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Abstract

The interferons (IFNs) are cytokines with important antineoplastic and immune modulatory 

effects. These cytokines have been conserved through evolution as important elements of the 

immune surveillance against cancer. Despite this, defining their precise and specific roles in the 

generation of antitumor responses remains challenging. Emerging evidence suggests the existence 

of previously unknown roles for IFNs in the control of the immune response against cancer that 

may redefine our understanding on how these cytokines function. Beyond the engagement of 

classical JAK-STAT signaling pathways that promote transcription and expression of gene 

products, the IFNs engage multiple other signaling cascades to generate products that mediate 

biological responses and outcomes. There is recent emerging evidence indicating that IFNs control 

the expression of both traditional immune checkpoints like the PD-L1/PD1 axis, but also less well 

understood “intracellular” immune checkpoints whose targeting may define new approaches for 

the treatment of malignancies.
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1. Introduction

The interferons (IFNs) were originally described as soluble factors with antiviral properties 

[1–3]. Years later it was understood that the biological functions of these cytokines extend 

well beyond their antiviral activities and that they have important immune-modulatory and 

antineoplastic effects [4–9]. It is now well established that IFNs are key elements of the 

immune surveillance against cancer and have important antineoplastic activities when 

administered to patients suffering from various types of cancers by exerting both direct 

effects on the malignant cells, as well as indirect effects on cells of the immune system [10].
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There are three known types of IFNs: I, II and III. Type I (IFNα/β) and type III (IFNλ) IFNs 

are produced by many different types of mammalian cells, whereas the only type II IFN, 

IFNγ, is produced mainly by T cells and natural killer (NK) cells [11–13]. Once secreted, 

the different IFNs bind to specific cell surface receptors to initiate biochemical signals that 

mediate their biological effects. The different IFN receptors have each two binding subunits 

and include the Type I (IFNα/β) receptor (IFNAR1 and IFNAR2), the Type II (IFNγ) 

receptor (IFNGR1 and IFNGR2), and the Type III (IFNλ) receptor (IFNLR1 and IL10R), 

respectively [11–13]. The binding of the different IFNs to their corresponding receptors 

triggers activation of multiple intracellular signaling cascades that ultimately drive the 

expression of IFN-stimulated genes (ISGs) that control cell cycle progression, proliferation, 

apoptosis, differentiation, migration, and survival [12–14].

After the realization that IFNs have important antitumor activities in the late 70’s and early 

80’s, there was high hope and expectation that the use of these cytokines as therapeutic 

agents was going to dramatically transform cancer treatment for many types of tumors and 

cure many patients [15–18]. With time it became clear that IFN-treatment will not meet this 

very high expectation. Nevertheless, over the years IFNs have had a major impact in the 

treatment of several malignancies and they improved the survival of hundreds of thousands 

of patients with specific types of cancer, including different hematologic malignancies, 

melanoma, renal cell carcinoma, and Kaposi’s sarcoma [14, 19]. However, a complicating 

factor of IFN-treatment has been the substantial toxicity of these cytokines when used at 

high doses, and this has been a limiting factor in a number of cases [14, 19].

The early clinical studies using IFNs underscored the need for a better understanding of the 

mechanisms by which these cytokines mediate direct antitumor effects and elicit immune 

responses. This is particularly important in the current medical era, with emerging new 

immune therapeutic approaches resulting in improved outcomes for patients with previously 

fatal malignancies [20]. Surprisingly, activation of IFN-signaling pathways and downstream 

expression of ISGs has been shown to correlate with either response or resistance to immune 

therapies [21–23]. The complex mechanisms by which IFNs impact anti-tumor immune 

responses are still far from being completely understood. Dissecting and defining these 

mechanisms may allow the development of novel immune therapeutic approaches that 

circumvent pro-tumorigenic IFN-activated resistance mechanisms, while at the same time 

promoting IFN-dependent antitumor immunity. New insights on the direct and indirect 

antitumor effects of IFNs resulting from research in the last few years have uncovered new 

treatment opportunities and potential therapeutic combinations that are currently being 

exploited or may be investigated in the future [24].

2. Overview of non-canonical signaling pathways in the regulation of ISG 

expression

The Type I and II IFN receptors are expressed widely in mammalian cells [13, 14, 25–29], 

while the Type III IFN receptor appears to show more tissue selectivity towards epithelial 

cells [3, 30]. Engagement of all three types of IFN receptors (IFNRs) results in activation of 

JAK/STAT signaling pathways [13, 26–32]. The engagement of JAK/STAT cascades appears 
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to be a “universal” or so called “classical” [27, 28] or “canonical” [31] pathway, required for 

transcription and ultimate expression of specific ISGs with interferon stimulating responsive 

elements (ISRE) in their promoter region. This definition of Jak-Stats as “classical” or 

“canonical” is more reflective of historical events that led to the discovery of the pathway 

rather than proof that these pathways constitute the single or main cellular mechanism by 

which IFN-responses occur [32]. Notably, the initial discovery of Jaks and Stats was from 

scientists in the IFN-signaling field [reviewed in 13, 26–28] and subsequently impacted 

many other cytokine and growth factor research fields. However, IFN-responses involve 

activation of additional IFN- cellular cascades, called “non-canonical” signaling pathways, 

which are required for the optimal transcription and translation of IFN genes and their 

products (Fig. 1) [13, 28, 32]. Although the term “non-canonical” is used to describe these 

cascades, the function of all these signaling pathways appears to be essential and critical for 

the generation of the biological effects of IFNs on malignant cells and/or for induction of 

antiviral responses. These pathways include broadly MAP kinase (MAPK) pathways, mTOR 

pathways and guanine exchange factor (GEF) involving pathways (Fig. 1). Activation of 

MAP kinase or mTOR pathways leads to signals that control ISG transcription, ISG mRNA 

translation, or both, with specific elements or responses accounting for regulation of these 

processes. In addition, MAP kinase- or mTOR-generated signals directly or indirectly 

modify STAT function, underscoring the requirement for coordination of different IFN-

generated signals for optimal induction of biological outcomes (Fig. 1) [13, 28, 32].

2.1 Regulation of STAT phosphorylation by non-canonical signaling pathways

There is extensive evidence that IFN-dependent serine phosphorylation of Stats plays a key 

and essential role for optimal transcription of ISGs [reviewed in 13, 28]. Several elements/

components of non-canonical pathways have been implicated in serine phosphorylation of 

Stat1 in response to either Type I and/or Type II IFN signaling, including protein kinase C-

delta (PKCδ) [33, 34], phosphoinositide 3-kinase (PI3K) [35], TNK1 [36], calmodulin-

dependent kinase II (CamKII) [37], mammalian target of rapamycin (mTOR) [38, 39], 

cyclin-dependent kinase 8 (CDK8) [40], and CDK9 downstream of sirtuin 2 (SIRT2) 

deacetylation [41]. Other recent studies have implicated Type I IFN-dependent 

phosphorylation at serine 354 in the transactivation domain of Stat3 via the TANK-binding 

kinase 1 (TBK1) in the negative regulation of Stat3 activity [42], while phosphorylation of 

Stat2 on serines 287 and 734 negatively regulates Stat2 transcriptional activity [43, 44]. 

Importantly, another recent study demonstrated that in addition to serine phosphorylation, 

threonine phosphorylation at specific residues also exerts important regulatory effects. 

Specifically, threonine 387 in Stat2 lies on a CDK consensus and appears to have negative 

regulatory effects on Stat2-mediated transcriptional activation [45].

It should be noted that some of the non-canonical pathways that modify the function of the 

canonical (STAT) pathway, also exhibit important regulatory effects on the induction of IFN-

responses, unrelated to modification of STAT pathways. For instance, as outlined below, the 

PI3K pathway plays a key role in IFN-signaling, by controlling mTOR activation and 

ultimately mRNA translation and production of key ISG proteins that mediate IFN-

responses [reviewed in 13, 26–28, 46]. Beyond the phosphorylation of Stat1 by PKCδ and 

other PKC isoforms [28, 47], there is also evidence that IFN-activated PKC pathways 
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mediate a variety of other functions, such as ion channel modulations in neurocortical 

pyramidal neurons [48].

2.2 MAP kinase pathways in IFN-signaling

The p38 MAPK pathway plays key and essential roles in IFN-signaling and is activated by 

all different IFN types (I, II, III) [reviewed in 13, 28]. This signaling cascade is required for 

optimal transcription of ISGs in the Type I IFN system, via STAT-unrelated transcriptional 

mechanisms [13, 28]. Similarly, there has been previous extensive evidence for important 

regulatory roles of the ERK pathway in the control of IFN-responses [reviewed in 13, 28]. 

Importantly, the activation of IFN-induced MAP kinase pathways results in downstream 

activation of MNK kinases [reviewed in 28, 49] that play key and essential roles for mRNA 

translation of ISGs in malignant cells [50, 51] and cells of the immune system [52]. 

Importantly, the function of MNK kinases appears to be essential for the generation of the 

suppressive effects of IFNs on both normal and malignant hematopoietic cells [50, 51, 53], 

underscoring the critical role of these signals in the control of IFN-responses. Other key 

effectors downstream of the IFN-activated p38 MAPK pathway appear to be Sprouty (Spry) 

proteins 1, 2 and 4, which control IFN-responses downstream of the IFN-activated MAP 

kinase pathway, acting as negative regulators of downstream signals and generation of IFN-

biological effects [54]. Altogether, there has been extensive evidence over the years that 

MAPK pathways are critical elements of IFN-signaling and that engagement of these 

cascades results in signaling events that are essential for mediating important cellular 

responses, such as transcription, mRNA translation and protein expression of ISGs. With the 

increasingly recognized roles of IFNs in immune-mediated effects and cancer 

immunotherapy, these pathways are potential target modulators for immune responses in 

cancer, as discussed below.

2.3 mTOR pathways in IFN-signaling

The mTOR kinase mediates signals critical for mRNA translation, cell metabolism, and cell 

proliferation of normal cells [46, 55]. At the same time, dysregulation of mTOR pathways 

during tumorigenesis plays key roles in malignant cell transformation and survival, mRNA 

translation of mitogenic genes and aberrant cell proliferation [56–58]. Although the pathway 

is generally discussed in the context of proliferation or mitogenic signals, observations in the 

early 2000s demonstrated that Type I IFN treatment activates mTOR effectors in different 

types of sensitive malignant hematopoietic cells [59–61]. Subsequent work established that 

the activation of this pathway occurs downstream of the PI3K/AKT pathway and is 

important for mRNA translation of IFN-sensitive genes, including genes whose transcription 

is controlled by JAK-STAT pathways [62–64]. These discoveries addressed an important 

outstanding issue in the IFN-signaling field, as up to that time the mechanisms of mRNA 

translation of ISGs had not been elucidated. They also established that the AKT/mTOR 

pathway is not an exclusively mitogenic pathway, but it is also engaged and utilized by 

growth suppressive cytokines [reviewed in 65, 66].

The accumulating evidence implicating the mTOR kinase in the IFN-response led to further 

studies aimed to explore whether different mTOR complexes are involved in the generation 

of IFN-responses. The mTOR kinase is present, as the common catalytic subunit, in two 
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distinct complexes, mTORC1 and mTORC2 [55–58, 65–67]. mTORC1 components include 

Raptor and mLST8; while mTORC2 includes Rictor, mLST8, and SIN1 [55–58, 65–67]. 

Our group provided the first evidence for activation of mTORC2 complexes by the Type I 

IFN receptor [68]. The initial studies demonstrated surprising important functions of these 

complexes in the control of both ISG transcription and mRNA translation [68]. Further 

studies established that transient or stable disruption of Rictor or Sin1 expression results in 

defects in the formation of STAT-DNA binding complexes, providing a mechanism by which 

mTORC2 complexes control Type I IFN-dependent transcription [69]. Similarly, the Type II 

IFN receptor was also found to activate mTORC2 mRNA translation of type II IFN-

stimulated genes and Rictor was shown to be essential for the generation of type II IFN-

dependent antiviral and antiproliferative responses [70]. Surprisingly, disruption of Sin1 

results in decreased Type II IFN-dependent tyrosine phosphorylation of Stat1 and this 

appears to be the mechanism by which it controls Type II ISG-transcription [71]. The same 

studies demonstrated that SIN1 interacts with the Type II IFNR, suggesting that the effects 

of SIN1 on Stat phosphorylation and gene transcription reflect a possible upstream 

regulatory role for SIN1 on IFNγ-signaling, at the Type II IFN receptor level [71].

The importance of mTOR pathways in both Type I and II IFN-biological responses is further 

underscored by more recent studies that demonstrated that modulation of mTOR activity 

controls IFNγ-dependent, Stat1-mediated, human and mouse mesenchymal stem cell 

immunomodulation [72] and that IFNβ enhances mesenchymal stromal stem cell 

immunomodulatory function through both Stat activation and mTOR-regulation of glucose 

metabolism [73]. Other recent studies have established that inflammatory interferon 

activates HIF-1α-mediated epithelial-to-mesenchymal transition via engagement of the 

mTOR pathway [74]. Altogether there is strong accumulating evidence suggesting an 

important role for mTOR complexes in the induction and regulation of the biological effects 

of IFNs. The recent discovery and description of CDK9 mTOR-like complexes (CTORC) in 

leukemia cells [75], raises the possibility of involvement of these complexes in the IFN-

pathway as well, and this is something that should be examined in future studies.

2.4 ULK1 pathways in IFN signaling

ULK1, the mammalian homolog of the UNC-51 kinase of Caenorhabditis elegans [76], is a 

highly conserved serine/threonine kinase ubiquitously expressed in human adult tissues and 

exhibits important regulatory effects on autophagy [77–79]. Previous studies have shown 

that AMPK phosphorylates ULK1 on serine (Ser) 556, promoting its engagement into 

autophagy-related pathways, while activated mTORC1 phosphorylates ULK1 on Ser758 and 

prevents autophagy by disrupting the interaction between ULK1 and AMPK [80].

There has been recent evidence by our group and others implicating ULK1 in the control of 

the innate immune response [81–85]. Previous studies demonstrated that cyclic guanosine 

monophosphate-adenosine monophosphate (cGAMP) synthase (cGAS) binds cytosolic DNA 

leading to the synthesis of cGAMP, which activates the stimulator of interferon genes 

(STING) and consequent IRF3 activation, leading to Type I IFN production [86, 87]. In a 

subsequent study, cGAS-mediated synthesis of cGAMP was found to trigger 

dephosphorylation of ULK1 on Ser556, igniting downstream phosphorylation of STING on 
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Ser366, an event resulting in STING degradation and suppression of type I IFN production 

[81]. This novel function of ULK1 appears to be a negative-feedback control mechanism, 

aimed to regulate the extent of innate immune responses, and could have important 

implications in the effectiveness of cancer immunotherapies [81,88]. Interestingly, although 

de-phosphorylation of ULK1 on Ser556 is involved in inhibition of STING-dependent Type 

I IFN expression [81], IFNα/β-treatment induces phosphorylation of ULK1 at the mTORC1 

phosphorylation site, Ser758, but not at Ser556 [82]. Our studies have shown that 

engagement of ULK1 downstream of the IFNAR is required for full phosphorylation/

activation of p38 MAPK and transcription of ISGs involved in the generation of Type I IFN-

dependent anti-neoplastic effects and responses [82] (Fig. 2). Thus, ULK1 plays a central 

role in Type I IFN signaling and complements the function of the canonical type I IFN-

activated JAK/STAT1 pathways [82]. Notably, in that study it was also definitively 

established that the effect of ULK1 on selective ISG transcription is independent of its 

regulatory effects on autophagy [82]. As IFN-dependent AKT/mTORC1 activation is only 

required for mRNA translation of ISGs [64], it is possible that AKT/mTORC1 induces 

phosphorylation of ULK1 on Ser758 blocking its pro-autophagic functions, and another type 

I IFN-activated upstream ULK1 kinase (UULKK) induces phosphorylation of ULK1 on 

other amino acid residues triggering its transcriptional-related activity. Future studies should 

aim to identify and characterize these putative UULKKs (Fig. 2).

Beyond its involvement in the Type I IFN system, ULK1 is also activated during IFNγ- 

engagement of the Type II IFN receptor. We recently demonstrated that ULK1 binds and 

phosphorylates the MAPKKK MLK3 upon IFNγ stimulation, which in turn is required for 

activation of the MAPK ERK5 and transcriptional regulation of specific ISGs, in an 

autophagy-independent manner [83] (Fig. 2). Notably, RNA sequencing analysis revealed 

decreased expression of IFNγ-dependent genes involved in viral defense response and 

regulation of inflammatory responses, and increased IFNγ-mediated induction of genes 

involved in T cell activation in the absence of ULK1 expression [83]. Thus, engagement of 

ULK1 pathways downstream of the IFNGR seems to be essential for the tight regulation of 

immune anti-tumor and responses (Fig. 2). Further studies are warranted to fully elucidate 

the role of ULK1 in IFN signaling and whether its effects are cell type-specific.

2.5 SLFN proteins and regulatory effects on IFN signaling

The schlafen (SLFN) proteins are members of a family of IFN-stimulated genes that 

includes several human and mouse members with important regulatory roles on key cellular 

functions [89–91]. Extensive work from us and others in recent years has established that 

distinct mouse and human SLFNs are implicated in many important cellular activities, 

including proliferation, growth and cell cycle progression, translational control, cell 

migration and differentiation, as well as regulation of antiviral and immune responses [92–

104]. There has been also evidence implicating certain human SLFNs in the 

pathophysiology of human diseases. SLFN5 expression has been shown to correlate with 

gastric carcinoma development on background of metaplasia [105], while SLFN14 

mutations have been implicated in the development of a syndrome involving severe 

thrombocytopenia and platelet secretion defects, associated with excessive bleeding [106]. 

Moreover, heterozygous deletion of the human SLFN gene loci region on chromosome 
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17q12 has been associated with an immunodeficiency syndrome [107] reminiscent of the 

elektra phenotype in mice [108]. Remarkably, recent studies have provided evidence that 

human SLFN11 plays a key role in mediating the antitumor effects of some types of 

chemotherapeutic agents and, in some cases, its expression may correlate with response to 

treatment [109–115]. Similarly, mouse Slfns were also shown to mediate the effects of 

bleomycin in mouse models of idiopathic pulmonary fibrosis [116].

There is now a significant amount of evidence that has established that SLFN proteins have 

been implicated in the generation of IFN-responses, both in terms of antiproliferative/ 

antineoplastic effects, as well as generation of antiviral responses [89, 92–95]. These 

responses may depend on the cellular context and other, yet to be identified, co-existing 

factors. Human (SLFN5) [92, 95] and mouse (Slfn2, 3, 5) [93, 94] schlafens have been 

shown to suppress tumor growth and/or motility or invasiveness in renal cell carcinoma and 

malignant melanoma. Moreover, there appears to be a correlation between high levels of 

SLFN11 expression and an “IFN-gene signature” in breast cancer [96] and small cell lung 

cancer [115], as well as a correlation of high SLFN11 expression with PD-L1 expression in 

small cell lung cancer [115]. SLFN11 is also both IFN-inducible and has anti-HIV1 

properties [104], suggesting that it may be part of the Type I IFN response to HIV infection 

[90]. On the other hand, under different contexts SLFN proteins may unexpectedly mediate 

opposing effects and suppress antitumor and antirviral responses. It was recently shown that 

in glioblastoma (GBM) SLFN5 promotes motility and invasion of GBM cells, while high 

expression of the SLFN5 gene is associated with worse clinical outcomes in GBM patients 

[117]. The mechanisms underlying the tumorigenic effects of SLFN5 in GBM appear to 

involve interaction of SLFN5 with Stat1 and repression of Stat1 transcriptional activity and 

consequent suppression of ISG expression [117]. These findings from our group have 

suggested the existence of a negative-feedback loop activated during engagement of the 

Type I IFN receptor that may account for suppression of antitumor immune responses in 

GBM and possibly other selected tumors [117]. Notably, we recently observed that mouse 

Slfn2 also suppresses mouse IFN-dependent transcription of genes and that targeted 

disruption of the mouse Slfn2 gene results in enhanced IFN-inducible antiviral responses 

[101]. In that case the mechanism appears to be related to the interaction of Slfn2 with the 

protein phosphatase 6 regulatory subunit 1 (PPP6R1), ultimately resulting in decreased 

activation of nuclear factor kappa B (NF-κB) signaling [101]. These findings have 

established that SLFNs can in certain cases suppress the immune response by interacting 

with elements of the IFN-signaling machinery. We therefore propose the term “intracellular 

immune checkpoints” to describe this SLFN-involving cellular processes. Future studies 

should determine if other SLFNs, beyond SLFN5, may be playing similar roles and whether 

specific SLFN targeting may provide an approach to enhance responses to cancer 

immunotherapy treatments.

3. Antitumor Immune responses and non-canonical versus canonical IFN- 

pathways

The possibility that IFNs promote host’s anti-tumor responses was first raised from studies 

in which IFNα treatment increased survival [118] and inhibited the growth and formation of 
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lung metastases [119] in mice inoculated with IFN-resistant cancer cells. Moreover, 

injection of immunocompetent mice with a neutralizing antibody to IFNα/β, which did not 

affect the growth of malignant cells in vitro, increased tumor growth and decreased survival 

of the mice, indicating that endogenous Type I IFNs play an inhibitory role against tumor 

growth by acting on host cells [120]. Similarly, IFNγ was shown to promote anti-tumor 

responses by acting on both host immune cells and directly on tumor cells [121–123]. 

Consistent with the important activities of IFNs as mediators of immune antitumor 

responses, subsequent work demonstrated that defects in IFN-signaling are commonly found 

in cells of the immune system or in the tumor cells themselves in different types of 

malignancies [122, 124, 125]. Moreover, mutations of genes that encode for protein 

elements of IFN-signaling pathways or defective expression of such elements frequently 

accounts for resistance to cancer immunotherapy [126–129]. It is worth noting that immune 

checkpoint blockade (ICB) therapies are highly effective, but only in a fraction of patients, 

due to primary and acquired resistance mechanisms occurring in the majority of cancer 

patients [126, 130, 131].

ICB therapies are designed to overcome tumor immune escape mechanisms by enhancing T-

cell-mediated anti-tumor activities [132]. The FDA has approved four ICB treatments in the 

United States: ipilimumab, an anti-CTLA-4 monoclonal antibody (mAb) for melanoma, two 

anti-PD-1 mAbs, pembrolizumab (for melanoma and lung cancer) and nivolumab (for 

melanoma, Hodgkin’s lymphoma, and lung, kidney, bladder, and head and neck cancers), 

and an anti-PD-L1 mAb, atezolizumab, for the treatment of bladder, lung, and triple-

negative breast cancer [20, 133, 134]. PD-1 and CTLA-4 are cell surface receptors that play 

complementary roles in the regulation of adaptive immune responses. PD-1 is expressed on 

activated T cells, B lymphocytes, and NK cells and controls T-cell exhaustion in peripheral 

tissues, whereas CTLA-4 inhibits T-cell activation at early time points in the lymph nodes 

[20, 135]. PD-L1, often expressed by tumor cells, is one of the ligands for the PD-1 receptor, 

blocking T-cell mediated recognition and tumor killing. The expression of the two known 

PD-1 receptor ligands, PD-L1 and PD-L2, is induced by both Type I and II IFNs [123,136–

140]. The IFNγ-JAK-STAT-IRF1 pathway has been shown to primarily induce expression of 

PD-L1, with IRF1 binding to its promoter, whereas both IFNβ and IFNγ equally induce 

expression of PD-L2 in melanoma cells, with IRF1 and STAT3 binding to its promoter 

[136]. Other studies have shown that IFNγ induces expression of PD-L1 in lung cancer cells 

through activation of both JAK/STAT3 and PI3K/AKT pathways [137]. Similarly, IFNβ 
regulates PD-L1 expression in lung cancer cells through JAK/STAT/IRF9- and PI3K-

dependent signaling pathways [138]. Also, IFNα induces PD-L1 expression on dendritic 

cells, via engagement of both STAT3 and p38 MAPK pathways [139], while JAK/STAT1 

signaling is required for IFNγ-induced expression of PD-L1 in hematopoietic malignant 

cells and resistance to natural killer cell lysis [140]. Taken together, these studies suggest 

that cooperation of canonical and non-canonical signaling pathways is essential for IFN-

dependent PD-L1/PD-L2 expression. In a recent study, Benci et al. [141] demonstrated that 

sustained IFNγ signaling promotes PD-L1-dependent and -independent resistance to ICB 

and that both IFNγ and IFNα/β pathways are required to maintain this resistance. In another 

study, dual ICB combination therapy with both anti-CTLA-4 and anti-PD-1 antibodies was 

associated with reduced anti-tumor immune responses in both animal models and melanoma 
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patients due to high levels of IFNγ production [142]. Moreover, using breast cancer, 

lymphoma and fibrosarcoma mouse tumor models, Takeda et al. [143], showed that in vivo 
activation of cytotoxic T cells results in copy-number alterations in the tumor cells leading to 

the emergence of immune-resistant cancer cell clones. These effects were dependent on the 

presence of IFNγ within the tumor microenvironment, suggesting that IFNγ-induced 

genetic instability in the tumor cells could be one of the acquired resistance mechanisms 

against ICB [143]. Based on these studies [141–143], one can conclude that targeting IFNγ 
signaling could revert resistance to ICB. However, it could also negatively affect the positive 

effects of IFNγ signaling required for response to ICB [144]. This dual and complex role of 

IFN signaling in malignancies supports the need to identify means to selectively and 

specifically modulate its effects to support anti-tumor immune responses without promoting 

immunosuppression. In line with this thought, Gao et al. [145] showed that JAK2/STAT1 

signaling activation is essential for the antiproliferative effects of IFNγ against lung cancer 

cells, whereas inhibition of PI3K activation promotes the anti-proliferative effects of IFNγ 
and decreases PD-L1 expression in these cells.

4. Conclusions and Future Directions

There has been a lot of progress in recent years in understanding the mechanisms by which 

IFNs mediate biological responses. The need to fully understand these mechanisms appears 

to be more urgent and impactful than ever because of the rapid advances in the cancer 

immunotherapy field and the central role that IFNs play in the control of immune checkpoint 

regulation in cells of the immune system. The better understanding of IFN-signaling 

mechanisms, especially as it relates to the roles of non-canonical pathways, creates new 

opportunities for targeted immune modulation approaches for the treatment of malignancies. 

For example, based on very recently acquired knowledge, ULK1 is a central pathway in 

IFN-signaling and its selective targeting might enhance IFNγ-dependent expression of 

immunostimulatory genes and reduce expression of immunosuppressive ones [83], while 

potentiating STING-dependent expression of type I IFNs [81]. Furthermore, the possibility 

that some of these non-canonical pathways, such SLFNs, may act as “intracellular immune 

checkpoints” raise the possibility for the development of a completely new class of 

antitumor drugs that target these IICs (Fig. 3).
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Highlights

• IFNs activate many signaling pathways in cancer cells

• Non-canonical, non-STAT, pathways are critical for the IFN-antitumor 

response

• IFN-engaged mTORC1 and/or mTORC2 pathways control ISG mRNA 

translation and/or transcription

• SLFNs control IFN-induced STAT responses in some malignant cells and may 

act as intracellular immune checkpoints
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Figure 1: 
Non-canonical pathways and related interactions in the generation of Type I IFN 

antineoplastic responses. ISG - Interferon stimulated genes, STAT - signal transducers and 

activators of transcription, MAPK - Mitogen activated protein kinase, SLFN - Schlafen, 

mTOR - mammalian target of rapamycin, GCD - GTPases/Cyclin Dependent Kinases.
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Figure 2: 
ULK1 pathways in Type I and II IFN signaling. UULKK – Upstream ULK1 kinase; ISGs – 

IFN-stimulated genes; IRE - IFN responsive elements; PE – Positive Effectors; NFE - 

Negative Feedback effectors
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Figure 3: 
Proposed model on the roles of classical immune checkpoints and putative “intracellular 

immune checkpoints” related to IFN-signaling pathways. IICs - Intracellular Immune 

Checkpoints, NC-ISPs - Non-Canonical IFN Signaling Pathways
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