelial tumour. A confirmed diagnosis relies on 

characteristic light microscopic features of the tumour with haematoxylin and eosin staining 

(histopathological features are described below). Immunohistochemistry can be used to 

exclude other diagnoses. The current WHO classification recognizes only two subtypes: 

SCLC and combined SCLC135. Combined SCLC has an additional component of non-small-

cell carcinoma, which can be of any non-small-cell histological subtype. Cytology is a 

powerful tool that is sometimes more definitive than histology of small biopsies, which in 

SCLC often have crush artefacts.

Signs and symptoms

Distinct clinical characteristics of SCLC include the predominantly central location of the 

primary tumour in the major airways and the often extensive extrapulmonary metastatic 

spread at presentation. Owing to the rapid tumour growth and widespread metastases, most 

patients with SCLC are symptomatic at presentation and the duration of symptoms is 

typically less than 3 months. Bulky mediastinal involvement is common. Intrathoracic local 

growth explains frequent symptoms at presentation, including cough, wheeze, dyspnoea, 

haemoptysis, superior vena cava compression resulting in upper body oedema and flushing, 

oesophageal compression with dysphagia, and recurrent laryngeal nerve compression with 

left vocal cord paralysis. Fatigue, anorexia, weight loss and neurological complaints are 

associated with distant spread. The brain, liver, adrenal glands, bone and bone marrow are 

common sites of metastasis.

SCLC is frequently associated with paraneoplastic syndromes102,136. Common SCLC 

paraneoplastic endocrinopathies include syndrome of inappropriate anti-diuretic hormone 

and Cushing syndrome; paraneoplastic neurologic syndromes caused by autoantibodies 

include Lambert–Eaton syndrome, encephalomyelitis and sensory neuropathy syndromes. 

Rare manifestations include dermatomyositis, hyperglycaemia, hypoglycaemia, 

hypercalcaemia and gynecomastia (breast tissue swelling in males). These antibody-

dependent syndromes reflect common aberrant activation of humoral (B-cell mediated) 

immunity in SCLC; interestingly, immune checkpoint blockade, which activates cellular (T 

cell-mediated) immune responses, showed no apparent increase in paraneoplastic 

phenomena in patients with SCLC137–139.

Diagnostic work-up

Given the aggressive nature of SCLC, diagnostic and staging work-up should be performed 

as quickly as possible after presentation. In addition to medical history and physical 

examination, this assessment includes imaging (typically contrast-enhanced CT or 18F-FDG 

PET/CT of the chest, abdomen and pelvis, and brain MRI with contrast) to define the extent 

of disease, blood tests, including cell counts, liver and kidney function and lactate 

dehydrogenase, and electrocardiography to ensure safety prior to the administration of 

cytotoxic drugs136. Owing to the usual central location of the tumour, biopsies are often 

obtained by bronchoscopy with or without endobronchial ultrasonography; alternatives 

include mediastinoscopy, transthoracic biopsies or thoracoscopy. Depending on accessibility, 
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a preferred option can be the biopsy of a distal metastatic site. The diagnosis is only 

confirmed by histopathological examination aided by cytology140. A higher CTC count is a 

negative prognostic factor for patients with SCLC2,141 but is rarely used in practice outside 

of the clinical trial setting. The analysis of CTCs and/or circulating cell-free DNA is still in 

the experimental stage but may contri bute to the evaluation of tumour characteristics, 

including intratumoural heterogeneity142–144.

The radiological findings in SCLC are similar to those of other lung cancers, with a 

tendency for tumours to be larger, centrally located and at a more advanced stage at 

presentation145,146. Bulky mediastinal lymph nodes are common. Metastatic spread is often 

radiologically evident and may include pleural and pericardial effusions. Rare cases (about 

5% of patients with SCLC) present with isolated peripheral nodules without lymph node 

involvement and may be amenable to surgery.

Staging

The tumour–node–metastasis (TNM) classification147 is preferred to the previous staging 

system of the Veterans Administration Lung Study Group (VALSG), which separates 

limited-stage disease (tumour confined to one hemi-thorax and one radiation port; no 

malignant pleural or pericardial effusion) from extensive-stage disease (disease not meeting 

criteria for limited stage)148. TNM staging provides better anatomic discrimination for the 

measurement of outcome, prognostic information and more precise lymph nodal 

staging140,149,150. For example, the use of the VALSG staging system does not differentiate 

between patients who present with early-stage (T1–T2, N0–N1, M0) SCLC and those who 

present with locally advanced disease (any T, N2–N3, M0). The use of the TNM 

classification is therefore beneficial in defining optimal treatment strategies in clinical trials.

Stage for stage, the prognosis of SCLC is consistently poorer than that of NSCLC147. Brain 

metastases are common in SCLC, with ~10% of patients presenting with brain metastases at 

the time of diagnosis and an additional 40–50% subsequently developing brain metastases. 

The majority of patients with brain metastases are symptomatic and ~15% of neurologically 

asymptomatic patients with SCLC with no evidence of brain involvement by CT have 

metastases detected by MRI151. Access to optimally accurate staging modalities represents a 

clear limitation in low-income countries.

Clinicians and cancer registrars are strongly encouraged to use the TNM (eighth edition) 

staging system147. Nonetheless, the VALSG staging system is still widely used in both 

designing clinical trials and presenting data from them, as it effectively distinguishes 

patients treated primarily with CRT (limited-stage disease) from those treated with systemic 

chemotherapy or chemo-immunotherapy (extensive-stage disease).

Pathology

The WHO pathological classification of SCLC recognizes two subtypes: (pure) SCLC 

(~80% of cases) and combined SCLC (~20% of cases)135 (FIG. 4). Cardinal 

histopathological diagnostic criteria include small tumour cells with a round to fusiform 

shape, scant cytoplasm, finely granular nuclear chromatin, and absent or inconspicuous 

nucleoli. The mitotic rate is typically high, with >10 mitoses per mm2 and an average of 60 
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and a median of 80 mitoses per mm2. Apoptotic figures are numerous and necrosis is usually 

extensive. Nuclear moulding is frequent since cells are situated in close proximity.

Densely packed tumour cells typically appear sheet-like with an absence of architectural 

features. They occasionally show rosettes (rose-shaped collections of cells) and, less 

commonly, nests (rounded groups of cells separated by stroma), trabeculae (ribbons) and 

peripheral palisading (parallel arrangement of nuclei at the periphery of nests). 

Neuroendocrine features may be more evident on surgical specimens than on bronchial 

biopsy samples152. Crush artefacts are frequent. Occasional large or giant tumour cells can 

be present but, for a diagnosis of pure SCLC, they must be <10% of the total cell number152.

The most common NSCLC histological subtypes in combined SCLC are large-cell 

carcinoma or large-cell neuroendocrine carcinoma (LCNEC), which occur in 4–16% of all 

SCLC tumours; combined tumours with other NSCLC subtypes represent only 1–3% of all 

SCLC tumours. Because of the histological similarities with SCLC, large-cell carcinoma or 

LCNEC subtypes must comprise ≥10% of the tumour area for a diagnosis of combined 

SCLC; there is no percentage requirement for other histological subtypes. Combined SCLC 

is more frequently recognized in surgical samples than in small biopsy samples, possibly 

due to increased crush artefact and fewer cells in the latter152,153. The clinical presentation, 

response to chemotherapy and survival rates of patients with combined SCLC are similar to 

those of patients with pure SCLC, although the frequency of peripheral and resectable 

tumours is higher for combined SCLC154. Combined SCLC is notably rare in the SCLC-A 

and SCLC-N subtypes of disease155. In SCLC combined with adenocarcinoma or in a never 

smoker, analysis for EGFR mutation or ALK rearrangement should be considered. 

Following therapy, 13–45% of pure SCLC tumours show morphological changes, including 

a larger cell size or combined histologies, consistent with an induced lineage plasticity in the 

context of acquired chemoresistance156,157.

Immunohistochemistry.—In theory, the diagnosis of SCLC relies on light microscopy-

based histopathological analysis although, in current practice, immuno histochemistry is 

commonly performed to differentiate SCLC from other diagnoses. Commonly used neuro 

endocrine markers include chromogranin, synaptophysin and CD56 (also known as NCAM); 

CD56 is the most sensitive (positive in 90% of SCLC) but least specific of the three 

markers158. A new neuroendocrine marker, INSM1, is generally positive in the two most 

common subtypes of SCLC — SCLC-A and SCLC-N159,160.

Cytology.—Cytological preparations can have diagnostic utility, especially when biopsies 

are small, crushed or necrotic145. Cytological smears often show isolated tumour cells or 

loose aggregates with nuclear moulding owing to reciprocal deformation of compressed 

nuclei. Tumour cell chromatin is hyperchromatic; if well preserved, it is finely or coarsely 

granulated and evenly distributed, producing a characteristic ‘salt and pepper’ effect. 

Nucleoli are absent or inconspicuous and the cytoplasm is minimal, resulting in a high 

nucleus to cytoplasm ratio.

Differential diagnoses.—Primary differential diagnoses in SCLC cases include other 

neuroendocrine lung tumours, NSCLC and, in particular, basaloid carcinoma, 
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extrapulmonary small-cell tumours and lymphoma. Other neuroendocrine lung tumours 

(typical and atypical carcinoid and LCNEC) generally share the expression of the same 

neuroendocrine markers and cytokeratins as SCLC. Both typical and atypical carcinoid 

tumours differ from SCLC in tumour cell morphology and in mitotic rate as assessed by 

histopathology, which is exceptionally high in SCLC but low in carcinoids (≤10 mitoses per 

2 mm2). The proliferation rate, as reflected by Ki67 nuclear staining, is always >50% in 

SCLC, often reaching 80–100%, whereas it is <30% in pulmonary carcinoids161. The 

cytoplasm is more prominent in carcinoid tumour cells than in SCLC tumour cells and 

necrosis is often extensive in SCLC tumours and absent or focal in carcinoid tumours. 

Distinguishing SCLC from LCNEC is more challenging but is based on a constellation of 

morphological features in addition to tumour cell size (>3 lymphocyte diameters in 

LCNEC). Compared with SCLC, LCNEC tumour cells have a more abundant cytoplasm, a 

polygonal shape with a distinct cell border, vesicular nuclear chromatin and often visible 

nucleoli145.

Basaloid carcinoma, a subtype of squamous cell carcinoma, shares the small cell size with 

SCLC and can be mistaken for SCLC in small or crushed biopsies162. Positive staining for 

p40 can be used to distinguish basaloid carcinoma from SCLC, as this marker is always 

negative in SCLC163. Napsin A, a marker of adenocarcinoma, is negative in SCLC164. 

Cytokeratin staining is useful to distinguish neuroendocrine carcinomas from non-epithelial 

tumours, such as lymphoma; SCLC tumours typically show positive staining with the wide-

spectrum cytokeratin AE1/AE3 antibody cocktail but is always negative for the CK34βE12 

antibody165, which recognizes the high-molecular-weight cytokeratins CK1, CK5, CK10 

and CK14; lymphomas are negative for cytokeratins and express leukocyte common antigen 

(also known as CD45)145.

Rarer considerations in the differential diagnosis include metastatic Merkel cell carcinoma, 

which tends to be positive for CK20 but negative for TTF1 and CK7 (REF.166). Ewing 

sarcoma (with EWSR1 rearrangement) and other small round-cell sarcomas with 

rearrangements other than EWSR1 may be considered; compared with SCLC, cells in these 

tumours are more dyscohesive, the mitotic rate is lower, cytokeratin expression is negative or 

very focal, and they stain for CD99 (also known as MIC2)167–169. Appropriate fluorescence 

in situ hybridization (FISH) techniques should be applied in case of doubt. Small 

undifferentiated SMARCA4-deficient thoracic tumours can be distinguished as epithelial 

sarcomatoid tumours170.

Screening and prevention

Screening by low-dose CT in patients at risk for lung cancer (smokers and ex-smokers) has 

detected newly diagnosed SCLC cases. The National Lung Screening Trial (NLST) involved 

random assignment of over 53,000 individuals at risk for lung cancer (based on age and 

smoking history) to annual screening for 3 years with either annual low-dose CT or chest X-

ray and detected SCLC tumours in 133 individuals22. However, in contrast to the trials of 

screening for NSCLCs, in which CT screening resulted in a notable shift to earlier stage 

disease detection at diagnosis, no shift in disease stage at diagnosis was evident for SCLC: 

10% of detected tumours were stage I A–B, 6% were stage II A–B, 29% were stage III A–B 
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and 54% were stage IV with metastatic disease; these percentages were identical with CT 

and chest X-ray screening22. Subsequent analyses of NLST and other similar studies 

demonstrated that CT screening does not detect SCLC at earlier stages and, thus, does not 

affect survival in patients with SCLC23,171–173. The NELSON screening trial involved over 

15,000 individuals at risk of lung cancer and confirmed an overall reduction in lung cancer 

mortality with annual low-dose CT screening, but data analyses specific to SCLC have not 

been reported174. Although multiple protein biomarkers of SCLC can be detected in patient 

serum175, these have not been translated into an early intervention strategy. To date, there is 

no approach to early detection that has been shown to be effective for SCLC.

As noted above, SCLC is strongly associated with smoking, with 98% of cases arising in 

current or former smokers13. Smoking prevention and cessation are the most effective 

strategies to decrease the societal effect of SCLC, as giving up smoking not only reduces the 

risk of developing SCLC but also reduces, by almost 50%, the risk of death for patients 

diagnosed with limited-stage disease (affecting only one side of the chest and encompassed 

within a single radiation port)176.

Management

The initial approach to SCLC treatment varies substantially by stage (FIG. 5). In non-

metastatic SCLC, the goals of treatment include achieving durable control of thoracic 

disease and reducing the risk of metastatic dissemination. Five-year survival rates of 25–

30% can be achieved with combined modality treatments. Local treatment options to control 

thoracic disease include surgery and radiotherapy. Chemotherapy can both augment the local 

efficacy of radiation and potentially treat micrometastatic disease. The standard 

chemotherapy regimen in this setting is cisplatin–etoposide, which has not changed for the 

past three decades. The advantages of this regimen include that it can be delivered at full 

dose in patients treated with concurrent CRT and has a well-established toxicity profile. In 

patients who are not suitable for cisplatin, carboplatin–etoposide can be considered177. 

Other chemotherapeutic drugs, such as irinotecan or paclitaxel, have activity in these 

patients but have not shown superiority178. Improved outcomes with immunotherapy in 

early-stage NSCLC179 and in metastatic SCLC137,138 have led to the investigation of 

immune checkpoint inhibitors as concurrent primary or adjuvant therapies but these are still 

considered experimental.

Prophylactic cranial irradiation (PCI) is also part of the standard management in most 

patients with non-metastatic SCLC who respond to initial treatment, as it significantly 

reduces the risk of brain metastases and improves survival3,180.

Early-stage SCLC

A very small proportion of patients with limited-stage SCLC present with early-stage (T1–

T2N0–N1M0) SCLC181. The management of these patients is controversial owing to a lack 

of randomized controlled trials comparing surgical to non-surgical approaches in the era of 

modern staging and treatments. At least three local treatment options are available for these 

patients: surgery, fractionated radiotherapy (dividing the total dose of radiation into multiple 
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smaller doses) and stereotactic radiotherapy. The role of PCI is not as well established in 

these patients as it is in patients with locally advanced SCLC.

Surgery.—Only two phase III trials, one performed in the 1970s and the other in the 

1990s182,183, have been reported. In 2017, a systematic review stated that, although currently 

available randomized controlled trial data do not support a role for surgical resection in the 

management of SCLC, this conclusion is of limited value owing to a lack of contemporary 

data and the low quality of available evidence184. This uncertainty has led to inconsistencies 

in national and international treatment guidelines with regards to the role of surgery in 

managing SCLC185. Consequently, deciding between surgical and non-surgical approaches 

is challenging for both clinicians and patients. Primary surgical resection is generally limited 

to the treatment of patients with clinical stage I or II (cT1–T2N0) disease140,186. The aim of 

surgical treatment is to achieve a microscopically margin-negative resection (R0 

resection)187. Population-based data analyses estimate a 5-year survival rate of ~50% among 

patients with a complete pathologic R0 resection for pT1–T2N0M0 SCLC188. After surgical 

resection, adjuvant chemotherapy should be given and there is no role for adjuvant thoracic 

radiotherapy unless an incomplete resection (R1–R2) was performed or pathology reveals 

unforeseen mediastinal nodal involvement (N2)189.

Radiation.—The evidence available on fractionated radiotherapy in early-stage SCLC is 

limited, as the TNM classification was not integrated for the staging of patients in historical 

clinical trials of CRT. The CONVERT trial showed that concurrent CRT in patients with 

TNM stage I–II SCLC (representing 15% of the patients enrolled) achieves outcomes 

comparable to those of surgery, with low rates of acute and late toxicity190. Promising data 

from small retrospective studies on the role of stereotactic ablative radiotherapy for early-

stage SCLC have led to its inclusion as an option in guidelines for the treatment of patients 

with peripheral T1–T2N0M0 disease191,192. The role of PCI in early-stage SCLC is 

controversial, particularly in stage I, owing to its lower risk of development of brain 

metastases compared to locally advanced disease193–195.

Locally advanced SCLC

Most patients with non-metastatic, locally advanced SCLC (any T, N2–N3, M0) present with 

disease that involves the mediastinal and hilar nodes. Surgery is generally not a treatment 

option in these patients. The role of radiotherapy with concomitant chemotherapy is well 

established in the management of locally advanced SCLC196. The standard of care for 

patients with a performance status of 0–1 (meaning at least ambulatory and able to carry out 

work of a light or sedentary nature) is twice-daily thoracic radiotherapy (45 Gy in 3 weeks) 

with concurrent cisplatin–etoposide197,198. If twice-daily radiotherapy cannot be delivered 

for patient-specific or practical reasons, once-daily radiotherapy is a reasonable 

alternative197. A 2019 survey of European practice showed that twice-daily radiotherapy is 

used in only 42% of centres, mostly due to practical reasons199. In the era of modern staging 

and radiotherapy (that is, 3D conformal radiotherapy or intensity-modulated RT, without 

elective nodal irradiation), the 5-year survival is expected to be ~30% in patients with a 

performance status of 0–1 after treatment with concurrent CRT197. Severe treatment-related 

toxicity has been reduced with contemporary treatment planning: in the CONVERT study, 
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which randomly assigned patients to once-daily or twice-daily radiotherapy, <20% of 

patients receiving either treatment developed severe oesophagitis compared with >30% in 

earlier trials using 2D radiotherapy techniques197.

Evidence from randomized controlled trials and meta-analyses favours the initiation of 

radiotherapy as early as is feasible in the course of CRT, preferably with the first or second 

cycle of chemotherapy197,198,200–203. In cases of bulky disease at presentation, the dose to 

the organs at risk may not permit the early administration of thoracic radiotherapy. In such 

cases, radiotherapy can be postponed until the start of the third cycle of chemotherapy, at 

which time it is likely that a reduction in disease volume has been achieved204. Another 

option, particularly in frailer or elderly (≥75 years old) patients, is to consider sequential 

CRT rather than concurrent CRT205. In the sequential setting, the typical radiotherapy 

approach is to treat the post-chemotherapy primary tumour volume and the pre-

chemotherapy nodal volume206.

PCI significantly decreases the risk of symptomatic brain metastases and increases overall 

survival in patients with non-metastatic SCLC180,207. PCI is currently offered to patients 

who respond to initial CRT treatment and have a performance status of 0–1 (REF.3). The 

evidence supporting PCI is not as clear in patients with a performance status of 2 (meaning 

ambulatory, capable of selfcare but unable to carry out any work activities; up and about 

>50% of waking hours) after CRT, in patients >70 years of age and in those with pre-

existing neurological conditions, such as stroke or epilepsy. In such patients, a shared 

decision process should be encouraged208.

Metastatic disease

For over three decades, the first-line chemotherapy for newly diagnosed metastatic SCLC 

has consisted of a platinum agent (cisplatin or carboplatin) together with etoposide1. A 

phase III clinical trial reported superiority of cisplatin–irinotecan over cisplatin–etoposide in 

a Japanese population209, but two subsequent randomized studies in the USA failed to 

confirm this result210,211. Multiple randomized phase III studies have demonstrated the 

statistically significant benefits of adding an immune checkpoint inhibitor to first-line 

chemotherapy in patients with newly diagnosed metastatic SCLC137–139. The addition of 

either of two anti-PDL1 monoclonal antibodies (atezolizumab or durvalumab) to a standard 

platinum–etoposide backbone, with continuation of immunotherapy as maintenance, 

improved both progression-free survival and overall survival137,138. The addition of the anti-

PD1 antibody pembrolizumab in the same context resulted in a similar benefit but was only 

statistically significant for progression-free survival139. In all of these studies, the benefits 

are less evident in the median (~2-month extension of median survival) than in the tail of the 

survival curve; together, these studies suggest that immune checkpoint inhibition leads to an 

approximate doubling of 2-year survival, from 11% to 22%. These observations imply that 

there is a subset of patients with SCLC who derive durable benefit from immunotherapy, 

although the majority do not. In contrast to other solid tumours, PDL1 expression does not 

seem to be a correlate of immunotherapy benefit in SCLC139. The role of tumour mutation 

burden as a predictive biomarker of SCLC response to immunotherapy is controversial, as 

the Checkmate-032 analysis suggests a correlation but the IMPOWER133 blood-based 
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analysis showed no evident association137,212. Defining tumour and host characteristics 

associated with immunotherapy response is an area of active investigation.

After many years with no new therapies for SCLC, in the past 3 years, the FDA has granted 

accelerated approval to three new drugs. Until 2020, the only standard of care second-line 

therapy for recurrent meta static SCLC was the topoisomerase I inhibitor topotecan. 

Lurbinectedin, an alkylating agent that binds to the minor groove of DNA and affects 

transcription, was granted accelerated approval for second-line use based primarily on 

lurbinectedin demonstrating a 35% response rate in a single-arm phase II study of 105 

patients213. The anti-PD1 monoclonal antibodies nivolumab and pembrolizumab were 

granted accelerated approval for third-line use119,120, although the role of these agents is 

unclear in patients whose disease has progressed on first-line immune checkpoint inhibitors. 

Although not approved for the specific indication by regulatory authorities, many other 

cytotoxic agents have clinical activity in SCLC and are included as options in treatment 

guidelines for recurrent SCLC, including the nivolumab–ipilimumab combination, 

paclitaxel, docetaxel, irinotecan, temozolomide and oral etoposide3. Retreatment with a 

platinum doublet in patients with response maintained for at least 3 months after first-line 

treatment is another reasonable choice.

Radiotherapy has traditionally been reserved for the palliation of symptoms in patients with 

advanced disease, including in those who have poor responses to chemotherapy. The most 

common site of distant failure in patients with advanced SCLC is the brain, with 40–50% of 

patients developing brain metastases after completion of palliative chemotherapy. The role 

of PCI in patients with metastatic disease is controversial, as a European phase III study 

suggested a survival benefit214. However, a more recent Japanese phase III study found that, 

with MRI surveillance, PCI did not offer a benefit for patients with metastatic SCLC215. 

Clinical trials to resolve this controversy are ongoing216. Treatment for leptomeningeal 

metastases remains a major unmet need.

Given that up to 75% of patients with advanced SCLC have persisting intrathoracic disease 

after chemotherapy and subsequent intrathoracic disease progression, a rationale exists for 

considering consolidation thoracic radiotherapy. A European trial that randomly assigned 

patients to consolidative thoracic radiotherapy or best supportive care found no statistical 

difference in the primary endpoint of 1-year survival yet a post hoc analysis suggested 

improvement in 2-year survival with radiotherapy, with a low rate of toxicity217. The benefit 

of this treatment was more pronounced in patients with residual intrathoracic disease. An 

important unanswered question in the metastatic setting is the integration of thoracic 

radiotherapy, PCI and immunotherapy.

Follow-up

Patients with SCLC are at high risk of relapse, with ~75% of patients with locally advanced 

disease and >90% of patients with metastatic disease progressing within 2 years of 

treatment137,197. Periodic CT scanning is recommended to identify recurrence as early as 

possible and to offer salvage treatment if appropriate. However, there is a paucity of data 

supporting the frequency of imaging and its effect on survival. Including a brain MRI in 

surveillance is recommended in patients who did not undergo PCI215. A further rationale for 
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regular imaging of patients with SCLC is the high risk of developing second malignancies, 

which are generally tobacco induced, in the lungs and other organs218,219.

The follow-up of patients with SCLC, particularly those with non-metastatic disease, should 

also include the management of the multiple comorbidities often associated with this disease 

(including cardiac and respiratory comorbidities generally caused by smoking)19,220. 

Patients may also have treatment-related adverse effects, such as pulmonary fibrosis or 

cardiac complications, which may benefit from specialist input221. The management of these 

patients by a multidisciplinary team that includes non-oncology specialists is likely to 

provide better symptom control, improved quality of life and, possibly, improved outcomes.

At the time of diagnosis and during follow up, patients should be actively encouraged to stop 

smoking. Indeed, continuing smoking after a diagnosis of SCLC is associated with a risk of 

developing second primary tumours as well as with a risk of cardiovascular, respiratory and 

cerebrovascular disease, leading to poorer suvival176,222.

Quality of life

Personalized treatment is at the heart of modern oncology and should consider the risk to 

benefit ratio of therapy for each individual patient. Considering the poor outcome in the 

majority of patients with SCLC, open and honest discussions that include prognosis, goals of 

care and supportive care should take place early on in the management of patients. To the 

greatest extent possible, all patients should be discussed and managed by a multidisciplinary 

team, including specialist nurses and supportive-care specialists.

When treatment is discussed, patients should be clearly informed about the short-term and 

long-term adverse effects of treatment and their effect on quality of life. This information is 

particularly important for patients with metastatic disease who have limited life expectancy 

and in whom the risk of toxicity should not outweigh the symptomatic benefit of treatment. 

As SCLC is at diagnosis an exceptionally chemoresponsive disease, patients with poor 

performance status attributable to disease may substantially improve with the initiation of 

chemotherapy. In patients with non-metastatic SCLC, improvements in survival rate over the 

past 20 years have led to an increasing focus on limiting the long-term toxicity of curative-

intent treatment, such as CRT and PCI. The use of modern radiotherapy techniques with 

strict dose limits for in-field organs have led to a reduction in adverse events related to 

thoracic radiotherapy and chemotherapy toxicity, such as radiation oesophagitis and 

pneumonitis197. However, data on longer-term toxicities are limited, including the effect of 

lung fibrosis on respiratory function and quality of life. The rare patients with metastatic 

SCLC who respond exceptionally well to immunotherapy have further raised the importance 

of recognizing and minimizing the effect of treatment-related toxicities (box 1).

The improved outcomes, particularly for patients with non-metastatic SCLC, has also 

prompted increased concern from both clinicians and patients regarding the risk of 

neurotoxicity associated with PCI223. Memory loss, intellectual deficit, dementia and ataxia 

have been reported, often in patients with cerebral atrophy and white matter changes on 

brain imaging. It is recognized that, in addition to PCI, a number of factors can affect 
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neurocognition, including underlying comorbidities caused by smoking, paraneoplastic 

syndromes, underlying anxiety and depression, chemotherapy, and SCLC itself. This is 

supported by studies demonstrating impairment in neuropsychological tests in patients with 

SCLC, even before PCI is given207,224. Minimizing neurotoxicity is an important goal of 

ongoing clinical trials, including those evaluating the benefit of hippocampus-sparing PCI 

and comparing PCI to MRI surveillance216.

Outlook

Progress on several fronts is defining new avenues of investigation and providing renewed 

hope for patients with this recalcitrant cancer. Many new insights regarding SCLC biology 

have stemmed from the development and analysis of representative genetically engineered 

mouse models of SCLC and these insights have been complemented and reinforced by 

parallel analyses of SCLC cell lines, patient-derived in vivo models and primary human 

tumours225. Analyses of mechanisms of in vivo-acquired therapeutic resistance in SCLC 

through both transcriptomic77 and proteomic46 approaches have revealed new potential 

tumour-specific vulnerabilities. The new understanding of key transcriptional drivers of 

SCLC phenotypes, defining subtypes of disease with distinct dependencies, might help to 

focus therapeutic clinical research on patient populations that are most likely to respond to 

particular targeted agents130. Technological improvements in imaging and in the advanced 

delivery of radiotherapy have increased the survival rates of patients with localized disease, 

while reducing the short-term and long-term adverse effects197. The introduction of 

immunotherapy as part of standard treatment for many patients with metastatic SCLC has 

finally led to improvements in overall survival for this cohort of patients with a particularly 

poor prognosis137,138. These and other advances underscore tangible progress in the 

management of SCLC and have defined a number of novel therapeutically tractable targets 

for this disease (FIG. 6).

Despite these highlights, SCLC remains a largely lethal disease. Several gaps exist in our 

understanding of the disease, which contribute to the modest effect that current treatments 

have had on patient survival.

Notably, the societal impact of SCLC could be obviated with effective prevention, especially 

as the aetiologic agent in oncogenesis is exceptionally clear. SCLC is among the diseases 

most strongly associated with tobacco carcinogen exposure12. The importance of global and 

multifaceted public health advocacy and governmental regulatory approaches to reduce the 

initiation of smoking and increase smoking cessation cannot be overemphasized.

The effective screening for incipient SCLC is a major and entirely unmet need. Highly 

sensitive, blood-based detection using mutational, proteomic or multiparameter approaches 

is an area of active investigation. Preclinical studies suggest the detection of neuroendocrine 

markers through mass spectrometry as one potential approach226. Most patients with SCLC 

die of metastatic disease. As noted, annual CT screening in a high-risk population fails to 

detect early-stage SCLC — with or without screening, an identical majority of patients have 

stage IV disease at diagnosis22. This observation might imply a biological difference 

between limited-stage SCLCs, which commonly present with a large primary mass and 
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bulky adenopathy, and extensive-stage SCLCs, which often present with widespread 

metastases at diagnosis. Beyond the role of NFIB in metastasis in some but not all SCLC 

models83,112, there is a paucity of data on the drivers of haematogenous metastasis in human 

SCLC.

Studies have uncovered remarkable intertumoural and intratumoural heterogeneity in SCLC. 

We are only beginning to dissect how this heterogeneity influences the biology of disease. 

The identification of a distinct subtype of SCLC driven by the transcription factor POU2F3 

(REF.227) suggests that different subtypes could reflect different cells of origin in the lung 

epithelium and distinct pathways of oncogenesis83. We are only beginning to understand the 

extent to which subtype assignments are mutable and whether tumour evolution between 

subtypes reflects lineage plasticity or differential selection among pre-existing subclones134. 

Multiple recurrent mutations affecting epigenetic regulatory pathways in SCLC have been 

defined24,40,41,77; how these epigenetic pathways could either determine or drive the 

transition between transcriptional states is unknown. Despite hypothesized subtype-specific 

vulnerabilities130, the extent to which different predominant subtypes in fact influence 

clinical prognosis, therapeutic responsiveness and patterns of disease progression has not 

been defined. Intratumoural hetero geneity, including a mix of interacting neuroendocrine 

and non-neuroendocrine subpopulations, has been implicated in metastatic potential in 

mouse models39,228 but has been less extensively characterized in human tumours. 

Emerging technical advances in single-cell profiling technologies, including single-cell 

transcriptional profiling, proteomic profiling and spatial multicolour imaging, are ideally 

suited to begin to study some of these issues.

The advent of chemo-immunotherapy as a new standard of care for the first-line treatment of 

metastatic disease137,138 is both a remarkable hallmark of progress and a disappointment. 

The overall improvement in survival in patients with SCLC from the addition of immune 

checkpoint blockade is modest relative to that seen in many other solid tumours, despite a 

highly mutated genome in SCLC tumours. These data serve as an important proof of 

principle — that SCLC can be recog nized by cytotoxic T cells, leading to durable benefit — 

but also as a challenge: why is this benefit seen in only a small minority of patients with 

metastatic SCLC and what can be done to activate effective immune responses in the nearly 

80% of patients who are still destined to die within 2 years of diagnosis? An intensive focus 

of clinical research is now on the exploration of complementary pathways to immune 

activation, including the blockade of alternative immune checkpoints, the use of bispecific T 

cell engagers or natural killer cell activators, and assessing DNA damage response inhibitors 

or epigenetically targeted agents as strategies to induce immune-responsiveness in SCLC229.

Similar challenges to improving survival also apply to early-stage and locally advanced 

SCLC. Building on the successes in treating metastatic disease, multiple trials are in 

development or in progress to assess the role of PD1–PDL1 checkpoint blockade in patients 

treated with CRT. There is a strong rationale for combining immunotherapy and 

radiotherapy: radiation affects the tumour microenvironment through the release of tumour 

antigens, induction of the cGAS–STING pathway, upregulation of MHC class I expression, 

stimulation of type I interferons and promotion of CD8+ T cell infiltration230–232. Novel 

agents targeting DNA damage responses (for example, PARP inhibitors) or epigenetic 
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regulators (for example, LSD1 inhibitors) are being assessed in patients with limited-stage 

SCLC as well. This context, in which 25–30% of patients treated with combined modality 

therapy are alive and free of progression at 5 years, but where most patients are destined to 

develop disease progression within 18 months197, is ideal for the development and testing of 

biomarkers of residual disease. It would be of substantial interest to know if sensitive 

methods for the detection of circulating tumour DNA in blood and, possibly, in 

cerebrospinal fluid could be used to identify those patients who might benefit from 

additional treatment, such as PCI or additional systemic therapies, versus those who are 

likely to be cured by thoracic CRT alone.

The advances of the past decade in defining the genetics and biological pathways driving 

SCLC have identified multiple novel therapeutic strategies. The pace of laboratory research 

in SCLC has dramatically accelerated, facilitated in large part by an expansion of the 

number and diversity of representative preclinical models. Many gaps in our characterization 

of SCLC remain and clinical progress lags behind that seen in NSCLCs. Several novel 

therapeutic targets are being actively pursued in clinical research today. We believe that 

continuing to use emerging insights gained from laboratory studies to inform and focus 

clinical trials is likely to yield clinically meaningful progress for patients with SCLC in the 

decade ahead.
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Box 1 |

A patient’s journey

Clinician’s note:

Ms. Beaty was initially diagnosed with small-cell lung cancer (SCLC) in January 2014. 

Her disease recurred and progressed in the chest, abdomen and pelvis after treatment with 

cisplatin, etoposide and concomitant radiation, prophylactic cranial irradiation (PCI), 

carboplatin and irinotecan, palliative radiation to the pelvis, and temozolomide. She 

started participation in an anti-PD1 immunotherapy trial in 2015 and continued on this 

study for more than 3 years. She has been off all therapy for the past 2 years, with no 

evident disease. While highly exceptional, her experience serves as a proof of principle 

that this disease can respond durably to immunotherapy.

Nina Beaty writes:

“Starting with the obvious, what I am not is a ‘regular’ non-small-cell lung cancer 

[NSCLC] patient. When I joined the outpatient lung cancer support group, I was the sole 

SCLC-er at the table. Thus, I became quite familiar with what NSCLC-ers had to endure, 

often including some form of lung surgery that curtailed their activity due to difficulty 

breathing. Since surgery is not typically an option for SCLC, I never had any, and was 

able to breathe just fine. Compared to the others, this was a huge plus in my book. The 

downside was that I felt I was more likely to die within a year if my SCLC treatments 

stopped being effective. It was a very intense time, like being forced at gunpoint to drive 

through a tunnel that had an unknown destination. For a normally cheery person like me, 

I felt uncharacteristically compelled to review the worthiness of my life and figure out 

what my burial plans could be. SCLC has such a bad reputation that it’s still hard for me 

to hope I will continue to survive. Since the doctors have called me a “super responder”, I 

would love to see more research focused on what factors might have contributed to this. 

Knowing I had those factors might have given me hope earlier in my treatment.”
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Fig. 1 |. Common sites of metastasis in SCLC.
Primary small-cell lung cancer (SCLC) tumours tend to be centrally located and are often 

bulky at presentation. Common sites of metastatic spread include lymphatic spread to hilar 

and mediastinal lymph nodes and haematogenous spread to the contralateral lung, the brain, 

liver, adrenal glands and bone. Circulating tumour cells are common in patients with SCLC 

and are found as both isolated cells and small clusters. RBC, red blood cell.
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Fig. 2 |. SCLC incidence and survival statistics.
a | Age-adjusted incidence of small-cell lung cancer (SCLC) in the USA for the period 

1975–2017. SCLC incidence in the USA has been declining following trends in cigarette 

use. Although SCLC was substantially more common in men than in women in the 1980s, 

the difference in incidence between the sexes has narrowed to essentially equal disease 

incidence by 2017. Data are from the Surveillance, Epidemiology, and End Results (SEER) 

registry database. b | SCLC survival probability over time by stage at time of diagnosis. 

SCLC survival according to clinical tumour–node–metastasis (TNM) stage using Union for 

International Cancer Control eighth edition criteria147. An alternative staging system, that of 

the Veterans Administration Lung Study Group (VALSG), distinguishes between limited-

stage disease (Limited; confined to one hemithorax and a single radiation port) and 

extensive-stage disease (Ex)148. TNM stages I–III generally correspond to limited-stage 

disease and TNM stage IV to extensive-stage disease in the VALSG staging system (vertical 

colour bar). The disease frequency at diagnosis by TNM stage I–IV is indicated. Part b 
adapted with permission from REF.147, Elsevier.
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Fig. 3 |. Major genetic alterations and molecular subtypes of SCLC.
a | The inactivation of RB1 and TP53 (encoding retinoblastoma-associated protein (RB) and 

p53, respectively) is a near-ubiquitous event in human small-cell lung cancer (SCLC) 

tumours. Four major molecular subtypes, SCLC-A, SCLC-N, SCLC-P and SCLC-Y, have 

been described on the basis of high expression of the transcription factors ASCL1, 

NEUROD1, POU2F3 and YAP1, respectively130. SCLC-P and SCLC-Y show a less 

neuroendocrine phenotype than SCLC-A and SCLC-N. Within the less/non-neuroendocrine 

category, a rare subtype with high expression of the transcription factor ATOH1 has been 

reported79. SCLC-A tumours have been proposed to comprise two distinct subtypes (SCLC-

A and SCLC-A2), with SCLC-A2 distinguished from SCLC-A by its expression of other 

factors, such as HES1 (REF.131). A few other genetic and epigenetic alterations have been 
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associated with specific subtypes, including the differential expression of MYC family 

members and mutations in NOTCH family genes, but most recurrent mutations are found in 

all subtypes. b | Chromosome level copy-number alterations reported by clinical next-

generation sequencing of tumours from 409 patients with SCLC. Amplified genes (AMP; 

red) and homozygous deleted genes (HOMDEL; blue) are plotted for each chromosome. 

Selected genes of interest, with chromosomal locations and frequency in SCLC tumours 

(percentage in parentheses) are indicated. Data in part b are from MSK-IMPACT 

sequencing233.
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Fig. 4 |. Histopathology of SCLC tumours.
a | A prototypical ‘pure’ small-cell lung cancer (SCLC), as defined by the WHO 

histopathological classification of SCLC. This tumour demonstrates expression of the classic 

neuroendocrine markers CD56 and chromogranin A (CHGA). INSM1 is a neuroendocrine 

marker that is positive in two of the four major molecular subtypes of SCLC, SCLC-A and 

SCLC-N, which are defined by their high expression of the transcription factors ASCL1 and 

NEUROD1, respectively. In this example, additional staining reveals consistent expression 

of ASCL1, with scattered NEUROD1-positive cells. b | Combined SCLC. This example 

demonstrates a predominant area with classic SCLC features, including the expression of 

CD56 and INSM1, along with a discrete subdomain with contrasting squamous (SQ) cell 

carcinoma features, including a more abundant cytoplasm and the expression of cytokeratin 

5 (CK5), CK6 and p40. H&E, haematoxylin and eosin. Images courtesy of Natasha 

Rekhtman (Memorial Sloan Kettering Cancer Center, USA).
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Fig. 5 |. Approaches to SCLC treatment by stage.
Drugs that received full and accelerated FDA approvals are included. Rare cases of small-

cell lung cancer (SCLC) presenting as isolated pulmonary nodules (tumour–node–metastasis 

(TNM) stage I) may be amenable to surgical resection or treatment with stereotactic ablative 

radiotherapy (SABR) and adjuvant chemotherapy. More commonly, localized or locally 

advanced disease (TNM stages I–III) is treated with concomitant chemoradiotherapy 

(ChemoRT), with consideration of prophylactic cranial irradiation (PCI) in responding 

patients. Metastatic disease (TNM stage IV) is treated with chemotherapy with or without a 

PDL1 inhibitor (PDL1i; chemoIO), followed by maintenance PDL1i therapy for up to 1 

year. The role of consolidative chest radiotherapy (Consolidation RT) in the context of 

chemoIO is unclear. For recurrent disease, current approved agents for second-line treatment 
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in the USA include topotecan and lurbinectedin; for third-line and beyond, the indicated 

anti-PD1 immunotherapy drugs can be considered but their role is also unclear in patients 

treated with first-line chemoIO.
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Fig. 6 |. Representative therapeutic targets of interest in SCLC.
a | Antitumour immunity. Antibodies disrupting the PD1–PDL1 interaction have 

demonstrated clinical efficacy in small-cell lung cancer (SCLC). An antibody blocking the T 

cell-inhibitory receptor TIGIT and a bispecific T cell engager (BiTE) cross-targeting DLL3 

on SCLC tumour cells and CD3 on T cells are currently in clinical trials in patients with 

SCLC (phase III NCT04256421 and phase I NCT03319940, respectively). Antibodies 

blocking CD47 , the ‘don’t-eat-me’ signal for macrophages, have shown activity in 

preclinical models128. b | Cell cycle and DNA damage repair pathways. Concomitant loss of 

TP53 and RB1 in SCLC abrogates multiple cell cycle checkpoints, increasing the 

dependence on remaining regulators of proliferation and DNA damage repair. Many key 

targets highlighted are being actively pursued in completed and upcoming clinical trials. The 

effect of EZH2 is indirect via the modulation of SLFN11 (REF.77). c | Growth and survival 

signalling pathways. Dependency screens implicate PKA and mTOR as essential kinases in 

SCLC46,234. BCL-2, a key regulator of apoptosis, is highly expressed in many SCLC 

tumours, and several studies suggest synergy between the inhibition of PI3K–mTOR and 

BCL-2 in SCLC69,70,235. This strategy, targeting mTOR and BCL-2, is currently being 

tested in a phase I/II trial (NCT03366103). d | Epigenetic regulators. The histone 

acetyltransferases CREBBP and EP300 are frequent and mutually exclusive targets of 

inactivating mutations in SCLC24. Preclinical data support the increased sensitivity of these 

CREBBP-inactive or EP300-inactive tumours to histone deacetylase inhibitors41. The 

inhibition of the histone demethylase LSD1 in SCLC cell lines activates NOTCH signalling, 

inhibits ASCL1 expression and may have subtype-selective activity in SCLC40 (not shown). 

The histone methyltransferase EZH2 is highly expressed in SCLC236 and is implicated in 

both SCLC chemoresistance77 and immune escape237. EZH2 inhibition with chemotherapy 
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is currently being explored in a phase I/II clinical trial of patients with recurrent SCLC 

(NCT038979798).
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Table 1 |

Frequently altered genes in SCLC

Gene Frequency in SCLC 
(%)

Alteration Main function

TP53 89 Inactivating mutation; deletion Tumour suppressor; stress response; transcription regulation

RB1
64

a Inactivating mutation; deletion Tumour suppressor; cell cycle regulation; transcription repression

KMT2D 13 Inactivating mutation; deletion Tumour suppressor; histone modification; chromatin remodelling

PIK3A 7 Activating mutation Oncogene; PTEN–mTOR signalling pathway

PTEN 7 Inactivating mutation; deletion Tumour suppressor; PTEN–mTOR signalling pathway

NOTCH1 6 Inactivating mutation Tumour suppressor; cell–cell signalling

CREBBP 5 Inactivating mutation; deletion Tumour suppressor; acetyltransferase (histone and non-histone 
proteins); chromatin remodelling; transcription regulation

FAT1 4 Inactivating mutation; deletion Tumour suppressor; cell–cell signalling

NF1 4 Inactivating mutation; deletion Tumour suppressor; RAS signalling pathway

APC 4 Inactivating mutation; deletion Tumour suppressor; WNT signalling pathway

EGFR 4 Activating mutation Oncogene; RAS signalling pathway

KRAS 3 Activating mutation Oncogene; RAS signalling pathway

NOTCH3 2.9 Inactivating mutation; deletion Tumour suppressor; cell–cell signalling

ARID1A 2.9 Inactivating mutation; deletion Tumour suppressor; chromatin remodelling; transcription regulation

PTPRD 2.7 Inactivating mutation; deletion Tumour suppressor; chromatin remodelling

ATRX 2.4 Inactivating mutation; deletion Tumour suppressor; cell–cell signalling

TSC2 2.3 Inactivating mutation; deletion Tumour suppressor; PTEN–mTOR signalling pathway

EP300 2.1 Inactivating mutation; deletion Tumour suppressor; chromatin remodelling

SCLC, small-cell lung cancer.

a
RB1 loss of function mutations may be underestimated in targeted exon sequencing24. Data are from MSK-IMPACT233 sequencing of over 400 

SCLC tumours.

Nat Rev Dis Primers. Author manuscript; available in PMC 2021 June 04.


	Abstract
	Epidemiology
	Incidence and prevalence
	Risk factors

	Mechanisms/pathophysiology
	Key genetic lesions underlying SCLC
	Molecular pathways affected in SCLC
	Cellular pathways affected in SCLC
	Drivers and trajectories of metastasis
	Immune evasion
	An emerging molecular classification

	Diagnosis, screening and prevention
	Signs and symptoms
	Diagnostic work-up
	Staging
	Pathology
	Immunohistochemistry.
	Cytology.
	Differential diagnoses.

	Screening and prevention

	Management
	Early-stage SCLC
	Surgery.
	Radiation.

	Locally advanced SCLC
	Metastatic disease
	Follow-up

	Quality of life
	Outlook
	References
	Fig. 1 |
	Fig. 2 |
	Fig. 3 |
	Fig. 4 |
	Fig. 5 |
	Fig. 6 |
	Table 1 |

