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Abstract

Nucleic acid nanoparticles (NANPs) represent a highly versatile molecular platform for the 

targeted delivery of various therapeutics. However, despite their promise, further clinical 

translation of this innovative technology can be hindered by immunological off-target effects. All 

human cells are equipped with an arsenal of receptors that recognize molecular patterns specific to 

foreign nucleic acids and understanding the rules that guide this recognition offer the key rationale 

for the development of therapeutic NANPs with tunable immune stimulation. Numerous recent 

studies have provided increasing evidence that in addition to NANPs’ physicochemical properties 

and therapeutic effects, their interactions with cells of the immune system can be regulated 

through multiple independently programmable architectural parameters. The results further 

suggest that defined immunomodulation by NANPs can either support their immunoquiescent 

delivery or be used for conditional stimulation of beneficial immunological responses.
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Combinations of different Nucleic Acid Nanoparticles (NANPs) and delivery agents allows to 

direct desirable and avoid undesirable immunological effects and therapeutic actions.
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Versatile Therapeutic Nucleic Acids (TNAs).

In the makeup of a traditional small molecule drug, the dianophore, which is the molecular 

component determining distribution and delivery, and the pharmacophore, which is the 

molecular component determining targeted function, are separate activities which are both 

determined by the drug’s overall chemical structure. Any changes to the makeup in the drug 

design process can therefore mean for divergent effects between the dianophore and 

pharmacophore activities, which must be clinically reevaluated for every stage of the drug’s 

development[1]. Instead, modular therapeutic nucleic acids (TNAs) offer a means of 

separation between these two facets, because the backbone chemistry and targeting moieties 

which serve as the dianophore can be used in combination with different nucleotide 

sequences serving as the pharmacophores with functional independence[1, 2]. Therefore, 

clinical evaluations of TNAs contribute to a foundation of preliminary bioactivity not only 

for the individual TNA candidate, but for any TNA with that modular piece in its 

formulation. Overall, this information and enhanced prediction of biological activity serves 

to greatly increase the safety profiles of TNA formulations and also has the potential to 

decrease the overall costs associated with the broad amount of drug candidates entering the 

clinical pipeline. With 156 TNAs currently undergoing phases I-III clinical trials or awaiting 

regulatory decisions as of April 2020, this innovative class of therapeutics holds great 

promise for the regulation of cells to eliminate specific diseases or enhance responses such 

as for cancer immunotherapy[3, 4].

With the decoding of the human genome and increasing utility in high-throughput 

sequencing, there has been a growing potential of TNAs to be sequence-specific candidates 

for targeted gene therapy[5]. A number of TNAs which vary in mechanism have been 

approved by the U.S. Food and Drug Administration (FDA), including antisense 

oligonucleotides (ASOs), mRNAs, siRNAs, miRNAs, and aptamers[6] (Fig. 1). ASOs are 

short sequences designed to bind to specific RNAs to promote their degradation, cleavage, or 

steric blocking [7]. To date, there are six antisense oligonucleotides which have been 

approved by the U.S. FDA: three RNase H-competent ASOs (Fomivirsen, Mipomersen, and 

Inotersen) and three splice-switching ASOs (Eteplirsen, Golodirsen, and Nusinersen)[6]. 

Two siRNA candidates (Patisiran and Givosiran), which work by undergoing enzyme-

mediated RNA interference for post-transcriptional gene silencning, have recently been 

FDA-approved. There is also one aptamer (Pegaptanib) currently approved[6]. Aptamers are 

oligonucleotides selected in vitro to specifically recognize and bind a target molecule with 

high specificity—in this case, as an agonist to prevent angiogenesis[8]. Recently, the 

versatility of a nucleic acid-based approach has been further expanded by the rapid 

development and ongoing worldwide distribution of mRNA-based vaccines (BNT162b2 and 

mRNA-1273) against SARS-CoV-2[9].

Immunorecognition of TNAs.

Currently available TNAs are often offered as periodic doses, perform a single function, and 

may present a high recurring cost to patients[10]. The scaled-up production of nucleic acids 

while maintaining high purity is a challenge[11]. Furthermore, many TNAs require chemical 
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modifications in order to maintain nuclease degradation resistance, cross the plasma 

membrane, and avoid unwanted side effects from off-target immunostimulation[12]. Pattern 

recognition receptors (PRRs) are strategically localized to the endosome and cytosol for the 

targeted recognition of pathogen associated molecular patterns (PAMPs) or damage 

associated molecular patterns (DAMPs) which allow for the discrimination of self- and non-

self-biomaterials. These PRRs include the endosomal Toll-Like Receptors (TLRs)—TLR3, 

TLR7, TLR8, and TLR9—and the cytosolic PRRs, such as RIG-I-like receptors (RLRs) and 

DNA sensors. Importantly, activation of these PRRs stimulates downstream signaling 

cascades that trigger the production of immune mediators. The immune mediators promote 

cellular recruitment, cellular maturation, and antigen presentation to coordinate adaptive 

immune responses. While potential TNAs in the translational pipeline may be impeded by 

the prominence of these nucleic acid receptors, they also have the opportunity to utilize these 

natural pathways for the favorable activation of cytokine and interferon production. 

Favorable immunostimulation can be directed to invoke responses for use in immunotherapy, 

vaccine adjuvants, and antigen delivery[13].

Pattern Recognition Receptor Ligand Characteristics.

TNAs offer a unique platform for the strategic design of immunomodulatory formulations 

based on the known characteristics of PRR ligands. PRRs discerningly identify nucleic acid 

ligands due to subcellular localization, composition, nucleoside characteristics, structure, 

length, and sequence motifs (Table 1). Although PRRs primarily recognize nucleic acids 

through interaction with their sugar-phosphate backbone in a sequence-independent manner, 

these sensors are still able to distinguish some characteristic features of nucleic acid ligands.

RNA ligands are recognized by the sensors TLR3, TLR7, TLR8, MDA-5, and RIG-I. Within 

the endosome, the recognition of RNA ligands is initiated by their binding to TLRs 3, 7, or 8 

which occurs at relatively low pH (<6.5). The activation of TLR3 requires interactions with 

dsRNA of at least 45 bp long [17] while TLRs 7 and 8 display their preferential recognition 

for GU and AU-rich ssRNA sequences with a minimal length of 19 bp[18–21]. There is also 

evidence which suggests that TLR7 can recognize short dsRNAs[22]. In addition to a 

binding site for RNA, TLRs 7 and 8 uniquely possess binding sites for guanosine and 

uridine[19, 23–26] and as such, can be activated by small synthetic molecules[27]. In the 

cytosol, the RLRs MAVS, MDA-5, and RIG-I recognize dsRNA ligands. Despite the fact 

that both MDA-5 and RIG-I possess two CARD domains, a helicase domain, and a 

regulatory domain, these two sensors identify distinct RNA ligands[28–30]. RIG-I binds 

dsRNAs longer than 19 bp through the interaction between the helicase and regulatory 

domains with the RNA backbone. Additionally, a 5’ di- or triphosphorylation of RNA is 

required for binding to the regulatory domain of PRRs[29, 31–34]. Similarly, MDA-5 

recognizes RNA in a sequence-independent manner; however, it requires long dsRNAs 

(>1000 bp) for MDA-5 dimers to form filaments[34–36].

DNA ligands are recognized in the endosome by TLR9 and in the cytosol by several DNA 

sensors including cGAS, IFI16, and AIM2. TLR9 binds DNAs greater than 15 bp in length 

with unmethylated CpG dinucleotides that are infrequently found in mammalian DNA, but 

prominent in pathogen DNA[37]. Notably, naturally occurring phosphodiester 
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oligodeoxynucleotides can activate TLR9 via the 2’-deoxyribose backbone independent of 

CpG motifs, suggesting that subcellular localization of TLR9 to the endosome is essential 

for discrimination of self and non-self-nucleic acids[37–39]. Additionally, TLR9 activation 

is enhanced in response to nucleic acid-histone complexes and supercoiled plasmids, 

indicating preferential binding to curved DNA ligands[37]. Finally, TLR9 is activated in 

response to DNA-RNA hybrids that are GU-rich and contain CpG motifs[40].

In the cytosol, cGAS binds B-form dsDNA with a minimum of 25 bp in length for efficient 

activation[41–43]. Recognition of dsDNA is sequence-independent, as electrostatic 

interactions with the sugar-phosphate backbone facilitate the interaction with two cGAS 

binding sites[41, 42]. Notably, cGAS can also recognize DNA/RNA hybrids and Y-form 

DNA, a ssDNA stem loop structure containing guanosines[44, 45]. Similar to cGAS, IFI16 

and AIM bind dsDNA in a sequence-independent manner[46–50]. Both of these sensors 

oligomerize and form filaments along dsDNA which requires a minimum of 70–80 bp. 

However, optimum activation requires 150–200 and 280 bp for IFI16 and AIM, 

respectively[47–49, 51]. RNA polymerase III is unique in that it activates an immune 

response by transcribing AT-rich dsDNA into a ligand for the RNA sensor RIG-I. 

Importantly, AT-rich regions are required for promoter-independent initiation of transcription 

to generate a ligand for RIG-I[52–54].

Collectively, these PRRs form the first line of immune defense and are able to survey the 

cell to identify a wide range of nucleic acid ligands in order to coordinate innate and 

adaptive immune responses. Based on these known ligand requirements for PRR activation, 

nucleic acid nanoparticles (NANPs) can be rationally engineered with desired composition, 

nucleoside characteristics, structure, dimensionality, length of single- or double-stranded 

regions, and sequence motifs to generate a library of immunomodulatory, biocompatible 

agents suitable for a broad range of biomedical applications.

Nucleic Acid Nanoparticles (NANPs).

With known base pairing rules and an assortment of resolved naturally occurring motifs, 

nucleic acids can be designed to assemble into programmed NANPs of desired shapes, sizes, 

and compositions. An array of such structures have been demonstrated as biocompatible 

materials for a number of applications, encompassing biosensing[99, 100], drug 

delivery[101, 102], and as molecular devices[103, 104]. Depending on the design principles 

and motifs in their composition, NANPs can be assembled entirely from RNA or DNA, or 

take advantage of hybrid RNA/DNA combinations[105]. Currently, all NANPs can be 

roughly categorized by two design strategies[106]. The first design strategy, represented by 

cubes (Fig. 2A), is based solely on intermolecular canonical Watson-Crick interactions and 

utilizes ssRNAs and/or ssDNAs designed to assemble only with their partner strands and 

avoid any intramolecular secondary structures[107–109]. These design principles are widely 

employed in DNA nanotechnology and DNA origami[110, 111] to construct a variety of 

DNA NANPs. The second strategy, represented by RNA rings (Fig. 2B), is characteristic 

mainly of RNA nanotechnology and takes advantage of naturally occurring RNA structural 

and long-range interacting motifs (e.g., RNAI/II inverse RNA kissing loops needed to 

assemble RNA rings[112]). This design strategy follows empirically rationalized rules to 
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combine, similarly to Lego bricks[113–116], pre-folded RNA motifs (typically formed via 
intramolecular base-pairing of individual RNA strands) and promote their bottom-up 

intermolecular assembly with remarkable degree of structural control[117]. In addition to 

conventional nucleic acids, NANPs can also be composed of chemically modified 

oligonucleotides which may serve to increase their stability or be modified with 

fluorophores or small ligands for precise tracking and targeting[118].

When multiple TNAs are chosen for simultaneous delivery to the diseased cell (e.g., for 

combinatorial RNAi[120]), the optimal route of their controllable formulation would be 

through the their attachment to the individual strands entering the composition of NANPs. 

Assembly of NANPs would then bring the desired TNAs together with control over their 

composition and stoichiometry[121], an ability confirmed by several animal trials[105, 119, 

122–127]. For example, the functionalization of RNA rings with multiple siRNAs occurs 

through introduction of Dicer Substrate RNAs (DS RNAs)[128] designed to promote the 

intracellular Dicer-assisted release of experimentally validated siRNAs[119] (Fig. 2C–D). 

The functionalization protocols[106] include the extension of the 3’-side of individual 

monomers with either sense or antisense strands of DS RNA and their further annealing to 

the complementary strands. Following the same rationale, programmable NANPs also allow 

for controlled functionalization with different aptamers, fluorescent dyes, proteins, and 

TNAs[129–131].

Immunomodulation with NANPs.

Stemming from their nucleic acid content, NANPs with biological applications interact with 

PRRs in the same immune syntax as innate nucleic acids. Therefore, known patterns of 

NANP recognition can be used to direct their design[11, 132]. Historically, the unknown 

immunorecognition of nucleic acid constructs has been a major impediment to their further 

clinical development, with indications that NANPs may need to be classified as a new class 

of drugs distinct from traditional TNAs[13]. Now, pattern recognition as it relates to NANP 

design is being thoroughly explored to allow for more control over which interactions with 

PRRs can occur, which also controls their downstream signaling and cytokine production. 

While the design of NANPs is already imbued with the ability for innate 

immunorecognition, NANP scaffolds can also be decorated with known immunostimulatory 

oligonucleotides[133] or used to present immunogens with spatial precision[134].

Control over the various design aspects allows for NANPs to be tailored for specific 

immunostimulatory control. For example, one approach (Fig. 3) has been to utilize hybrid 

NANP fibers which reassociate in the cellular environment for the formation of double-

stranded NF-κB decoy DNA duplexes while releasing multiple RNAi inducers[135]. This 

strategy allows for faster processing of the subsequent downregulated immunostimulation 

over traditional gene silencing approaches since the products require no additional 

processing. Various aspects of NANP design can be strategically controlled in this manner 

for tailored immunomodulation. Working within the cell’s innate nucleic acid recognition 

capacity to do so allows for NANPs to serve as a molecular language for immune 

stimulation.
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PRRs display cell type-dependent expression and specific localization to subcellular 

compartments[31, 35, 43, 52, 136–139]. Cell type-dependent differences in receptor 

expression impact immune mediator production. Data from freshly collected human 

peripheral blood mononuclear cells (PBMCs) indicates NANPs are primarily identified by 

pDC that only express TLR7 and TLR9 in the endosome[140, 141]. Additionally, PRRs are 

localized to specific subcellular compartments, including the endosome and the cytosol[31, 

35, 42, 43, 45, 52, 136, 137, 142, 143]. In PBMCs, delivery of NANPs via an endocytic 

pathway drives the production of IFNs, however, bypassing the endosome using an 

electroporation method of delivery abrogated any IFN responses[140]. These data suggest 

subcellular trafficking of NANPs may influence exposure to PRRs and thereby the 

production of cytokines and interferons or lack thereof. Notably, some NANPs can enter 

cells in the absence of a carrier, while other NANP formulations require a carrier to 

overcome the charge repulsion between the phosphate backbone and host cell 

membranes[102, 144–153]. Recent data indicates carrier-NANP combinations affect both 

delivery efficiency and enrichment to subcellular compartments[147]. Interestingly, NANPs 

composed of different nucleic acid compositions but delivered with the same carrier 

displayed differences in enrichment to the cytosol and endosome[147]. This provides 

evidence that carrier-NANP combinations are an additional parameter to direct delivery to 

specific subcellular compartments and either avoid or target specific PRRs.

Chemical composition and immunorecognition of NANPs.

Most PRRs display preferential recognition of RNA vs DNA due to secondary or tertiary 

structures and nucleoside characteristics of nucleic acids[154, 155]. Nucleic acids are 

composed of nucleotides that have a phosphate, a sugar (ribose or deoxyribose), and a base 

(adenine, guanine, cytosine, thymine, uracil). dsDNA is most commonly found in a B-form 

double helix. In contrast, RNA/DNA hybrids and dsRNAs exist in A-form that is highly 

compact due to more efficient base-pair stacking. DNA can also exist as a Z-form left-

handed helix due to alternating purine-pyrimidine nucleotides (GC)n and high salt 

concentration[156]. Consistent with PRRs’ preferential recognition of nucleic acid 

composition, NANP polygons that differ only in composition (RNA vs DNA vs RNA/DNA 

hybrid) but have the same size, shape, and connectivity induce significant differences in the 

production of proinflammatory cytokines and interferons[157, 158]. DNA induced minimal 

production of these immune modulators and immunostimulation increased with 

incorporation of RNA strands. Polygon NANPs composed of only RNA strands displayed 

the highest production of proinflammatory cytokines and interferons[157, 158]. To advance 

the current understanding of properties that contribute to NANP immunomodulation, 

quantitative structure activity relationship (QSAR) modeling was applied for NANP 

studies[158] (Fig. 4). Investigation of a focused panel of RNA, DNA, and RNA/DNA 

polygons demonstrated that NANP physicochemical properties including molecular weight, 

melting temperature, and half-life predict NANP-stimulated immune responses. Continued 

characterization of larger NANP panels can be used to expand this predictive model in order 

to generate a set of design parameters for engineering NANPs with desired 

immunostimulatory properties. Notably, in vitro and in vivo studies demonstrate polygon 

and three-dimensional pRNA-based NANPs stimulate minimal production of 
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proinflammatory cytokines, suggesting composition is not the sole factor determining 

immunostimulatory properties[159–162].

Due to the sensitivity of RNA to nuclease degradation, chemically modified strands are often 

incorporated to increase enzymatic stability of TNAs[163–166]. Modification of the 2’-

hydroxyl group with 2’-fluoro, 2’-deoxy, or 2’-O-methyl prevents nuclease recognition of 

RNAs[167]. Additionally, these nucleoside modifications alter PRR receptor identification 

and have to be considered as an additional descriptor in the NANPs’ and TNAs’ 

immunomodulation. The 2’-hydroxyl uridine has been demonstrated to be central to 

endosomal TLR recognition of RNA[167]. TLRs 3 and 7 activation in response to a 140 bp 

dsRNA ligand was abrogated by the incorporation of 2’-fluoro or 2’-O-methyl 

pyrimidines[168]. However, RIG-I activation was enhanced by these modifications. 

Interestingly, 2’-O-methyl modified ligands have also been demonstrated to possess TLR7 

antagonistic effects which are able to reduce cytokine and interferon responses to a small 

molecule TLR7 agonist[169]. Consistent with these findings, 2’-fluoro-modified RNA 

polygons display RIG-I agonist activity and avoid activation of endosomal TLRs[147]. 

Additional chemical modifications can include small molecules such as cholesterol to 

further direct the immune responses. Cholesterol-tagged lipid-DNA nanobarrels have 

recently been shown to selectively bind white blood cells in the PBMC population in order 

to suppress the immune response upon interactions with lipopolysaccharides[170].

Architectural parameters and immunorecognition of NANPs.

Although many PRRs recognize nucleic acid ligands in a sequence-independent manner via 

interaction with the sugar phosphate backbone, several PRRs display preferential binding to 

specific sequences or sequence motifs. In the endosome, TLR7/8 display preferential 

recognition for GU- and AU-rich sequences while TLR9 recognizes CpG motifs with 

unmethylated CG dinucleotides[19–21, 26, 37, 38]. NANPs, hydrogels, polypod structures, 

and spherical nucleic acids have been developed to deliver agonists with these sequence 

characteristics to the endosome for eliciting desired TLR-dependent responses (Fig. 5A)

[171–173]. In the cytosol, RNA polymerase III requires AT-rich regions for promoter-

independent transcription that results in a 5’ triphosphorylated ligand for the RNA sensor, 

RIG-I[52, 54]. Recent evidence indicates RIG-I-dependent production of pro-inflammatory 

cytokines and interferons in response to RNA and DNA polygons[147]. NANPs made of in 

vitro transcribed RNAs strands possess a 5’ triphosphates required for binding RIG-I; 

therefore, it is not surprising that these NANPs directly trigger RIG-I-dependent production 

of interferons. In contrast, DNA NANP stimulation of RIG-I-dependent responses is indirect 

via the involvement of RNA polymerase III dependent mechanism (Fig. 5). Notably, 

incorporation of RNA strands with 2’-fluoro-modified pyrimidines, known to increase 

NANP chemical and thermodynamic stability, also enhanced RNA polymerase III-dependent 

immune responses[147].

NANP size is known to influence half-life and biodistribution in animal models as smaller 

nanoparticles are more readily cleared via renal clearance while larger nanoparticles 

accumulate in the liver and spleen[174–176]. Importantly, size is a determining factor in 

NANP immunostimulatory properties. As NANP size increases for a polygon shape, there 
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are significantly increased levels of proinflammatory cytokines released[140, 160]. One 

contributing factor is delivery efficiency as larger NANPs may bind more readily in contrast 

to smaller analogs that can exhibit reduced uptake in the absence of a carrier due to charge 

repulsion with the negatively charged cell membrane[140, 141, 174]. Additionally, size is an 

influential factor in predicting NANP immunostimulation as PRRs display length-dependent 

recognition of nucleic acids[17, 20, 34, 37, 42, 48, 177]. Each of the PRRs has a minimal 

base-pair requirement for activation. For example, TLR3 requires a minimum of 45 bp for 

binding and activation[17]. Recent data supports the requirement for nucleic acid strand 

length as polygon NANPs consisting of dsRNA containing 22 bp per side fail to elicit TLR3 

while longer dsRNAs present in nanostructures trigger TLR3 dependent responses (Fig. 5)

[147, 178]. In the meantime, RNA polygons stimulate TLR7 and RIG-I-dependent immune 

responses, which require a minimum of 19 base-pairs for activation[147].

There are several examples of PRRs displaying shape-dependent recognition of nucleic acid 

ligands. First, in contrast to linearized RNA, circular RNAs (circRNAs) that are ssRNAs 

found in microbe genomes or produced to drive expression of proteins of interest avoid 

stimulation of the cellular RNA sensors, RIG-I, TLR3, and TLR7/8, providing an option for 

an immunoquiescent delivery platform[179]. Importantly, circRNA avoidance of RNA 

sensor stimulation was independent of nucleoside modifications, indicating a critical role for 

shape in determining interactions with these PRRs. Similarly, both TLRs 7 and 9 have been 

demonstrated to recognize the structural features of tRNA and curved DNA ligands, 

respectively [37, 180, 181]. Consistent with PRR shape-dependent recognition of nucleic 

acid ligands, NANP immunostimulatory properties are correlated with shape and 

connectivity. A direct comparison of RNA polygons (triangle, square, pentagon) of identical 

size demonstrates pentagons are the most potent inducers of proinflammatory cytokines 

compared to triangles[140]. Additionally, immunostimulation increased with RNA NANP 

dimensionality from linear fibers to planar rings to globular cube structures (Fig. 5B) with 

type I IFNs being the key biomarkers produced in response to NANP internalization by 

phagocytes[141, 182–184]. The same NANPs were also shown to induce type III IFNs, 

which have never been investigated in detail for traditional TNAs[182]. Globular RNA 

NANPs, such as RNA cubes, were the most immunostimulatory, when compared to their 

DNA analogs, inducing enhanced production of cytokines. Furthermore, RNA cubes and 

RNA rings but not RNA fibers elicit TLR7-dependent responses, suggesting a role for shape 

in determining the interaction with PRRs [140, 141]. Surprisingly, the magnitude and 

specificity of the immunostimulation can be additionally regulated by varying the numbers 

and orientations of TNAs attached to each NANP[183]. Combinations of TNAs can 

therefore potentially yield a second level of therapeutic activity in which the codelivery of 

several TNAs into one target cell is met with the synergistic effect of their scaffolding. 

Several different TNAs may be chosen in order to orchestrate multiple effects in the cellular 

environment, or the higher concentration of one type of TNA can be utilized for more 

efficient activity.

Conclusions.

Nucleic acid PRRs identify unique nucleic acid ligands based on cellular localization, 

composition, nucleoside characteristics, structure, length, and sequence motifs. These PRR 
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ligand characteristics provide a set of guidelines for engineering therapeutic NANPs with 

defined immunostimulatory properties. Supporting evidence demonstrates that NANPs’ 

physicochemical properties and architectural parameters can be rationally designed and in 

turn control immunostimulation. Additionally, QSAR modeling of focused NANP panels 

indicates the physicochemical properties of NANPs are strong predictors of 

immunostimulatory properties. Continued research efforts to characterize broader NANP 

panels with varied sizes, chemical compositions, dimensionalities, and structures, factors 

demonstrated to influence PRR-dependent responses, will further strengthen these predictive 

models, thereby providing a molecular language that can be used to generate a vast library of 

immunomodulatory NANPs. Furthermore, NANPs can be functionalized with RNAi 

inducers and decoy duplexes to modulate PRRs’ downstream signaling, providing an 

additional level to control immunostimulation. As such, NANPs are a promising 

immunotherapeutic platform.

Currently, many small molecules, antibodies, oligonucleotides, and synthetic nucleic acids 

are being investigated in clinical trials as PRR agonists and antagonists. As discussed above, 

NANPs can be rationally designed to harness both innate and adaptive immune responses 

via nucleic acid PRRs. PRR agonists stimulate innate cytokine and interferon responses that 

can shape adaptive immunity. In particular, the production of interferons promotes cellular 

antiviral defenses and antigen-specific adaptive immune responses to pathogens and cancer 

cells. Therefore, immunomodulatory NANPs could be applied as broad-spectrum antivirals, 

vaccine adjuvants, and cancer immunotherapeutics (Table 1). NANP activation of endosomal 

PRRs could also be implemented to desensitize allergic responses by directing Th1 

responses in contrast to the potent Th2 and IgE-mediated inflammatory response 

characteristic of allergic diseases. Alternatively, in inflammatory or autoimmune diseases, 

NANP PRR antagonists or NANPs complexed with functional groups to diminish PRRs’ 

downstream signaling can be utilized to control overactivation of PRR immune responses 

(Table 1). Additionally, these immunomodulatory NANP platforms can be accessorized with 

functional groups targeting disease-related pathways for a combinatorial treatment approach.

Notably, there are additional gaps in the broader adaptation of NANPs. First, in order to 

cross the plasma membrane for intracellular activity, many NANPs must be complexed with 

a carrier[141].There are many nanoparticle-based platforms for the delivery of nucleic acids 

that would add an additional level of tailorability depending on the resultant route of 

trafficking[185]. The continuous development of novel delivery vehicles has been 

recommended to overcome this challenge[12]. Second, NANPs must also resist nuclease 

degradation and traverse complex organ systems to arrive at the target site[6]. While the 

delivery platform may yield some bioavailability, there are also combinations of chemical 

modifications which can assist in this regard[147]. Chemical modifications may also serve 

as an important parameter to regulate NANP-PRR interactions, thereby promoting beneficial 

or preventing detrimental immune responses[147, 163, 186]. Finally, systemic gaps have 

been cited as needing to be overcome for further successful clinical translation[187]. Moving 

past in vitro models and into in vivo demonstrations will assist in obtaining more relevant 

depictions of the effectiveness of these platforms. There is also greater need for simplicity in 

design and manufacturing, culminating in more universal nomenclature and protocols that 

can be adapted. As the summation of these future directions, specific, modular, adjustable, 
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reproducible, and targeted nucleic acid nanoparticles (SMART NANPs) represent the next 

step in nucleic acid programmability for diverse biomedical applications. The manifestation 

of tailorable SMART NANPs has a lot to offer for eliciting desirable immunostimulatory 

and therapeutic profiles.
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Figure 1: Examples of mechanisms of TNA action.
For efficient intracellular delivery, some TNAs require a carrier with several of them 

exemplified in the upper panel. (A) Aptamers, composed of either DNA, RNA or their 

chemical analogs, function by binding a specific target molecule. As an example, 

Pegaptanib[14] (shown using RNAComposer[15, 16]) is schematically shown to bind to 

VEGF (PDB: 1VPF) for its inhibition to prevent downstream angiogenesis. (B) Delivery of 

mRNA into the cytoplasm is translated via the ribosome (PDB: 6Y0G) to yield a protein of 

interest. Spike protein from SARS-CoV-2 (PDB: 6VXX) is shown as a protein product 

example of mRNA vaccines. (C) For RNAi-induced gene silencing, either Dicer Substrate 

(DS) RNAs may be introduced for processing by Dicer, or siRNAs may be introduced 

exogenously. siRNAs are incorporated into the RNA-induced silencing complex (RISC) and 

guide strands direct sequence-specific mRNA cleavage. For illustration purposes, only the 

Ago2 component of RISC is shown (PDB: 6CBD). (D) ASOs bind to an endogenous mRNA 
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sequence, where they may act as a steric hinderance for further splicing and translation, or 

may serve as a target for degradation by RNase H (PDB: 2QK9). (E) CRISPR Cas9 (PDB: 

5F9R) utilizes a guide RNA sequence as a template to promote the double strand breakage 

of a gene. Repair mechanisms including homology directed repair (HDR) or non-

homologous end joining (NHEJ) can be implemented for gene editing. Created with 

Biorender.com
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Figure 2: Design strategies and functionalization of NANPs.
(A) For the formation of cubes, intermolecular hydrogen bonds occur between six 

oligonucleotides. As these are canonical WC bps, the cubes may be composed of any 

combination of RNA and/or DNA. (B) For the formation of rings, intramolecular hydrogen 

bonding first occurs within each strand, exposing single-stranded regions (RNA kissing loop 

motifs) which can then interact intermolecularly. (C) By extending the sequences in their 

compositions, NANPs can be functionalized with Dicer Substrate (DS) RNAs which can 

then enter the RNA interference (RNAi) pathway. Due to their hexameric nature, up to six 

DS RNAs can be added to each ring for simultaneous knockdown of six different target 

genes. Cryo-EM (from ref. [119]) demonstrates the structure of the functional RNA rings. 

(D) Functional NANPs must be combined with a delivery carrier for their transfection into 

cells, where they may then be processed by Dicer to begin RNAi. Created with 

Biorender.com.
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Figure 3: Non-functional RNA/DNA hybrid NANPs can be used for the coordinated activation of 
RNAi and NF-κB decoys.
Re-association of hybrid fibers in the cytosol yields two products. First, DS RNAs that are 

cleaved by Dicer produce functional siRNAs for the silencing of target genes. Second, 

synthetic dsDNA decoys that readily bind to NF-κB prevent nuclear translocation and 

activation of NF-κB-induced cytokines. PDBs: 1NFK and 1NFI. Created with 

Biorender.com
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Figure 4: QSAR modeling employs a set of NANPs to predict pro-inflammatory immune 
responses.
A panel of representative DNA, RNA, and DNA/RNA NANPs was designed with varying 

descriptors such as molecular weight, melting temperature, size, and stability. A training set 

composed of 80% of this batch was used for machine learning, where descriptors were 

matched against outcomes of experimentally found immunostimulations. A validation set 

was then used to confirm the predicted trends and validate the model. Created with 

Biorender.com
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Figure 5: PRRs are localized to specific subcellular compartments to screen for PAMPs and 
DAMPs.
The endosomal and cytosolic sensors display composition, sequence, length, and structure-

dependent recognition of nucleic acid ligands. The same ligand preferences determine 

binding to NANPs. The figure highlights key features of NANPs that meet the necessary 

ligand characteristics and have been experimentally confirmed to activate nucleic acid PRRs 

(A) with trends in relative responses in IFN productions across some representative 

categories of NANPs (B). Created with Biorender.com
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Table 1.

PRR ligand characteristics and clinical applications.

Receptor

Ligand Characteristics Potential Therapeutic Applications

Localization Nucleic 
Acid

Sequence Length 
(bp)

Agonist Antagonist

TLR3 Endosome dsRNA Independent >45

Antiviral/Adjuvant (e.g., 
HIV[55, 56], influenza[57, 
58], HPV[59–61]), Cancer 
(e.g., colorectal, melanoma, 
mammary, prostate[62, 63])

Inflammatory disease and 
Autoimmunity (e.g., 

SLE[63, 64])

TLR7/8 Endosome

ssRNA, 
dsRNA, 

small 
molecules

GU and AU 
rich >19

Antiviral/Adjuvant (e.g., 
influenza, hepatitis C[27, 65, 

66]), Cancer (e.g., melanoma, 
colon, lymphoma[67, 68]), 
Allergy/Asthma[27, 63]

Inflammatory disease and 
Autoimmunity (e.g., 

atherosclerosis, SLE ([27, 
69, 70])

TLR9 Endosome

dsDNA; 
preference 
for curved 

DNA

Independent 
preference: 

CpG
>15

Antiviral/Adjuvant (e.g., 
malaria[71, 72], HIV[73, 74], 
hepatitis C[65]) Cancer (e.g., 

melanoma[75], 
lymphoma[76], colon[77, 

78]), Asthma [63]

Inflammatory disease and 
Autoimmunity (e.g., 
SLE[64], HIV[79], 

psoriasis[80])

cGAS Cytosol

dsDNA, 
DNA/RNA 
hybrid, Y-

form

Independent >25

STING: Adjuvant (e.g., 
influenza [81, 82], 

coronaviruses[83, 84]) 
Cancer (e.g., solid tumors, 

prostate, lymphoma [85, 86])

STING: Inflammatory 
disease and Autoimmunity 

([87]

IFI16 Cytosol 
Nucleus dsDNA Independent

>70; 
optimal 
150–200

STING: Adjuvant (e.g., 
influenza [81, 82], 

coronaviruses[83, 84]) 
Cancer (e.g., solid tumors, 

prostate, lymphoma [85, 86])

STING: Inflammatory 
disease and Autoimmunity 

([87]

AIM2 Cytosol dsDNA Independent
>80 

optimal 
280

Cancer (e.g., colon [88, 89])

Inflammatory disease and 
Autoimmunity (e.g. 

psoriasis, atherosclerosis, 
neuroinflammation) Cancer 
(e.g., cutaneous squamous 
cell carcinoma, melanoma, 
CAR-T treatment [90]) [88, 

89]

RNA pol 
III Cytosol dsDNA AT-rich >30 Cancer (colon [91])

RIG-I Cytosol dsRNA 5’ ppp >19

Antiviral/Adjuvant [92] 
(e.g., influenza [93], 

ebola[94], rabies[95]) Cancer 
(e.g., melanoma [75, 96])

Inflammatory disease and 
Autoimmunity (e.g., 
COPD, arthritis [97])

MDA-5 Cytosol dsRNA Independent >1000 Adjuvant Cancer [98]
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