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Abstract

Harnessing the immune system to treat cancer through inhibitors of Cytotoxic T-Lymphocyte 

Antigen-4 (CTLA-4) and Programmed Death Ligand-1 (PD-L1) has revolutionalized the 

landscape of cancer. Rational combination strategies aim to enhance the antitumor effects of 

immunotherapies, but require a deep understanding of the mechanistic underpinnings of the 

immune system and robust preclinical and clinical drug development strategies. We review the 

current approved immunotherapy combinations, before discussing promising combinatorial 

approaches in clinical trials and detail innovative preclinical model systems being used to develop 

rational combinations. We also discuss the promise of high-order immunotherapy combinations, 

and novel biomarker and combinatorial trial strategies.

Introduction

For most of the last century, research focused on exploiting the antitumor effects of different 

classes of therapeutics exclusively on cancer cells (1). Over the past decade, however, we 

have gained a deeper undersrtanding of the role of the immune system in mediating such 

responses. This has led to a revolution in preclinical, translational and clinical efforts 
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dedicated to harnessing the immune system for the development of novel 

immunotherapeutics in cancer medicine (2). Recent studies have led to a vast range of 

immunotherapies being assessed in clinical trials and subsequently achieving U.S. Food and 

Drug Administration (FDA) approval.

Immunotherapy has allowed the field of oncology to turn a critical corner where long term 

survival and even durable cures are achievable for patients with metastatic solid tumors. The 

current reality, however, is that the majority of patients enter care with immune “cold” 

tumors which respond poorly, if at all, to existing checkpoint therapies (3) (Figure 1). 

Immune suppression in these cancers resists reversal with checkpoint blockade due to its 

multi-modal nature encompassing suppressive cytokines, lack of antigen presentation, 

apoptotic triggering of T-cells, and hostile metabolic states and nutrient deprivation. These 

additional layers of tumor immune privilege must be peeled back therapeutically in order to 

reveal the benefits of T-cell checkpoint blockade and drive tumor regression. Thus, 

combinations of multiple immune interventions are necessary to reverse the “cold” tumor 

state, yet most of the existing “backbone” immunotherapies already approach the ceiling of 

tolerability even when used at doses that are clearly below their maximum efficacy (4–6).

The limitations in efficacy observed with the first wave of approved immunotherapies, 

primarily involving immune checkpoint inhibitors, have illustrated a need to improve our 

understanding of the mechanistic underpinnings of the immune system and thereby develop 

more robust preclinical and clinical drug development strategies (2). A better understanding 

of primary and secondary resistance is also required to improve patient outcomes to single 

agent immunotherapy strategies (7). Improving our insights into mechanisms of response 

and resistance are the crucial next steps for the future development of immunotherapeutics.

In this article, we begin by detailing the successes observed to date with FDA-approved 

immunotherapy combinations in different tumor indications, before reviewing promising 

strategies currently in clinical trial testing. We then describe the use of preclinical models to 

optimize the development of rational combinations. Finally, we discuss the development of 

high-order immunotherapy combination strategies and novel biomarker and clinical trial 

strategies to support the development of combination approaches.

Current progress in the clinic with FDA approved IO combinations

A number of immune checkpoint-based combination treatments are now FDA approved 

(Table 1; Figure 2), with nivolumab (anti-PD-1) and ipilimumab (anti-CTLA4) the earliest 

immuno-oncology (IO) combination to receive FDA approval in September 2015 for the 

first-line treatment of metastatic melanoma (8,9). Although the treatment of metastatic 

melanoma had already been transformed by single-agent immune checkpoint blockade, the 

nivolumab-ipilimumab combination improved objective response rates to 58% and median 

progression-free survival (mPFS) to 11.5 months compared to nivolumab monotherapy 

(ORR 45%, mPFS 6.9 months) or ipilimumab alone (ORR 19%, mPFS 2.9 months). Despite 

a high rate of discontinuation due to toxicities, a survival benefit was apparent even for 

patients who discontinued treatment with median overall survival (OS) not reached at 60 

months (10,11).
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Following approval for metastatic melanoma, the combination of nivolumab and ipilimumab 

has been similarly successful for other tumor sites. While single-agent immune checkpoint 

blockade has been strikingly effective in mismatch repair deficient (dMMR) cancers (12), 

this is improved by a combination approach. Nivolumab with lower dose ipilimumab 

(1mg/kg) for the second-line treatment of metastatic dMMR colorectal cancer showed a 60% 

objective response rate (ORR) (13,14) compared to 31% ORR with nivolumab alone (15). 

There was a relatively lower toxicity rate than that seen with higher dose ipilimumab 

(3mg/kg) in melanoma, with 32% patients experiencing grade 3 – 5 toxicities.

Similarly, in the first-line treatment of intermediate or poor-risk advanced clear cell renal 

cell cancer, nivolumab-ipilimumab studied in CheckMate 213 resulted in improved patient 

outcomes, with an ORR of 42%, in contrast to 29% with sunitinib (16,17). As 1mg/kg 

ipilimumab appeared to reduce toxicity without losing efficacy, clinical trials are 

investigating this dose of ipilimumab with nivolumab (3mg/kg)in metastatic melanoma, with 

early data indicating comparable efficacy and lower grade 3 to 5 toxicity rates (18).

Multikinase inhibitors have been the only effective and approved treatments in advanced 

unresectable HCC until the recent approval of immune checkpoint inhibitors (19). The 

CheckMate 040 study included comparison of nivolumab/ipilimumab combinations as 

second line treatment: comprising Arm A (nivolumab 1mg/kg plus ipilimumab 3mg/kg 

every 3 weeks for 4 doses), Arm B (nivolumab 3mg/kg plus ipilimumab 1mg/kg every 3 

weeks for 4 doses followed by maintenance nivolumab every 2 weeks), or Arm C 

(nivolumab 3mg/kg every 2 weeks plus ipilimumab 1mg/kg every 6 weeks). ORR was 

similar between arms A, B, and C at 32%, 31%, and 31%, respectively. Arm A experienced 

the longest survival at 23 months (95% CI, 9-NA), versus 12 (95% CI, 9–15), and 13 months 

(95% CI, 7–33), with Arms B and C, respectively. Arms B and C, however, at 1mg/kg 

ipilimumab carried fewest Grade 3–4 toxicities (29% Arm B/31% Arm C vs. 53% Arm A) 

(20). FDA approval has been granted to combination IO using the Arm A dosing.

In the same trial in HCC, the triplet combination of cabozantinib, nivolumab and ipilimumab 

was compared to cabozantinib and nivolumab, including in the first line setting. While 

median OS has not been reported, the triplet arm had a mPFS of 6.8 months versus 5.5 

months in the doublet arm, albeit with higher Grade 3–4 toxicities of 71% versus 42%, 

respectively (21). While results from this study are awaited, a number of IO plus other anti-

cancer treatments have already been granted FDA approval, as discussed below.

IO combinations with chemotherapy

Combinations with chemotherapy have, to date, been the most numerous approved regimens 

in various indications. A number of studies in non-small cell lung cancer (NSCLC) have 

demonstrated a survival advantage when immune checkpoint blockade is administered in 

combination with chemotherapy. Pembrolizumab given in combination with pemetrexed and 

platinum chemotherapy as first line treatment of non-squamous NSCLC without EGFR or 

ALK mutations resulted in a median OS of 22.0 months (95% CI 19.5–25.2) versus 10.7 

months (95% CI 8.7–13.6) (22–24). Similarly in squamous NSCLC, pembrolizumab in 

combination with carboplatin and taxane (paclitaxel or nab-paclitaxel) chemotherapy 

demonstrated an improved mOS at 17.1 months (95% CI 14.4–19.9) compared to 
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chemotherapy alone (11.6 months, 95% CI 10.1–13.7) (25,26). Moreover, following 

consolidation chemo-radiotherapy for stage III NSCLC, durvalumab was shown to lead to a 

significantly improved mPFS (17.2 vs. 5.6 months) and OS (NR vs. 29.1 months), 

respectively (27–29).

While combination IO treatments were early successes in the treatment of NSCLC, small 

cell lung cancer (SCLC) initially proved challenging – studies of maintenance anti-PD-1 and 

anti-CTLA4-chemotherapy combination treatment did not result in improved PFS (30,31). 

However, a study of the PD-L1 inhibitor atezolizumab in combination with carboplatin and 

etoposide for extensive stage SCLC resulted in improved median OS of 12.3 months (10.8–

15.8) versus 10.3 months (9.3–11.3) in the placebo arm (32,33), leading to FDA approval in 

the first line setting. Similarly, the CASPIAN Phase 3 trial assessed durvalumab in 

combination with platinum and etoposide chemotherapy as first-line treatment of extensive 

stage small-cell lung cancer, demonstrating an improvement in overall survival when 

compared to platinum etoposide alone (13.0 months v 10.3 months, HR: 0.73; p=0.005) 

(34).

Successful approaches have similarly been reported in breast cancer. Triple negative breast 

cancer (TNBC) is the most immunogenic of breast cancers, with high TILs particularly in 

tumors with features of “BRCAness” (35–37). Initially, however, single agent anti-PD-1 

treatment was disappointing with a response rate of only 5.3% (38). More recently, 

atezolizumab in combination with nab-paclitaxel resulted in improved OS (25.0 v 18.0 

months) in PD-L1 positive tumors (with PD-L1≥ 1% on tumor infiltrating immune cells) 

although not in unselected TNBC (39). Interestingly, a similar approach with paclitaxel (as 

opposed to nab-paclitaxel, a regimen which does not require steroid immunosuppression for 

potential allergic reactions) did not improve patient outcomes (https://www.fda.gov/drugs/

resources-information-approved-drugs/fda-issues-alert-about-efficacy-and-potential-safety-

concerns-atezolizumab-combination-paclitaxel). These conflicting results highlight the need 

for robust preclinical studies and the development of rational combinations.

Head and neck squamous cell carcinoma (HNSCC) was an early success in single agent 

checkpoint studies with combination approaches now approved in the frontline HNSCC 

setting (40). Recurrent or metastatic HNSCC has a dismal prognosis of 6–9 months and 

standard chemotherapy combination regimens lead to significant comorbidity and involve 

taxing treatment schedules (41). Pembrolizumab plus chemotherapy was compared to 

standard of care 5-fluorouracil plus platinum chemotherapy with cetuximab given as first 

line therapy for incurable or metastatic HNSCC. The immunotherapy combination resulted 

in improved median OS of 13.0 versus 10.7 months in the standard of care group (HR, 0.77, 

p=0.0067) (42). This OS benefit was observed despite no significant change in PFS, 

highlighting the importance of this clinical endpoint in trials of immunotherapy.

IO combinations with antiangiogenics

Anti-angiogenic agents, targeting vascular endothelial growth factor (VEGF) or its receptor 

(VEGFR), are promising agents in combination with immune checkpoint blockade. The 

increased density of high endothelial venules (typically surrounded by tertiary lymphoid 

structures) in the tumor microenvironment promotes T-cell trafficking to the tumor and 
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subsequent response to anti-PD-1 therapy (43). This has been borne out in the clinical 

setting, with many combinations of antiangiogenics and immune checkpoint blockade now 

approved. Accelerated FDA approval was granted to the combination of pembrolizumab 

plus lenvatinib for the treatment of patients with advanced endometrial carcinoma that is not 

microsatellite instability high (MSI-H) or mismatch repair deficient (dMMR). Efficacy was 

demonstrated in 108 patients with metastatic endometrial carcinoma that had progressed 

following at least one prior line of therapy on the KEYNOTE-146 (NCT02501096) trial 

(44,45). The overall response rate at 24 weeks was 38.0% (63.6% in patients with MSI-H 

tumors (n=11) and 36.2% in patients with MSS tumors (n=94)). For previously treated 

patients, the overall median DOR was 21.2 months, median PFS was 7.4 months and median 

OS was 16.7 months. Of note, grade 3 or 4 treatment-related adverse events occurred in 

83/124 (66.9%) patients.

A quadruple combination regimen (ABCP) with the anti-angiogenic bevacizumab with 

atezolizumab (anti-PD-L1) and carboplatin-paclitaxel chemotherapy in nonsquamous 

NSCLC demonstrated improved mPFS compared to bevacizumab-carboplatin-paclitaxel (8.3 

vs 6.8 months). This study also reported a PFS benefit in patients with EGFR or ALK 
mutant NSCLC, which is recognized to have a lower benefit rate from single agent 

PD-1/PD-L1 inhibitors (46–48). The FDA approval however did not include the EGFR and 

ALK mutant patient subgroup.

Successful strategies to treating RCC have focused on the sensitivity of RCC to immune 

checkpoint inhibitors and anti-angiogenic agents, especially given its insensitivity to 

cytotoxic chemotherapy (49). The combination of bevacizumab with atezolizumab in renal 

cell cancer did not lead to an improvement in overall survival at interim analysis (33.6 

months v 34.9 months) despite demonstrating a superior median PFS versus sunitinib alone 

(11.2 months v 8.4 months, p<0.02) (50). However, single agent checkpoint inhibition has 

also been added to the oral small molecule axitinib in two phase III trials. Compared to 

sunitinib, the combination of pembrolizumab and axitinib led to a benefit in 12-month OS of 

89.9% versus 78.3% (HR, 0.53; 95%CI 0.38–0.74; p<0.01) (51). Axitinib has also been 

assessed in combination with avelumab in untreated RCC and compared to sunitinib. While 

OS for this combination is yet to be reported, there was PFS benefit of 13.8 months (95% CI 

11.1-NR) versus 8.4 months (6.9–11.1) with sunitinib (52). Both combinations have 

subsequently been FDA approved.

In the IMBrave150 open-label phase 3 trial randomized trial in patients with resectable HCC 

naive to systemic therapy, the combination of the angiogenesis inhibitor bevacizumab added 

to atezolizumab was compared to sorafenib in a 2:1 fashion. While the median OS has not 

been published, overall survival at 12 months was 67.2% for the IO combination vs. 54.6% 

for sorafenib. Median PFS was improved in the IO group (6.8 months (95%CI, 5.7–8.3) vs. 

4.3 months (95%CI, 4.0–5.6)), respectively. Grade 3 or 4 advers events were comparable 

between both arms, at 56.5% with the IO combination and 55.1% with sorafenib (53).

Also in HCC, the Phase 1b/2 trial combining lenvatinib and pembrolizumab regardless of 

PD-L1 status resulted in an ORR of 36.4% (8/22) but with 91% experiencing grade 3 or 4 
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toxicities (54). This combination is now undergoing evaluation in a randomized phase 3 

study (NCT04199104).

IO combinations with targeted agents

The combination of BRAF and MEK inhibitors for the treatment of BRAF mutant metastatic 

melanoma transformed outcomes in this aggressive subgroup, achieving rapid disease 

control, and now also approved in the adjuvant setting(55–57). In IMspire150, vemurafenib, 

cobimetinib given in combination with atezolizumab improved progression free survival for 

patients with unresectable or metastatic melanoma (15.1 months, 95% CI 11.4 – 18.4) versus 

vemurafenib, cometinib with placebo (10.6 months, 95% CI 9.3 – 12.7). DOR was also 

improved with the addition of checkpoint inhibition (21.0 (95% CI 15.1 – NE) vs 12.6 

months (95% CI 10.5 – 16.6)) with, importantly, little change in Grade 3 – 4 toxicity rate 

(79% vs 73%). FDA approval was granted in July 2020, with a first cycle of vemurafenib 

and cobimetinib, and atezolizumab from cycle 2 onwards. Interestingly, a subsequent Phase 

3 trial of the anti-PD1 antibody spartalizumab in combination with BRAFi dabrafenib and 

MEKi trametinib in patients with BRAF-mutated metastatic melanoma was reported at the 

2020 ESMO Annual Meeting failed to reach its primary endpoint and raised questions 

regarding the utility of triplet combinations in melanoma (58).

These encouraging results with regulatory approval in multiple indications with combination 

immunotherapy strategies have provided the continued impetus for a large number of 

combination studies currently in pre-clinical trial testing, and selected studies are detailed in 

Table 2.

Promising immunotherapy combination strategies in clinical trials

The generally safe and durable responses observed with single agent PD-1/L1 inhibitors has 

established this class of agents as the therapeutic backbone of the majority of immune 

checkpoint inhibitor combinations (59). The tantalising promise of durable antitumor 

responses has understandably fed enthusiasm for further combination studies, with 2,251 

active PD-1/L1 inhibitor-based combination trials of 295 targets in 2019 (source 

www.cancerresearch.org) (Figure 2).

In metastatic melanoma, high dose anti-CTLA-4 agent ipilimumab at 10mg/kg versus 

3mg/kg was found to have increased median OS (15.7 months versus 11.5 months; p=0.04) 

at a significant cost of increased treatment-related adverse events (37% versus 18%) (5). 

Conversely, the anti-PD-1 pembrolizumab has been found to have similar efficacy with 

similar rates of toxicity at two different weight-based dosing schemes in NSCLC (60) and 

melanoma (61). Exposure-response modeling in melanoma for nivolumab at doses of 0.1mg/

kg-10mg/kg every two weeks has shown linear pharmacokinetics with time-varying 

clearance and without exposure being a significant predictor of response or survival. The 

FDA has since recommended a flat-dosing scheme for both nivolumab and pembrolizumab.

PD-L1 antibodies have been found to more effectively block PD-1 signaling in vivo (62) and 

have less PD-L2 interaction (63). This difference has led some to propose differential 

efficacy and AEs, although prospective head to head comparisons have not been made. A 
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meta-analysis of 11,379 clinical trial patients found improved survival and progression free 

survival with anti-PD-1 inhibitors compared to anti-PD-L1 while adverse events were 

similar (64). PD-1 inhibitors have associated with increased risk of grade 3–4 colitis (0.85% 

vs. 0.34%, relative risk; 2.52) compared to PD-L1 inhibitors (65).

In preclinical studies, the combination of anti-CTLA4 and anti-PD-1 results in an 

approximate doubling of the tumor rejection rate compared to anti-PD-1 alone. In the tumor 

microenvironment of immune checkpoint inhibitor combination treated tumors, increased 

CD8+ cytotoxic T-cell and CD4+ T effector (Teff) cell tumor infiltration can be observed, 

along with reduced immunosuppressive T-regulatory (Treg) and myeloid derived suppressor 

cells (MDSCs) (66,67). As discussed, this combination regimen has led to improved 

response rates and overall survival in metastatic melanoma, dMMR colorectal cancer and 

HCC.

Expanding dual checkpoint blockade approaches

Building on the principle of dual checkpoint inhibition with anti-CTLA-4 and anti-PD-1/L1 

to enhance responses, targeting other checkpoints in combination with PD-1/L1 inhibition 

has been an area of intense investigation with the aim of improving responses and 

optimizing toxicity rates. The immune checkpoint indoleamine 2, 3-dioxygenase 1 (IDO1) 

results in suppression of Teff and natural killer (NK) cells in the tumor microenvironment, 

and increases Treg and MDSC activity, leading to immunosuppression (68,69). The 

combination of anti-CTLA-4 and IDO1 inhibition in mice bearing B16 melanoma resulted 

in improved survival compared to anti-CTLA-4 alone; however, single agent IDO1 

inhibition did not demonstrate antitumor effects in vivo (70). Similarly, in clinical trials 

assessing IDO1 inhibitors, single agent therapy led to limited or no responses (71,72). A 

number of phase II studies of IDO1 inhibitors in combination with anti-PD-1 therapy across 

solid tumors demonstrated promising response rates and reduced toxicities (13–24% grade 

3–4 toxicity) compared to CTLA-4 plus PD-1/L1 inhibitor combinations (73). However, 

research enthusiasm was significantly reduced when a phase III trial in checkpoint-naïve 

metastatic melanoma demonstrated no PFS benefit of the IDO1 inhibitor (epacadostat) in 

combination with pembrolizumab versus the PD-1 alone (mPFS: 4.7 vs 4.9 months) (74). 

This study also highlighted the need for a better understanding of the underlying biology, 

and the need for improved biomarkers for therapeutic efficacy and patient selection.

T-cells in a chronically exhausted state can co-express multiple checkpoints, suggesting that 

the targeting of a number of these, concurrently or sequentially, may be required to invoke 

an antitumorigenic response (75). Studies have reported that the upregulation of the TIM-3 

immune checkpoint correlates with resistance to anti-PD-1 agents in both in vivo and 

clinical samples (76–78). Early results from the combination of anti-TIM3 anti-PD1/L1 

therapies have been promising. The AMBER trial of a TIM-3 inhibitor in combination with 

an anti-PD-1 inhibitor reported partial responses in 4 of 31 patients with advanced NSCLC 

who had previously progressed on PD-1/L1 inhibitors (79). A trial of the anti-TIM-3 agent 

LY3321367 given as a single agent reported one partial response out of 23 in a patient who 

had previously progressed on CTLA-4 plus PD-1 inhibitor combination therapy, with results 

from the combination of LY3321367 and PD-L1 inhibitior LY3300054 awaited (80).
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The immune checkpoint LAG-3 mediates the suppressive activity of Tregs and regulates T-

cell expansion and homeostasis, with blockade of LAG-3 resulting in an antitumorigenic 

TH1 phenotype (81–83). In preclinical models, the combination of PD-1 and LAG-3 

blockade resulted in improved tumor rejection compared to PD-1 inhibition alone (84–86). 

A phase II combination trial of LAG525, targeting LAG-3, and the PD-1 inhibitor 

spartalizumab in 121 heavily pretreated patients with a range of solid tumors demonstrated 1 

complete response and 11 partial responses (9.9%) with combination therapy, although no 

responses were observed with single agent LAG-3 blockade (87). Another LAG-3 inhibitor 

relatlimab in combination with nivolumab demonstrated a response rate of 11.5% in 61 

patients with melanoma whose disease had progressed on prior anti–PD-1/L1 therapy. This 

response rate appeared to be 3.5-fold higher in patients with LAG-3 expression of at least 

1% versus those with less than 1% LAG-3 expression (88). This relatlimab combination is 

now being assessed in a Phase 2/3 trial in patients with advanced melanoma in the first line 

setting. In a smaller study of 15 patients with the anti-LAG-3 agent MK-4280 with 

pembrolizumab, 4 of 15 patients achived a partial response (89). The lack of single agent 

LAG-3 inhibitor activity has led to caution; however, there is a clear and urgent clinical need 

to understand mechanisms of resistance to current immunotherapy regimens so as to develop 

new options for patients who develop progressive disease on immunotherapy. The 

PLATforM study aims to address this critical question with the combination of LAG525 and 

spartalizumab, as well as spartalizumab in combination with c-MET or CDK4/6 inhibition 

or anti-IL-1β in patients with advanced metastatic melanoma (90). This adaptive trial design 

represents a rational approach and may be a model for future clinical trials in the post-

immunotherapy space.

Bispecific Antibodies Development and Potential

The concept of dual checkpoint inhibition may lead to higher order combinations and will be 

expanded upon later in this review. An emerging approach that promises further specificity 

in targeting multiple checkpoints is the development of bispecific antibodies (91). This 

evolving technology allows a monovalent antibody that can target 2 or more receptors opens 

up multiple potential approaches to drug development in this space. Specifically, some of the 

first emerging bispecific antibodies are targeting 2 checkpoints such as bispecifics to PD-1 

and CTLA-4, allowing a more specific targeting of the CTLA-4 receptor on PD-1 positive 

cells and promises to uncouple efficacy from toxicity of this combination. The interesting 

characteristic of this approach is that depending on which receptor the bispecific has higher 

affinity to (e.g., PD-1) will define which cells will be targeted for inhibition of the second 

receptor (e.g., CTLA-4), and sometimes at hundreds of folds higher affinity (92) 

(NCT03517488).

From an immunotherapy resistance perspective, using bispecifics can allow targeting 

specific mechanisms of resistance such as TGFß or MET inhibition (93). For instance, a 

particulary interesting molecule that has a PD-L1 antibody and TGF beta-TRAP as the 

second part of the bispecific allows TGFß levels, a well described mediator of resistance in 

the tumor micronenvironment, to be modulated favorably, and this approach is currently in 

clinical testing alone or in combination (94) (NCT04349280). Virtually every mechanism of 

resistance described in this review could potentially be amenable to targeting by bispecific 
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antibodies. Bispecifics allow targeting specific cells as well, with CD3 bearing bispecifics 

called T cell engagers (TCE) or BiTE that could attach a T cell directly to a tumor cell and 

initiate an immune response that is MHC-independent (94). Trispecifics are also being 

develops with a focus on NK cells in so called TriNKETs (trispecific NK cell engager 

therapeutics). Those novel agents are entering the therapeutic armamentarium and will likely 

be used alone or in combination with other therapeutics including chemotherapy and TKIs 

allowing multi-pronged targeting of immunotherapy resistance.

Neoadjuvant combination immune blockade

Delivering combination immune checkpoint inhibition in the neoadjuvant setting takes 

advantage of the in situ tumor to stimulate immune responses, resulting in increased clonal 

expansion of T cells compared to adjuvant IO (95). Systemic immunosuppression is 

observed in the metastatic setting (96). and patients with metastatic disease have often 

experienced a prior treatment course including immunosuppressive treatments. It could be 

hypothesized, therefore, that treating at the earliest stage possible not only results in 

increased exposure to tumor antigens but also utilizes an active, responsive immune system 

which may improve long term systemic immunity.

In keeping with this, combination nivolumab-ipilimumab results in improved pathlogical 

complete response (pCR) rates in resectable melanoma compared to nivolumab alone (45% 

vs 25% in a 23 patient study), although with an increased toxicity cost (73% Grade 3 – 4 

toxicities vs 8%) (97). A randomized trial examined 3 different doses and schedules of the 

combination of ipilimumab and nivolumab in the neoadjuvant therapy of melanoma and 

conclude that 2 doses of ipilimumab at 1mg/kg and nivolumab at 3 mg/kg IV 3 weeks apart 

gave the optimal outcome of over 70% pCR rate and 30% toxicity and is the currently 

accepted neo-adjuvant regimen (98). Similarly in resectable colorectal cancer, neoadjuvant 

nivolumab-ipilimumab for 4 weeks resulted in pathological responses in 100% of MSI 

cancers, and 27% of MSS disease (99). Grade 3 – 4 toxicities were experienced by 13% with 

one patient (out of 40) requiring infliximab for checkpoint-induced colitis. In head and neck 

cancer, where palliative immunotherapy has been effective, neoadjuvant nivolumab-

ipilimumab resulted in responses in 69% of patients, with limited toxicity from this short 

course of treatment (100). Neoadjuvant combinations with chemotherapy or other standard 

of care agents are also promising, with combinations in breast cancer discussed below.

Exploiting co-stimulatory molecules to enhance antitumorigenic activity

Activating the immune system using co-stimulatory molecules in combination with anti-

PD-1/L1 has been shown to lead to improved outcomes by enhancing antitumorigenic 

activity. For example, activation of IL-2 signalling via CD122 results in activation of naïve 

CD8+ T-cells and also increases NK cell activity (101,102). The combination of the CD122 

agonist NKTR-214 and anti-PD-1 demonstrated promising results in preclinical models of 

NSCLC and colorectal cancer (103). In treatment-naïve metastatic melanoma, the 

combination of NKTR-214 and nivolumab resulted in an objective response rate of 53%, 

with 10 (24%) of 41 patients experiencing a complete response (104). This combination has 

now been granted breakthrough therapy designation from the FDA, expected to expedite this 

combination through ongoing phase III studies. Other co-stimulatory molecules, such as 4–
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1BB, OX-40 and GITR, similarly result in increased CD8+ and NK cell activity and reduced 

Treg mediated immunosuppression, with multiple phase I/II trials ongoing in combination 

with immune checkpoint blockade (105–107).

Innate immune stimulating agents, such as TLR9 or STING (STimulator of INterferon 

Genes) agonists, delivered intratumorally can prime the tumor microenvironment prior to 

immune checkpoint therapy. A number of TLR9 agonists (CpG-oligodeoxynucleotides) are 

in ongoing phase I – III studies in combination with anti-PD-1 and anti-CTLA4 immune 

checkpoint inhibition. A Phase Ib study of the TLR9 agonist SD-101 in combination with 

pembrolizumab resulted in an ORR of 78% in IO naïve patients with melanoma and 15% of 

checkpoint (anti-PD-1) refractory disease (108), with CD8+ and natural killer (NK) cell 

trafficking to the tumor site. A similar approach with lefitolimod and ipilimumab is ongoing 

in an all-comer study (109). Following promising results in Phase II, with 38% ORR in anti-

PD-1-refractory melanoma (110), the combination of tilsotolimod and ipilimumab is now 

under investigation in the Phase III study ILLUMINATE301 (111). Initial studies of 

intratumoral STING agonists have also demonstrated the ability of these agents to activate 

local immune responses and synergize with anti-PD-1 therapy (112,113), although mixed 

results from trials to date have demonstrated the need for patient selection for these 

approaches, and further pre-clinical studies to understand potential resistance mechanisms.

Immune checkpoint inhibition and CAR-T cell therapy

Chimeric antigen receptor (CAR)-T cells directly target tumor-specific antigens, 

independent of major histocompatibility complex expression, with successful outcomes in a 

number of haematological malignancies(114). However, replicating this success in solid 

tumors has proved challenging. One potential resistance mechanism is the upregulation of 

immune checkpoint expression common to solid tumors, causing CAR-T cells to become 

exhausted and ineffective. In mesothelioma, which has already demonstrated positive 

efficacy data with nivolumab-ipilimumab combination therapy (115), CAR-T cells targeting 

mesothelin followed by anti-PD-1 resulted in an ORR of 50% (7/14 patients) (116). CAR-T 

cells can also be manipulated using CRISPR-cas9 to disrupt PD-1 expression. The 

advantages of this approach include potential reduction in systemic effects of PD-1 

inhibition with a highly-specific PD-1 knockdown in tumor-targeted T cells only, as well as 

avoiding the need for repeated administrations of systemic anti-PD-1 (117). Both PD-1 

disrupted CAR-T cell therapy and combinations with systemic anti-PD-1 therapy are the 

subject of ongoing study in the early phase setting (118).

Improving patient outcomes with chemotherapy and radiotherapy combinations

The role of the immune system in response to chemotherapy has been noted since the 1970s, 

when studies assessing the mechanisms of action of anthracyclines demonstrated an 

improved response in immuno-competent murine models (119). Immunogenic cell death 

(ICD) has been proposed as a key mechanism resulting in an immune-infiltrated tumor 

microenvironment favorable for immunotherapy, suggesting that ICD-inducing regimens 

may synergize with immune checkpoint inhibitors (120). Ongoing chemotherapy-

immunotherapy combination trials are discussed in greater detail in other review articles 

(121). The combination of platinum chemotherapy and immune checkpoint blockade has 
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been successful in non-small cell lung cancer (22), with the immunogenic response 

generated by chemotherapy overcoming the lower response rates observed with anti-PD-1 

treatment alone in low PD-L1 expressing tumors (31). DNA damaging chemotherapy 

additionally activates the innate immune cGAS-STING pathway via cytosolic DNA, 

resulting in an immune rich microenvironment that may predict responses to checkpoint 

blockade (122–124).

Although taxanes do not directly cause immunogenic cell death, they decrease intratumoral 

immunosuppressive MDSCs and Tregs, augmenting cytotoxic T-lymphocyte activity 

(125,126). The combination of nab-paclitaxel and atezolizumab is approved for PD-L1 

positive metastatic triple negative breast cancer, but was not effective in the PD-L1 negative 

population (127). Alternative chemotherapy regimens may further improve patient 

outcomes, as illustrated by the ISPY-2 studies in neoadjuvant breast cancer with 

pembrolizumab and standard anthracycline-based neoadjuvant chemotherapy (128). In these 

studies, neoadjuvant pembrolizumab and paclitaxel followed by anthracycline-

cyclophosphamide resulted in pathological complete response (pCR) rates of 60% in triple 

negative breast cancer compared to 22% without pembrolizumab, and 30% vs 13% in 

hormone receptor positive/HER2 negative disease (129). In a similar setting, 4 cycles of 

pembrolizumab in combination with paclitaxel-carboplatin chemotherapy, followed by 

anthracycline-cyclophosphamide in triple negative breast cancer resulted in a pCR of 64.8% 

vs 51.2% without pembrolizumab. In this study, patients received adjuvant pembrolizumab 

or placebo for a further 9 cycles following resection, with follow-up ongoing (130).

DNA damage by radiotherapy is associated with a range of immunogenic effects, including 

activation of the cGAS-STING pathway, increasing neoantigen expression and upregulation 

of PD-L1 expression (131–133). Sequential chemoradiotherapy-IO has been shown to lead 

to significantly improved patient outcomes in stage III NSCLC (27,28), while a phase II 

study of concurrent anti-CTLA-4 plus radiotherapy in NSCLC suggested improved 

responses in patients previously resistant to anti-CTLA-4 given alone or in combination with 

chemotherapy (134). While over 100 trials of anti-PD-1/L1 therapy in combination with 

chemo/radiotherapy are ongoing (135), questions remain over the optimal dose and schedule 

of radiotherapy-immunotherapy combinations. For example, serial low doses of radiation 

have been shown to activate a STING-mediated immune response, while higher doses (i.e. ≥ 

12–18 Gy) instead activate TREX1, removing cytosolic DNA and preventing STING 

activation (136). Concurrent radiation may result in enhanced responses, but this may be 

dependent on the target (CTLA-4 vs. PD-1/L1), dose and delivery of the radiation using 

proton-beam or other approaches (137). While the abscopal effect of radiotherapy may be 

enhanced by immune targeting therapies, clinical evidence for this approach has thus far 

been largely confined to case reports, rather than large scale trials (138,139).

Activating innate immunity with DNA damage response inhibitors

DNA damage response (DDR) deficiency results in activation of the innate immune system 

via the critical cGAS-STING pathway, which is required for interferon expression in 

response to cytoplasmic DNA (140–142). A number of studies have now demonstrated 

cytoplasmic DNA and tumor-cell intrinsic activation of the STING pathway following 
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treatment with agents targeting the DDR, in particular poly(ADP-ribose) polymerase 

(PARP) inhibitors (143–146). PARP inhibition leads to activation of intratumoral dendritic 

cells and increased CD8+ infiltration via activation of the STING pathway. Interestingly, 

PARP inhibition also reduces the PARylation of STAT3, while increasing STAT3 

transcriptional activity and expression of PD-L1 (147). These studies suggest that PARP 

inhibition acts synergistically with immune checkpoint blockade in both DNA repair 

deficient (eg. BRCA1/2 mutant) and proficient cancers (148).

Early phase trials of PARP inhibitor plus immune checkpoint inhibitor combinations have 

been promising, with activity demonstrated in patients with advanced castration resistant 

prostate (149,150), triple negative breast (151) and ovarian cancers (152). This combination 

has demonstrated antitumor activity in BRCA1/2-wildtype TNBC, and platinum-resistant 

ovarian cancer, populations that are typically resistant to single agent PARP inhibitors. 

Importantly, bone marrow suppression typical of PARP inhibitor toxicity was shown to 

occur at similar rates to that observed with single agent therapy, and there were also no 

significant increase in immune-related toxicities.

Targeting the ATR/CHK1 pathway also results in activation of a STING-dependent immune 

response (145) and ATR inhibitors have demonstrated promising clinical activity in 

combination with durvalumab (153). There is also growing evidence for a number of DDR 

inhibitors in combination with immune checkpoint inhibitors, including those targeting 

WEE1 (154), ATM (155,156) and DNA-PK (157). With improved understanding of the 

impact of these novel DDR targeting agents on the immune response in specific patient 

subgroups, it is tempting to propose that future DDR inhibitor combination therapies will 

focus on targeting specific patient populations, based on the DNA repair capacity identified 

in individual tumors, in combination with immune targeting agents designed to appropriately 

modulate the tumor microenvironment.

Increasing tumor immunogenicity with molecularly targeted agents

A number of targeted therapies are recognized to increase the immunogenicity of tumors, 

and therefore are predicted to work synergistically with immune checkpoint blockade. For 

example, inhibitors of the mitogen activated protein kinase (MAPK) pathway result in 

increased expression of major histocompatibility complex 1 (MHC-I) on the tumor cell 

surface, with subsequent increase in antigen-specific T-effector cells and T-cell mediated 

cytotoxicity (122,158). This combination has been hampered in early clinical trials by 

associated increases in toxicity rates, with a trial of anti-CTLA-4 and the BRAF inhibitor 

vemurafenib terminated due to a high rate of hepatotoxicity (159). The addition of the MEK 

inhibitor trametinib, while reducing hepatotoxicity, resulted in colitis and bowel perforation 

in 2 of 7 patients receiving this triplet combination (160). More promisingly, a phase II study 

of BRAF and MEK inhibition with anti-PD-1/L1 therapy in treatment-naïve BRAF mutant 

melanoma reported tolerability (58% grade 3–5 toxicities vs. 27% in patients receiving 

BRAF and MEK inhibition alone) and improved PFS (12 month PFS 59% vs. 45%)(161). A 

phase III randomized trial in patients with unresectable stage IIIC-IV BRAF v600 mutant 

melanoma assessed vemurafenib plus cobimetinib with atezolizumab versus placebo with 

atezolizumab. In the triplet therapy group, progression-free survival was superior versus the 
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reference arm (15.1 vs. 10.6 months; HR 0.78; 95% CI 0.63–0.97; p=0.025), with minimal 

increases in grade 3–4 toxicities (79% v 73%), this study resulted in FDA approval of the 

triplet combination in the first line therapy of BRAF mutant metastatic melanoma (162). 

However, a phase III study of MEK inhibition with atezolizumab in heavily pretreated MSS 

colorectal cancer did not result in improved survival compared to standard-of-care 

regorafenib therapy alone (163).

Epigenetic modification by histone deacetylase (HDAC) inhibitors reduces the number of 

myeloid derived suppressor cells (MDSCs) in the tumor microenvironment in preclinical 

models, resulting in improved response to anti-PD-1 blockade (164,165). In addition, 

treatment with HDAC inhibition leads to upregulation of chemokines CXCL10 and CCL5 in 

the tumor microenvironment that, in turn, drives recruitment of antitumorigenic CD8+ T 

cells (166). A phase Ib/II trial of the HDAC inhibitor etinostat with pembrolizumab in 

patients with metastatic melanoma who had previously progressed on immune checkpoint 

therapy demonstrated responses in 10 (18.9%) of of 53 patients, including one complete 

response (167). Treatment with demethylating agents such as azacitdine upregulates MHC-I 

on tumor cells and also unmasks endogenous retroviruses, resulting in cytoplasmic dsRNA 

that activates innate immune responses, increasing tumor immunogenicity (37,168,169). A 

combination study of azacitidine and nivolumab demonstrated responses in relapsed or 

refractory acute myeloid leukaemia (170). However, a phase II study of azacitidine and 

pembrolizumab in microsatellite stable colorectal cancer demonstrated only 1 partial 

response out of 31 patients to the combination therapy (171).

Exploiting murine tumor models for optimal combinatorial development

Given our current superficial knowledge of the therapeutic effects of different combinations 

on the immune system, multiple preclinical tumor models have been developed to provide a 

deeper understanding of the mechanisms of action and to help predict the efficacy and safety 

of different immunotherapeutic interventions in cancer patients. As summarized in Table 2, 

many proof-of-principle preclinical studies involving a wide range of immunotherapy 

combinations have been conducted with different murine models. The results from these 

studies provide a compendium of immunotherapy combinations for future clinical 

assessment. While none of these murine models completely mirror the heterogeneity and 

adaptability of the antitumor immune network in cancer patients, each one has its unique 

value in the cancer immunotherapy research field. Therefore, understanding the pros and 

cons of each model can guide the optimal selection of appropriate murine tumor models for 

preclinical assessment of different immunotherapy combinations. Current murine tumor 

models may be summarized into three categories based on the types of immune systems 

involved: syngeneic, chimeric and humanized tumor models.

Syngeneic tumor models

Mouse models in this category are fully immunocompetent. Tumor development in these 

mice is induced either by inoculation of murine cell lines or by tissue-specific activation of 

oncogenic pathways. Due to the general ease of use, inoculating wild-type mice with 

established syngeneic tumor cell lines is by far the most commonly used approach to 
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generate syngeneic tumor models. Several inbred strains such as C57BL/6, BABL/C, 129/sv 

and DBA/2 have been used to generate a variety of murine cell lines to represent different 

cancer types, including but not limited to B16 (melanoma) (172), MCA205 (sarcoma) (173), 

A20 (lymphoma) (174), P815 (mastocytoma) (175), 4T1 (breast cancer) (176), 344SQ (lung 

cancer) (177), ID8 (ovarian cancer) (178), MB49 (bladder cancer) (179), and MC38 (180) 

and CT26 (181) (colon cancer). The majority of these tumor cell lines display a certain 

degree of genome instability, which results in the expression of tumor-specific antigens that 

may be recognized by the adaptive immune system, particularly T-cells (182,183). Since 

mice challenged with these tumor cells have intact murine immune systems, a 

“physiologically-relevant” tumor immune microenvironment can be achieved in these tumor-

bearing mice.

However, host mice used in syngeneic cell line models are commonly young and healthy 

inbred mice, which are housed in specific pathogen-free conditions. In addition, there is 

mounting evidence supporting a high divergence in immune responses among inbred mouse 

strains and cell lines. For example, the C57BL/6 strain is TH1-biased, while BALB/c and 

DBA/2 strains are TH2-biased (184). Discrepancies in the antitumor effects of IO 

combinations may thus be observed depending on the murine tumor cell line model chosen. 

Therefore, to increase the likelihood of successful clinical translation, the use of multiple 

murine tumor cell line models on a range of genetic backgrounds is encouraged. Moreover, 

introducing fundamental cancer-driven mutations into tumor cell lines or perturbing 

environmental factors in housing conditions, such as diet and microbiome, should be used to 

more broadly recapitulate interpatient heterogeneity.

Recent advances in technologies of in vivo genetic manipulation allow us to precisely 

control the timing, duration and tissue type of gene expression. Using these approaches, 

genetically engineered mouse models (GEMMs) have been applied in immunotherapy 

studies to better mimic the heterogeneity of the natural steps of tumor development in cancer 

patients. The Mouse Tumor Biology Database (http://tumor.informatics.jax.org) provides a 

comprehensive list of GEMM models for a variety of human cancer types (185). As tumor 

development in GEMMs is mainly driven by one or two genetic alterations in dominant 

oncogenes, these models generally have a low tumor mutation burden. Furthermore, de novo 
tumor growth in GEMMs provides sufficient time to trigger a broad range of 

immunosuppressive mechanisms within the tumor microenvironment. This lack of 

neoantigens and the profound immunosuppression make GEMMs typically highly resistant 

to cancer immunotherapy, sometimes even more so than clinically equivalent malignancies. 

For example, melanomas derived from the Tyr gene promoted BRAF-mutant PTEN loss 

model (186) have been demonstrated to be resistant to immune checkpoint inhibitors (187). 

Depleting Tregs also failed to control the development of tumors with transgenic expression 

of the RET receptor tyrosine kinase gene, suggesting that other immunosuppressive cells 

play an important role and replace immunosuppressive, tumor-promoting functions of Tregs 

(188). Therefore, effective immunotherapy strategies should consider including the 

inhibition of Treg migration into the tumor combined with neutralization of other 

immunosuppressive cells and factors in the tumor microenvironment (188). These models 

have now been used to address the challenges identified in cancer patients with low 

immunogenic tumors or immune-resistant tumors. Peng and colleagues utilized the BRAF 
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mutant-PTEN loss GEMM to demonstrate that inhibition of the oncogenic activation of the 

PI3K pathway by PTEN loss can sensitize tumors to immune checkpoint blockade therapy 

(189). Despite the expensive and time-consuming procedures required, GEMMs are 

currently the optimal models to use to evaluate the potential of IO combinations to overcome 

immune resistance, particularly resistance associated with genetic alterations.

Chimeric tumor models

Although syngeneic murine models provide an opportunity to characterize the 

immunological changes associated with IO combinations in the presence of an intact 

immune system, they cannot be used to test the human version of IO reagents due to cross-

species differences. To circumvent this limitation, chimeric murine tumor models have been 

developed by knocking in human immune-related genes. In these immunocompetent tumor 

models, the majority of immune compartments are murine-based, while the knocked-in 

human genes allow a portion of their immune system to be controlled by certain human 

immune factors. The first human knock in (KI) model was the HLA-A2 murine strain. Mice 

carrying a human MHC class I gene (HLA-A2.1) were created to evaluate the antitumor 

activity of HLA-restricted vaccination strategies (190). Since then, further models have been 

generated to study clinical grade immunomodulatory agents including anti-human CTLA-4, 

OX40 or Tim3 (191–193). These studies successfully confirmed the in vivo efficacy of 

immunomodulatory agents alone or in combination with other treatment modalities. 

Chimeric models, therefore, are valuable in validating combination effects of clinical grade 

reagents targeting novel immune regulators in vivo, with commercial services now available 

to generate customized models.

Humanized tumor models

To better represent tumor heterogeneity within cancer patients, efforts have been made to 

generate humanized tumor models. In these models, immunocompromised mice are partially 

reconstituted with the human immune system by transplantation of CD34+ hematopoietic 

progenitor cells (HPCs) from human umbilical cord blood, bone marrow or peripheral blood. 

The implantation of tumor tissues or cell lines derived from cancer patients in humanized 

host mice is used to induce tumor development. The NSG strain, which carries the NOD/

SCID IL2Rγ chain knockout and lacks functional T, B and NK cells, is most frequently 

employed as the host strain for humanized models. Additional genetic modifications have 

been recently performed in NSG and other immunodeficient mice to express human 

cytokines, including stem cell factor, M-CSF, GM-CSF and/or IL-3, which are essential for 

the growth and differentiation of HPCs and to support human myeloid reconsitution 

(194,195). The expression of human cytokines in these new strains, namely NSG-SGM3, 

NOG-ExL, MSTRG and MISTRG, significantly increases the engraftment rate of the human 

immune system (196). The efficacy of pembrolizumab in a CD8+ T cell-dependent manner 

was successfully reproduced in these humanized models (197,198).

However, antitumor immune responses in these models come largely from allogenic immune 

cells. Compared with natural tumor rejection through tumor-associated antigens, the 

antitumor immune responses mediated by allogenic rejection may be more intense. 

Moreover, the cost of humanized tumor models is dramatically higher than other two types 

Yap et al. Page 15

Cancer Discov. Author manuscript; available in PMC 2021 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



of models described above. Therefore, humanized tumor models are more suited for 

validating the efficacy and safety of the human versions of immunotherapy combinations 

than discovering novel combinations.

High order immunotherapy combinations

Highly active anti-retroviral therapy (HAART) consisting of four-drug combinations that 

completely suppress Human Immunodeficiency Virus (HIV) replication has evolved to 

become so efficacious yet tolerable that it can even be used as a routine prophylactic in “at 

risk” populations. HIV therapy began, however, with single, toxic drugs with limited 

efficacy which gained efficacy but even greater toxicity in two-drug combinations. It was 

only with the inception of truly virus-specific therapeutics that high-order, high-efficacy 

combination therapies became practical. In cancer, high-order (3 or more) immunotherapies 

have now begun to enter the clinic with promising initial signs against “cold” tumors. Much 

like HAART, however, the development of widely applicable and broadly efficacious 

multiple IO combinations will necessitate the development of more tumor-specific 

modulators of host immunity.

Due to the toxicities inherent in high order combinations of existing immunotherapies, these 

trials have thus far been limited to patients with metastatic “cold” cancers (Figure 1). In 

preclinical models of pancreatic ductal adenocarcinoma (PDAC), for example, only high 

order combinations of chemotherapy, T cell checkpoint blockade, and antigen-presentng cell 

activation via CD40 agonism could promote durable benefit and tumor regression (199,200). 

This combination of checkpoint blockade, CD40 agonist antibody and chemotherapy has 

recently reported promising Phase I clinical trial data in PDAC and final data are eagerly 

awaited (201). In this case, existing agents were combined successfully through thoughtful 

sequencing in order to avoid intolerable levels of additive toxicity.

In many cases, the ideal setting for high order IO combinations would neither necessistate 

dose-reduction to sub-optimal levels nor sequencing of component therapies. To this end, 

multiple immunomodulatory antibodies have entered the clinic having been engineered to 

act selectively within the tumor microenvironment, thus sparing the host from adverse 

events. These novel approaches can be broadly classified into conditionally active versus bi-

specific antibodies. The most advanced example of conditionally active antibodies are 

“probodies”, in which the antigen-binding region of the antibody is blocked by a peptide 

which is tethered to the antibody with a linker containing multiple cleavage sites for tumor-

selective proteases (202). In a Phase I trial of the PD-L1 probody CX-072, only 6% of the 72 

patients treated experienced a Grade 3 or greater adverse event and no AE-related 

discontinuations occurred (203). The alternative approach to tumor selectivity are bispecific 

antibodies in which one arm of the antibody, usually the higher affinity, binds to a tumor or 

tumor microenviroment selective antigen thus localizing the effect of the lower affinity 

active arm. The CD137 (4–1BB) and HER-2 bispecific antibody, PRS-343, in which 4–1BB 

activation is sequestered in the tumor microenvironment by HER-2 binding is one of the 

most advanced examples of this approach (204). While CD137 activation can cause liver 

toxicity in certain patients (4), this construct safely sequesters its activity to the tumor. 

PRS-343 was safe and well tolerated in the first-in-human phase I trial involving 53 HER2+ 
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patients with advanced solid tumors. Two patients achieved radiological responses, while 

other patients had stable disease. Importantly, PRS-343 demonstrated a potent increase in 

CD8+ T-cell numbers and proliferative index in the tumor microenvironment of responders, 

suggestive of 4–1BB agonism on T-cells. By localizing the effect of checkpoint blocking and 

co-stimulatory agonist antibodies to the tumor, these approaches set the stage for tolerable 

combinations of multiple synergistic immunotherapies, e.g. CTLA-4, PD-1 and 4–1BB 

inhibitor combination therapy.

An alternative emergent approach to multi-modal immunotherapy circumvents systemic 

toxicity concerns by administering some or all of therapeutics directly into the tumor itself. 

Innate immune agonists such as activators of Toll-like Receptors (TLR) or the STING 

pathway are injected intra-tumorally in a single lesion to generate T-cell responses which 

can then traffic to and eradicate distal sites of cancer (abscopal effect) (205). While clinical 

combinations with these therapies pair them with a single systemic checkpoint antibody, 

preclinical studies have demonstrated that as many as three immunomodulatory antibodies 

can be co-injected with a STING agonist resulting in superior capacity to eliminate non-

injected sites of disease (206,207). With this type of non-toxic scaffold to build upon, 

current efforts can focus on identifying systemic therapies to weaken the immune resistance 

of uninjected sites of cancer making it easier for the injection-mobilized T-cells to eradicate 

them.

While novel, less toxic immunotherapies will form the backbone of most emergent high 

order IO combinations, the effect of these therapies may be augmented and extended 

through the addition of FDA-approved, even over-the-counter, drugs which can contribute to 

antitumor immunity without significant toxicities. Extracellular adenosine, for example, 

plays a clearly established role in immune suppression in the tumor microenvironment 

(208). Although still pending approval in United States, the adenosine receptor blocking 

compound istradefylline is approved in Japan for the treatment of Parkinson’s disease where 

it has shown high tolerability (209). Such adenosine receptor antagonists may potentially be 

a promising addition to any immunotherapy combination (210). Multiple studies have 

demonstrated antitumor efficacy of inhibition of the renin-angiotensin system through 

decreased suppressive polarization and activation of tumor stroma (211). These drugs are 

commonly used to treat cardiovascular disease and would be a rational addition to 

immunotherapy combination regimens. Platelets have also been implicated in tumor immune 

suppression, which can be blocked by clopidogrel and over-the-counter aspirin (212). PDE5 

inhibitors may also have value through their capacity to inhibit myeloid derived suppressor 

cells (213). Further study is warranted to assess the capacity of these non-toxic, widely 

available drugs to augment tumor immunity; however, one or more could likely become key 

components of multi-modal immunotherapy combination therapy.

Finally, the greatest challenge to development of these high order combinations may not be 

toxicity or engineering, but rather finding a system in which the most effective combinations 

can be screened, so that only the most promising ones enter clinical trials. As discussed 

above, there are over 2250 trials evaluating various PD-1/ L1 inhibitor combinations, a 

number which is increasingly straining resources and the availability of appropriate patients 

to evaluate potential immunotherapies. The number of possible permutations involved in 
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developing five-drug IO combination therapies makes primary screening in patients 

impractical, if not impossible. In this setting, drugs must first be prioritized based on single 

agent efficacy, underlying biologic rationale for combination, and lack of additive toxicity. 

Potential combinations involving such agents can then be screened through appropriate 

murine tumor models of cancer to identify the most promising candidates for study in 

patient trials. Using such a defined development and screening approach and leveraging both 

existing therapies, novel engineering, and selective FDA-approved drugs may provide a path 

to multi-modal IO combinations, which approach the efficacy and tolerability of HAART 

regimens for HIV.

Novel biomarker and clinical trial strategies for combination approaches

Drug development to reverse resistance to immunotherapy needs to take into account 

multiple streams of knowledge being generated in the preclinical, translational, and clinical 

spaces. For instance, PD-L1 testing seems to predict a better response to immunotherapy 

across the board. However, due its poor ability to discriminate antitumor efficacy in cancers 

such as melanoma, it has not entered clinical practice as a useful test. However, given our 

increasing abilities to pathologically, genomically, and transcriptomally characterize cancers, 

we have a mandate to now hone drug development into better defined patient populations 

where therapeutic benefit can be augmented.

A recent effort initiated by SITC provided updated and improved clinical definitions of drug 

resistance to harmonize and standardize drug development efforts in the PD-1 inhibitor 

resistance space (214). Specifically, the SITC Resistance Taskforce defined three main 

clinical patterns of resistance to single agent anti-PD-(L)1 antibodies (1). Primary resistance 

that occurs while on treatment with single agent therapy; this pattern requires patients to 

have adequate exposure to the agent (at least 6 weeks), to have shown no evidence of 

therapeutic benefit (no CR or PR or SD>6 months), and to have a confirmatory scan to 

confirm progression (and predominantly to rule out pseudo-progression) (2). Secondary 

resistance is defined as tumor progression after an initial clinical benefit (achievement of 

radiological complete response (CR), parial response (PR), or stable disease (SD)>6 

months), and also requires a confirmatory scan (3). The third pattern defined in this effort, is 

recurrence or progression of the tumor after halting therapy. This definition assigns the 

pattern to be similar to either primary or secondary resistance depending on the setting of 

therapy (adjuvant, neo-adjuvant, or advanced disease) and the time from when therapy was 

discontinued (<12 weeks or >6 months).

Another clinical pattern of resistance is site-specific resistance, where patients may 

experience control of the disease in most of their body but have progressive lesions in one or 

two organs. The central nervous system (CNS) is a particularly relevant location and has 

emerged as a major therapeutic challenge. For instance, in melanoma, it has been reported 

that the CNS is the most frequent site of first progression on single agent checkpoint 

blockade (215). Moving forward, it will be important to include this population of patients 

with progressing brain metastases in trials of novel agents, so as to enhance our 

understanding of the intracranial activity of immunotherapeutic agents, as well as to develop 

more brain-penetrant agents, and approaches that tackle this most devastating complication 
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of cancer progression. This has been recognized by the FDA, which has issued guidance to 

increase the representation of patients with CNS metastases on clinical trials (216).

Improved patient selection on immunotherapy combination clinical trials may seem like an 

aspirational goal at this time, but all the elements now appear to be falling in place, and a 

concerted effort between academia and industry partners could indeed accelerate this 

approach to achieve improved patient outcomes. Some of the examples listed above provide 

context to this evolving immunotherapeutic landscape. For instance, the failure of the IDO 

inhibitor epacadostat in a large Phase III melanoma study despite demonstrating somewhat 

promising data in early phase trials, has been attributed largely to the fact that this was an 

unselected population, and that this agent may indeed still have useful activity in a subset of 

patients (74,217,218). It is therefore encouraging to see how the development of other 

immunotherapy combination trials seem to be informed by that experience. An example is 

the anti-LAG3 antibody relatlimab and nivolumab combination already described above. 

The Phase I data of this combination in the second line setting indicated an ORR of 11% in 

unselected melanoma patients, but was 18% in LAG-3 positive patients (88). Subsequently, a 

Phase 2/3 trial of relatlimab was initiated in the first line setting in melanoma, where, while 

all front line patients are still eligible, does require screening of patient tumor samples 

obtained within a 3-month period before enrollment and for evaluable results from PD-L1 

and LAG-3 IHC staining to be available prior to patients being randomized (NCT03743766). 

Additionally, the study is stratified for both of these biomarkers, as well as BRAF mutations, 

which will be incredibly valuable at the time of study analysis since one can start gleaning a 

specific effect of the combination in a particular subset of patients. In general, such 

biomarker-driven approaches will of course have to be carefully designed, taking into 

account all the statistical caveats of subgroup analyses.

This trend is now becoming increasingly visible across the immunotherapeutic landscape, 

and still needs to be furthered, perhaps even more so in the immunotherapy-refractory 

setting in cancers where immune checkpoint blockade has become a front line approach. 

Translational and preclinical studies are continually identifying novel mechanisms of 

resistance to different immunotherapy agents on an ongoing basis. Investigators and pharma 

should be emboldened to conduct studies in moleculary-characterized populations of 

patients where the agent in use specifically targets the biomarker used for patient selection. 

An example of such a strategy is the use of selective PI3Kβ inhibitors in patients harboring 

tumors with PTEN loss. Such a thoughtful biomarker-driven approach takes into 

consideration that certain key signaling networks that can be potently targeted in tumors, 

such as the PI3K pathway, are also critical for T cell activation and function. Being able to 

identify specific molecularly targeted agents that may have a differential impact on tumor 

versus T cells is the new quest for a “therapeutic window”. This is especially true of novel 

metabolism-directed agents, such as glutaminase inhibitors (219).

There are also opportunities for the development of agents with pleotrophic effects where 

patient selection may be challenging, but have the potential to impact multiple nodes of 

immune activation and tolerance. An example of those approaches are agents targeting 

epigenetic modulation, such as hypomethylating agents (220), HDAC inhibitors (221), 
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bromodomain and extra-terminal domain (BET) inhibitors (222), which have genome-wide 

effects and affect both tumor cells and T cells.

In 2017, the FDA approved pembrolizumab for treatment of microsatellite instability-high 

(MSI-H) or deficient DNA mismatch repair (dMMR) regardless of primary tumor site (223), 

which has subsequently been supported by a randomized trial of pembrolizumab utilized for 

27 different tumor types (224). However MSI-H may have been a surrogate for TMB-H 

(225), which has subsequently used as a biomarker for selection both in tissue and blood 

based whole exome sequencing (226). A meta-regression analysis of 117 clinical trials for 

response in TMB-High defined as ≥10 mutations per Megabase, found single agent PD-L1, 

CTLA-4, and combination to significantly affect ORR (227). Prospectively, the multicohort 

phase 2 KEYNOTE-158 found an improved overall response rate of pembrolizumab in the 

TMB-High group compared to the TMB-Low group (29% versus 6%) leading to approval of 

single-agent IO for TMB-High (228).

In addition, there is an increasing appreciation of the role of host factors on the immune 

response unrelated to the intrinsic biology of tumor development and resistance. For 

instance, as gender and diet differences have long been observed to impact patient outcomes 

to cancer therapy, the microbiome has emerged as a critical element in modulating the 

immune response. There have been many high impact publications indicating that the 

diversity and composition of the gut microbiome can indeed predict for higher response 

rates and better outcomes to therapy. Functional studies, as well as in vivo data, offer solid 

evidence that this is a causal effect resulting from the intricate interaction of gut bacteria 

with the immune system (229,230). This has emerged as a novel therapeutic target and 

multiple studies currently underway, where modulation of the microbiome is being utilized 

with fecal microbiota transplatantion (FMT), are showing early evidence of activity, 

including patients with PD-1 resistant disease (231). Other interesting approaches utilizing 

diet to modulate the microbiome favorably are also underway.

Biomarker development continues to evolve at a rapid pace and emphasis should continue to 

be placed on the incorporation of tumor biopsy and blood collection from patients on 

clinical trials, especially at the time of disease progression for the assessment of predictive 

biomarkers of resistance. This could yield a deeper understanding on how the tumor has 

evolved clonally and perhaps activated other pathways that could then be subsequently 

targeted. While there are of course logistical, and occasionally even ethical challenges, the 

data obtained from such clinical trial biopsies may also be incredibly valuable in identifying 

areas where the studied agent has failed in exerting its effects, offering potential 

pharmacokinetic and pharmacodynamic strategies to improve pharmacological outcomes. 

Comprehensive and longitudinal profiling along the patient journey, within and outside a 

clinical trial, should become the norm rather than the exception.
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Significance

While immune checkpoint inhibitors are approved as dual checkpoint strategies, and in 

combination with cytotoxic chemotherapy and angiogenesis inhibitors for multiple 

cancers, patient benefit remains limited. Innovative approaches are required to guide the 

development of novel immunotherapy combinations, ranging from improvements in 

preclinical tumor model systems to biomarker-driven trial strategies.
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Figure 1: Immune checkpoint blockade and ‘hot’ vs ‘cold’ tumor microenvironments.
Immune checkpoint blockade frees T cells in ‘hot’ tumor microenvironments (top panel), but 

fails in ‘cold’ tumors due to dominant, multi-model suppressive mechanisms (bottom panel).
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Figure 2: Different Classes of Immunotherapy Combination Strategies.
(1) Immunotherapy/Immunotherapy Combinations: Example: CTLA-4/PD-1 Blockade: 1) 

CTLA-4 and PD-1 can no longer suppress T cell activation, expansion and effector function; 

2) Treg cell function and differentiation is dampened; 3) Phagocytosis of tumor increases 

from myeloid PD-1 blocakde; 4) B7–1/2 can now co-stimulate T cells through CD28. (2) 
Immunotherapy/Chemotherapy Combinations: Example: Gemcitabine/nab-paclitaxel/PD-1 

blockade/CD40 agonist: 1) Gemcitabine and nab-paclitaxel kill tumor cells releasing tumor 

antigen; 2) Both drugs also selectively deplete myeloid-derived suppressor cells; 3) CD40 

activation enhances DC and M1 macrophage activation and increases T cell priming; 4) 

Activated T cells are protected from attenuation by PD-1 blockade. (3) Immunotherapy/

Adoptive Cell Therapy Combinations: Example: Anti-CD19 CAR T cells/PD-1 Blockade: 

1)PD-1 blockade prevents CAR T cells from being rapidly exhausted in the tumor 

microenvironment; 2) T cell effector function and cytotoxicity are enhanced by PD-1 

blockade; 3) PD-1 blockade allows higher levels and duration of IFN-γ secretion that 

maintains an inflamed tumor microenvironment. (4) Immunotherapy/Targeted Therapy 

Combinations: Example: VEGFR2/PD-1/CTLA-4 blockade: 1) Blockade of VEGFR2 

normalizes tumor vessels allowing T cell back in; 2) VEGFR2 blockade relieves VEGF 

inhibition of DC maturation; 3) PD-1 and CTLA-4 blockade allow tumor infiltrating T cells 

to survive, expand and kill tumor; 4) T cell produced IFN-γ helps maintain normalized 

vessels.
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