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Abstract

The epithelial-mesenchymal transition (EMT) and the corresponding reverse process, 

mesenchymal-epithelial transition (MET), are dynamic and reversible cellular programs 

orchestrated by many changes at both biochemical and morphological levels. A recent surge in 

identifying the molecular mechanisms underlying EMT/MET has led to the development of 

various mathematical models that have contributed to our improved understanding of dynamics at 

single-cell and population levels: (a) multi-stability—how many phenotypes can cells attain during 

an EMT/MET?, (b) reversibility/irreversibility—what time and/or concentration of an EMT 

inducer marks the “tipping point” when cells induced to undergo EMT cannot revert?, (c) 

symmetry in EMT/MET—do cells take the same path when reverting as they took during the 

induction of EMT?, and (d) non-cell autonomous mechanisms—how does a cell undergoing EMT 

alter the tendency of its neighbors to undergo EMT? These dynamical traits may facilitate a 

heterogenous response within a cell population undergoing EMT/MET. Here, we present a few 

examples of designing different mathematical models that can contribute to decoding EMT/MET 

dynamics.
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1 Introduction

The epithelial-mesenchymal transition (EMT) is a cellular process involving changes in 

multiple aspects of cellular behavior, including cell–cell adhesion, cell polarity, cell 

migration and invasion, and cell shape [1]. EMT and the corresponding reverse process, 

mesenchymal-epithelial transition (MET), are regulated at multiple levels. These include 
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transcriptional, posttranscriptional, translational, and epigenetic [2] controls, along with non-

cell autonomous mechanisms acting through matrix density [3] or cell–cell communication 

[4–7]. Largely thought of in the past as a binary process, EMT is now known to involve 

multiple stable intermediates referred to as hybrid epithelial/mesenchymal (hybrid E/M) 

phenotypes [8]. This updated view of the process has, in part, been driven by predictions 

made by various mathematical models for the regulatory networks involved in EMT [4, 5, 9–

14]. These mathematical models have focused on characterizing the properties of EMT and 

have predicted that cells can stably maintain one or more hybrid E/M phenotypes [15]. 

Moreover, these models have also driven insights into how cells may spontaneously switch 

between various phenotypes due to stochasticity, and thereby determine how cellular 

plasticity leads to phenotypic heterogeneity associated with EMT as observed 

experimentally [16, 17]. These models have also offered mechanistic insights into 

experimental observations showing that EMT and MET are not necessarily symmetric 

processes [12, 18], i.e., cells may take different paths during EMT and MET in the multi-

dimensional landscape of epithelial-mesenchymal plasticity. Finally, these models have 

helped us gain insights into the interconnection between EMT and other cellular traits such 

as stemness; for instance, the prediction that a hybrid E/M phenotype is more stem-like and 

metastatically aggressive than cells exhibiting extremely epithelial or extremely 

mesenchymal phenotypes [19] was recently confirmed both in vitro and in vivo [20–22]. 

Here, we introduce a generic framework for developing mathematical models of EMT 

regulation and share examples of how these models can be used as tools to generate 

predictions that will guide the next set of experiments.

2 Mathematical Modeling of EMT

The choice of a systems biology approach to study a biological process is highly context-

dependent. We here describe a generic procedure for choosing an appropriate approach and 

detail how this procedure was applied to modeling EMT.

2.1 Identify a Problem that Mathematical Modeling Can Help Address and Form a Team of 
Experimental and Modeling Researchers

This is a key and probably the most challenging step in modeling studies. There are 

questions that modeling studies can address and others that they cannot address. It is 

typically constructive to form a team of experimental and modeling researchers. The team 

members hold thorough literature review and extensive, in-depth discussions to review 

existing knowledge and identify open questions regarding the system. One may find it 

pedagogically illuminating to read accounts of how some successful collaborations were 

established [23, 24].

2.2 Choose an Appropriate Modeling Framework

Several modeling frameworks have been used to analyze EMT regulatory networks. A 

Boolean network has dynamics that are discrete in time and involve discrete variable values. 

The variable values are updated based on a set of Boolean functions that reflect the 

regulatory relations [25]. Conversely, an ordinary differential equation (ODE)-based model 

treats time and variables as taking continuous values. Both Boolean network and ODE-based 
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models can be deterministic (meaning that one can precisely predict the temporal evolution 

of the variables from a set of initial conditions), or stochastic (meaning that the prediction is 

only probabilistic). There is no best modeling framework for all cases, and one needs to 

determine what is appropriate and justified for the biological system and process under 

study. Some general aspects that may be considered include:

1. What is the qualitative and quantitative information available? Compared to a 

Boolean model, an ODE model typically has more parameters and requires more 

quantitative data to constrain these model parameters. Therefore, for a large 

regulatory network without much quantitative data such as the one studied by 

Steinway et al. [11], the Boolean framework is appropriate. It would be 

questionable whether an alternative ODE-based model with dozens or even 

hundreds of free parameters can provide further additional information (but see 

systematic statistical analyses of model ensembles discussed below).

2. Is the framework sufficient to describe the system dynamics, and does it provide 

new mechanistic insights that would be unavailable or unclear without the 

modeling approach? Each framework has its limitations. For example, a Boolean 

model typically uses some universal parameters and only provides qualitative or 

at most semiquantitative information. It can be a good starting point to analyze 

how multiple regulatory factors interact to generate different EMT cell types as 

demonstrated by Steinway et al. [11]. The model has limited capacity to describe 

how different time scales of the signal transduction pathways involved in EMT 

contribute to quantitative detection and encoding of the dose and duration 

information of the stimulating signals. For the latter purpose, an ODE-based 

model is a more appropriate choice, as demonstrated by Zhang et al. [26] to show 

how pathway cross talk leads to a temporal checkpoint mechanism for detecting 

TGF-β duration information.

As a rule of thumb, one chooses a modeling framework that is simple and sufficient to 

address the underlying problem. The widely regarded criterion suggested by Einstein for 

evaluating physics theories also applies here: “Everything should be made as simple as 

possible, but not simpler.” It is possible that for a given problem, initially a coarse-grained 

framework is appropriate, and as more and more quantitative data becomes available, a 

different framework becomes necessary to incorporate the new information.

Unfortunately, a commonly held misconception emphasizes that it is always desirable to 

incorporate additional biological details explicitly into a mathematical model, and this 

tendency is further reinforced by the expanding computational power. However, abstraction 

is necessary and is done in all modeling efforts. We want to stress here that the most 

important reason for using modeling approaches is to provide mechanistic insight buried in 

the data, and not just to crank machines and obtain some numbers. For this purpose, it is 

both productive and necessary to perform proper abstraction and idealization as successfully 

used in theoretical physics [27]. A simple model that only makes qualitative predictions but 

provides deep mechanistic insight has more value than a complex model that can only 

“reproduce” experimental data but does not necessarily make a new set of predictions that 

may be tested experimentally to improve our understanding of the system. To be fair, both 
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detailed and simplified approaches have their merits, and sometimes it is constructive to 

combine the two strategies https://www.nature.com/articles/s41540-020-0132-1. One may 

start with detailed models that can reproduce the data, then remove model ingredients step-

by-step to identify the minimal components that are essential for recapitulating the key 

dynamical features of the system.

2.3 Construct a Mathematical Model and Perform Analysis

With the problem identified and an appropriate modeling framework selected, one can 

follow some generic modeling procedures:

1. Summarize known interacting species into a regulatory network. If there are 

uncertain interactions, one may construct a set of possible networks for later 

comparative studies. Figure 1 shows a core EMT regulatory network used in 

several studies [9, 13, 28].

2. Set up mathematical equations based on the biology. This step is nothing more 

than translating the relevant biological information into mathematical forms. For 

example, the equation below governs the temporal evolution of the total level of 

SNAIL1 mRNA ([snail1]t), which is summed over both free ((snail1)) and 

miR-34 bound ([snail1]t − (snail1)) mRNAs [28].

d[ snaill ]t
dt = k0

basal expression 
+ k

TGF t/K1 2

1 + TGF t/K1 2

TGF‐ β activation  

1
l+ SNAILl /K2

SNAIL1 self‐inhibition
− kd0 snaill

snaill basal degradation 
− kd snaill t − snaill

miR −34 regulated snaill degradation 

Each term on the right-hand side of the above equation corresponds to one of the 

SNAIL1 related links in Fig. 1.

3. Constrain model parameters using the available quantitative data. Several 

parameter estimation algorithms are available, from linear regression to the more 

sophisticated maximum likelihood estimation, and Markov chain Monte Carlo 

methods. Since, in practice, it is rare to have sufficient data for a specific system 

under study, a commonly adopted practice is to estimate the many parameters 

based on data from different labs, different cell lines, or cells from different 

tissues. However, even results from the same cell line can be quantitatively 

different due to factors such as differences in cell generation, reagent vendors, or 

even batches. Besides, dynamical parameters such as mRNA turnover rates can 

differ by orders of magnitude for cells under different conditions. An emerging 

trend is to collect data from one lab or under the same experimental settings [29], 

similar to what has been adopted in some large consortiums like ENCODE. 

Furthermore, instead of using only the best-fit parameter set, one may use an 

ensemble of model parameters to make model predictions. Zhang et al. [26] 

adopted such an integrated modeling-quantitative measurement procedure and an 

ensemble-based approach has been developed previously [30, 31]. Another 

model ensemble method is discussed in the next section.
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4. Specify initial conditions (e.g., initial concentrations of various species) that 

reflect the experimental setup. For example, if one models cell response after 

adding TGF-β at time 0, one may first make a rough estimation of the initial 

concentrations, then propagate the ODEs for a sufficiently long time under the 

condition of no TGF-β to reach a steady state, and use the steady state values as 

the initial conditions at time 0.

5. Perform standard analyses such as bifurcation analysis, phase diagram, temporal 

trajectories, and robustness/sensitivity analysis. One may either write custom 

computer code (e.g., in Matlab, Python, etc.), or use available computer 

packages, e.g., XPP (http://www.math.pitt.edu/~bard/xpp/xpp.html), Oscill8 

(http://oscill8.sourceforge.net/), and BioNetGen [32].

2.4 Explain Available Experiments and Make Testable Predictions

A unique advantage of computational modeling over experimental studies is that, generally, 

it is much easier to perform a series of in silico studies than their experimental counterparts, 

as the latter may be either time and resource consuming, or may even not be feasible. 

Generally speaking, mathematical/computational modeling can:

1. Provide mechanistic insights not evident from the data, and sometimes resolve 

conflicting experimental results or distinguish competing mechanisms. For a 

given system, data are typically collected from different sources and using 

different techniques. Each experimental technique or approach can only reveal 

partial information about the system, and modeling integrates the discrete 

information. By placing all the experimental results on a common ground, a 

modeling study allows one to check whether the data are consistent mutually, and 

with the conceived mechanisms.

2. Make predictions leading to new experimental measurements that might not have 

been considered otherwise. For example, the modeling study by Tian et al. [13] 

inspired a subsequent measurement of single cell SNAIL1 expression levels 

using flow cytometry [28].

3. Identify essential ingredients or missing links necessary to explain the 

observations. For a given system, there may be too much information, and some 

of it may not be or may only be marginally relevant to addressing a specific 

question. By adding or removing individual components and examining the 

effect on model behavior, one can identify the essential ingredients of a model. 

In other cases, the available information may be insufficient. In such a scenario, 

following a similar procedure of systemically adding individual components, one 

can predict the missing component(s) that are necessary to explain the 

experimental results. The missing component may then be identified in 

subsequent experimental studies. For example, the study by Lu et al. [9] 

suggested the existence of positive feedback in the regulation of ZEB in EMT 

regulation (dashed line in Fig. 1).

It is important to point out that a model need not necessarily be right in order to be useful. In 

fact, every model is only an approximation and abstraction of the biological system under 
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study and will be replaced by better approximations when additional information becomes 

available. “All models are wrong, but some are useful” [33]. Even an eventually falsified 

model may suggest useful experimental studies that would otherwise not have been 

performed, and thus help in advancing our knowledge of a biological system. Such models 

should receive deserved credit.

2.5 Perform Corresponding Experimental Studies

As Katchalsky pointed out [24], “Theory tells us what cannot happen, and it can tell us what 

could happen. But only experiments tell us what does happen.” All model predictions need 

to be subject to subsequent experimental tests.

2.6 Go Back to Step 2 and Iterate; Expansion of Model (Even After Publishing the Original 
Work)

It has become more and more common to see studies that have iterations between modeling 

and experiments. Sometimes the integrated experiment-modeling process may even lead to 

revisiting step 1 to define new questions and seek expanded collaborations. For example, 

early modeling studies [9, 13] on EMT focused on the core regulatory network (Fig. 1). 

Several subsequent studies expanded the network to explore how additional factors 

contribute to the spectrum of EMT phenotypes [4, 34, 35].

3 Modeling Population Heterogeneity in EMT

Intra-tumoral heterogeneity, wherein cancer cells within the same tumor exhibit different 

phenotypes, has been reported across multiple cancer types, both in vitro and in vivo [36]. 

Tumor cell populations in different cancer types including leukemia [37], breast cancer [38], 

colorectal cancer [39, 40], brain cancer [41], and prostate cancer [42] can consist of 

subpopulations of cells that exhibit stem-cell-like behavior. Cells in triple-negative breast 

cancer can exhibit distinct phenotypes including luminal, basal, immunomodulatory, 

mesenchymal, and stem-like [43]. In small cell lung cancer, tumor cells can exhibit both 

neuroendocrine and non-neuroendocrine phenotypes [44]. Intra-tumoral heterogeneity has 

recently been identified as a principal cause for the failure of anticancer therapies [45]. 

Therefore, characterization of the mechanisms driving this feature of tumor cell populations 

is key to advancing anticancer therapeutics. In many (perhaps most) cases, genetic 

heterogeneity does not underlie phenotypic heterogeneity, i.e., tumor cells exhibit different 

phenotypes in spite of carrying the same genetic alterations. This indicates that nongenetic 

mechanisms may be the chief driver of intra-tumoral heterogeneity.

Cells within the same tumor can exhibit different EMT-associated phenotypes—an epithelial 

phenotype, a mesenchymal phenotype, and one or more hybrid E/M phenotypes. This is a 

canonical example of nongenetic intra-tumoral heterogeneity observed across cancer types 

including in breast cancer [46], melanoma [47], colorectal cancer [48], and in prostate 

cancer [49]. Different EMT-associated phenotypes exhibit varying tumor-initiating 

capabilities [6, 7] and sensitivities to anticancer drugs [50, 51]. How does such epithelial-

mesenchymal heterogeneity emerge in a population of cancer cells? How is this 

heterogeneity maintained and propagated across generations and passages? These are key 
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questions that must be answered if we are to be able to attenuate the role of epithelial-

mesenchymal heterogeneity in driving the failure of anticancer therapies.

Multiple nongenetic mechanisms can contribute towards the emergence of phenotypic 

heterogeneity. The regulatory circuits that govern the phenotypes of different cells often 

respond differently to the same external cues leading to a phenotypically heterogeneous 

population. Phenotypes of cells in a population can change stochastically due to the noisy 

transcription of genes [52] or due to the random partitioning of the parent cell molecules 

among the daughter cells during cell division [53, 54]. Finally, cell–cell communication can 

cause cells in a population to acquire distinct phenotypes in a non-cell autonomous manner. 

Each of these three mechanisms has been implicated in the emergence and maintenance of 

epithelial-mesenchymal heterogeneity. Mathematical and computational modeling 

approaches have played a key role in determining how these mechanisms can drive 

epithelial-mesenchymal heterogeneity in populations of cancer cells. Here, we describe 

mathematical modeling approaches corresponding to each of the three mechanisms.

4 Heterogeneity from Cell-to-Cell Variation in Regulatory Kinetics

Large and complex gene regulatory networks underlie different cellular functions such as 

stem cell differentiation [55, 56] and circadian rhythm [57, 58]. The dynamical behavior of 

such large networks can be understood as being driven by a core regulatory circuit with the 

remaining genes in the circuit being peripheral to circuit dynamics, acting only to alter the 

signaling status of the core regulatory circuit [59]. The effects of peripheral genes and 

exogenous signaling can then be modeled as perturbations to the kinetic parameters 

governing the dynamics of the core regulatory module. This is the approach underlying the 

framework known as random circuit perturbation or RACIPE [60]. Here, we describe how to 

use RACIPE for modeling epithelial-mesenchymal heterogeneity.

While multiple signaling pathways have been implicated in controlling EMT and MET, the 

activities of many of these pathways converge onto a small set of core regulatory players. 

This set includes the master regulators such as SNAI1, miR-34, miR-200, and ZEB1 [8, 61]. 

The effects of different signals modulating EMT and MET can thus be modeled as 

perturbations to the kinetics of this smaller core regulatory circuit. These perturbations can 

vary from cell-to-cell, thus representing the differing internal and external signaling states of 

tumor cells in a population.

We first describe the RACIPE framework using the simple toggle switch as an example. As 

shown in Fig. 2, the toggle switch consists of two transcription factors, A and B, which form 

a mutual inhibitory feedback loop. The dynamics of this circuit can be described using a pair 

of ODEs:

d A
dt = gAHS B , KB

A, nB
A, λB

A − kA A (1)

d B
dt = gBHS A , KA

B, nA
B, λA

B − kB B (2)
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Here, [A] and [B] are the protein expression levels of genes A and B, respectively. gA and gB 

are the production rates of A and B when no activator or inhibitor is present. kA and kB are 

the inherent degradation rates of the two proteins. The regulatory action of gene B on gene 

A is modeled via the shifted Hill function:

HS B , KB
A, nB

A, λB
A = λB

A + 1 − λB
A H− B , KB

A, nB
A (3)

H− B , KB
A, nB

A = 1

1 + B
KB

A

nB
A

(4)

KB
A is the threshold concentration of B, nB

A is the Hill coefficient, and λB
A is the maximum 

fold change in the expression level of A that can be caused by the activity of B. If B activates 

A, λB
A > 1. If B inhibits A, 0 ≤ λB

A < 1. For the toggle switch, 0 ≤ λB
A, λA

B < 1. Thus, there are 

five types of kinetic parameters in the model. Two of them, g and k, are associated with each 

gene. The remaining three, K, n, and λ are associated with each regulatory link. Thus, for a 

circuit with 10 genes and 25 regulatory interactions, the total number of parameters will be 

(2 × 10) + (3 × 25) = 95.

RACIPE performs randomization on all five types of circuit parameters to obtain an 

ensemble of kinetic models for a given circuit topology. The randomization procedure is 

such that most biologically realizable possibilities are represented by one of the models in 

the ensemble. RACIPE uses two assumptions to obtain a representative ensemble of models. 

First, the maximum production rate of each gene is fixed, independent of the number and 

type of interactions that gene is a target of. For a gene with one activator, the maximum 

production rate, G, will be obtained when the activator is highly expressed. Thus, the basal 

production rate of the gene must be g = G
λ , λ > 1. For a gene with only one inhibitor, the 

maximum production rate will be obtained in the absence of inhibitor expression. Thus, G = 

g where g is the basal production rate. This approach can easily be generalized to the case 

when a gene has multiple activators and inhibitors [60]. RACIPE randomizes the maximum 

production rate (G) and then calculates g using the above-mentioned approach.

The second assumption is that in order for the ensemble of models to be representative of 

most biological possibilities, each regulatory link in the circuit must have an almost equal 

chance of being functional and being nonfunctional. To ensure this, RACIPE chooses the 

threshold parameters in such a manner that the steady state concentration of the 

corresponding regulator in different models within the ensemble is roughly equally likely to 

be above the threshold parameter (in which case the interaction is functional) and below the 

threshold parameter (in which case the interaction is nonfunctional). For a detailed 

description of how this is achieved, see Huang et al. [60].

In the ensemble generated by RACIPE, all models have the same topology but differ in the 

values of kinetic parameters governing the model dynamics. The dynamics of each model is 
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then numerically simulated multiple times, each time starting with a different set of initial 

concentrations of the molecules in the circuit. This allows RACIPE to obtain a set of steady 

states that a given model can generate. Once this has been done for each model in the 

ensemble, RACIPE obtains a collection of steady states that the given circuit topology can 

exhibit. Each model in the ensemble generated by RACIPE may be interpreted as 

representing a single cell. Thus, the collection of steady states obtained by RACIPE will 

represent an in silico gene expression profile obtained for a population of cells. One aspect 

that should be kept in mind is that a model that can exhibit more than one steady states will 

be counted more often in the collection of steady states generated by RACIPE as compared 

to a model that can exhibit only one steady state. Nevertheless, this steady state expression 

data can be analyzed using familiar methodologies including principal component analysis 

and hierarchical clustering to gain insight into the different classes of steady states that may 

be exhibited by a given network topology.

The C language computer code implementing the RACIPE framework is available online on 

GitHub (https://github.com/simonhb1990/RACIPE-1.0). Once the code has been 

downloaded, change to the folder or directory where the code files are present and use the 

make command to compile the code files for your system. This will generate a single 

executable named “RACIPE.” This executable takes as input a topology file, extension .topo, 

which describes the topology of the circuit being analyzed. This must be a plain text file 

with three tab-separated columns. The first column (“Source”) contains the name of the 

regulator gene. The second column (“Target”) contains the name of the gene being 

regulated. The third and final column (“Type”) describes the interaction type, 1 if the 

interaction is activating and 2 if the interaction in inhibiting. A sample topology file 

(TS.topo) is available online with the code. Once the topology file for the circuit of interest 

has been generated, the RACIPE code can be run as follows:

$ ./RACIPE network.topo

Additional input options that may be provided to the code are described in the 

“README.md” file available with the code. Upon execution, the code generates multiple 

files. Most important among these are:

1. Parameter ranges file (.prs extension) This file contains the ranges of different 

kinetic parameters.

2. Parameters file (_parameter.dat extension) This file contains the kinetic 

parameters for each model in the ensemble along with the number of steady 

states obtained for that model.

3. Solutions files These files contains the gene expression levels in each of the 

steady states obtained for different models. Steady state expression levels for 

models exhibiting different numbers of steady states are stored in different files. 

For models with only steady state, the file extension is “_solution_1.dat.” For 

models with three steady states, the file extension is “_solution_3.dat.” All gene 

expression values reported in these files are log2 normalized.
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Descriptions of other output files can be obtained from the “README.md” file available 

online with the code.

To determine if epithelial-mesenchymal heterogeneity can emerge from cell-to-cell variation 

in kinetic parameters as simulated using the RACIPE framework, we used a 26-node circuit 

(Fig. 3; top panel) which was constructed using Ingenuity Pathway Analysis (IPA; QIAGEN 

Inc.) and literature search [62]. The circuit consists of 17 protein-coding genes and 9 micro-

RNAs. The set of protein-coding genes includes transcription factors such as SNAI1, ZEB1, 

and TWIST1 whose role as master regulators of EMT is well characterized [8]. The set also 

includes EMT-associated biomarkers such as CDH1 and VIM along with “phenotypic 

stability factors” [34] such as GRHL2, OVOL2, and ΔNP63α. The collection of steady 

states that can be exhibited by models with the topology of this EMT circuit was obtained 

using RACIPE and analyzed using hierarchical clustering (Fig. 3; bottom panel). As 

mentioned previously, this collection of steady states is representative of the gene expression 

profile of cells in a tumor. The steady states can be broadly classified into four groups on the 

basis of expression levels of the 26 proteins and micro-RNAs in the EMT circuit. Group 1 

exhibits high levels of expression of epithelial phenotype-associated genes including CDH1 

along with high levels expression of EMT inhibitors such as GRHL2 and miR-200. This 

group thus represents cells that exhibit an epithelial phenotype. In group 4, EMT drivers 

such as SNAI1 and ZEB1 are highly expressed along with high expression of the 

mesenchymal marker VIM. This group represents cells that exhibit a mesenchymal 

phenotype. Groups 2 and 3 consist of steady states with co-expression of both epithelial and 

mesenchymal-associated factors. The expression of epithelial factors in these groups is 

lower than the expression of these factors in the epithelial group (group 1) and the 

expression of mesenchymal factors is lower than that in the mesenchymal group (group 4). 

Groups 2 and 3 thus co-express both epithelial and mesenchymal factors at intermediate 

levels.

Thus, analysis of a 26-node EMT circuit using the RACIPE framework demonstrates one 

mechanism by which epithelial-mesenchymal heterogeneity can emerge in a population of 

cancer cells. Due to the cell-to-cell variation of kinetic parameters driving EMT dynamics, 

cells can exhibit distinct gene expression profiles that can broadly be grouped into epithelial, 

mesenchymal, and hybrid E/M classes. The cell-to-cell variation in kinetic parameters is 

indicative of the differing exogenous signaling states in different cells. While cells in the 

population exhibit different gene expression profiles, the population does not consist of 

clones and subclones with cells in each clonal population exhibiting a specific EMT kinetic, 

i.e., the gene expression profile of a cell is not always hereditary and can change in response 

to changes in the exogenous signaling environment. Note that while our analysis reveals 2 

groups of steady states with co-expression of epithelial and mesenchymal factors suggesting 

that 2 such hybrid E/M states exist, a different analysis technique may reveal a greater 

number distinct types of hybrid E/M phenotypes. Cells can likely be classified into an even 

greater number of phenotypic groups by incorporating other EMT-associated factors into the 

circuit topology [10, 11] which would provide greater resolution as has been reported 

recently [16]. Finally, the RACIPE framework can easily be used to probe the contribution 

of each protein and micro-RNA and of each regulatory relationship in driving epithelial-

mesenchymal heterogeneity. One can edit the circuit topology file (extension .topo) to add 
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and/or delete EMT-associated factors and regulatory relationships and analyze the 

expression levels in the collection of steady states obtained for the altered circuit.

5 Heterogeneity from Random Partitioning of Molecules During Cell 

Division

Another scenario in which phenotypic heterogeneity can emerge in a population occurs if 

cells undergo stochastic changes in their phenotypes. In general, for such stochastic changes 

to happen, there must exist a mechanism to generate noise and a mechanism to stabilize the 

decision reached in response to the noise [63]. One mechanism which can generate noise is 

the random partitioning of molecules (RNAs, proteins, etc.) in the parent cell among the 

daughter cells at the time of cell division [53, 54, 64]. This mechanism is likely to be a 

prominent source of noise in tumors wherein cells divide fast and uncontrollably. While 

phenotypic fluctuations in cells in response to noise are usually small and transient, the 

fluctuations can be amplified if the underlying response mechanism exhibits multi-stability, 

i.e., co-existence of multiple steady states. As described previously [9, 13], circuits which 

drive EMT and MET exhibit multi-stable behavior. Thus, random partitioning of EMT-

associated factors during cancer cell division is likely to be a key contributor toward the 

emergence of epithelial-mesenchymal heterogeneity.

The schematic representation of a computational model that can be used to probe the role of 

this mechanism in the emergence of epithelial-mesenchymal heterogeneity is shown in Fig. 

4. The model [65] builds upon the dynamics of the core regulatory circuit involving SNAIL, 

ZEB, miR-34a, and miR-200. These transcription factors and micro-RNAs together form a 

circuit that acts as a ternary switch, responding to the signaling pathways driving EMT and 

MET [9]. Stable steady states of this circuit can be mapped to different EMT-associated 

phenotypes—epithelial, mesenchymal, and hybrid E/M—on the basis of expression levels of 

ZEB (Fig. 4). To see the effect of random partitioning on the phenotypic composition of the 

population, we here consider a population of cancer cells with each cell carrying a copy of 

this EMT regulatory circuit. Since this regulatory circuit does not involve cell–cell 

communication, the dynamics of the regulatory circuit within each cell in the population can 

be simulated independent of other cells in the population. The dynamics of EMT regulation 

at the single-cell level are simulated using ordinary differential equations which have been 

described previously [9]. At the population level, there are two types of events that can take 

place. One is cell death during which a cell is simply removed from the population. The 

other is cell division.

When a cell divides, the molecules present in the parent cell are randomly partitioned among 

the daughter cells [53, 54, 64]. Thus, each daughter cell receives a copy of the EMT 

regulatory circuit. However, due to the random partitioning of molecules, the concentrations 

of a molecular species in the two daughter cells can be different from each other and 

different from the concentration of that species in the parent cell. Let Isig represent the 

multiple signaling pathways that converge onto the core EMT regulatory circuit. We here 

consider noise in the partitioning of Isig as the dominant perturbation to EMT regulation in 

the daughter cells. The concentrations of Isigs in the daughter cells are given as:
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Isig
daughter  = Isig

parent  + ηN 0, l (5)

Here, N(0,1) is a standard normal distribution and η is a model parameter which determines 

the variance of the noise distribution. Due to the perturbation in the concentration of Isig, a 

daughter cell may acquire a phenotype different from that of the parent cell. The population 

can then become phenotypically heterogeneous over time.

Since the dynamics of EMT regulation is much faster as compared to the time scale at which 

cell division and cell death events take place, the model dynamics can be simulated in a 

multi-scale manner. Population-level dynamic, i.e., cell division and cell death, are simulated 

in a stochastic manner using Gillespie’s algorithm [66]. Between two population-level 

events, the concentrations of RNAs and transcription factors within each cell are updated 

using ordinary differential equations. Previous studies have shown that different EMT-

associated phenotypes can exhibit different rates of cell division [67–69]. However, one may 

consider a simpler case with equal division and death rates for all three cell types. In 

addition, to incorporate the effect of limited availability of nutrients in the tumor 

microenvironment, a logistic model of growth with a fixed carrying capacity can be used.

Dynamics of the model can be simulated as follows:

1. Choose an initial population size and randomly assign concentrations of 

molecules in the EMT regulatory circuit to different cells in the population. The 

concentrations are drawn from log-normal distributions such that the median 

concentration of each molecular species is within the range for which the 

regulatory circuit exhibits multi-stable dynamics.

2. Using Gillespie’s algorithm [66], update the number of cells in the population. In 

the case of a cell death event, that cell is removed from the simulation and thus 

the population. In the case of a cell division event, Isig concentrations in the 

daughter cells are updated using Eq. 5.

3. At the end of the Gillespie update, the concentrations of molecules in each cell in 

the population are updated. Let Δt be the time interval between the last Gillespie 

update and the current one. Then, the concentrations of molecules can be 

updated by integrating the ordinary differential equations for the EMT regulatory 

circuit [9] over the time period Δt.

Computer code for simulating the model dynamics can be downloaded from GitHub (https://

github.com/st35/cancer-EMT-heterogeneity-noise).

We simulated the model dynamics for populations with different initial phenotypic 

compositions. Figure 5 shows how epithelial-mesenchymal heterogeneity can emerge in a 

phenotypically homogeneous population over a period of 2 weeks. While epithelial and 

mesenchymal populations exhibit fairly stable phenotypic compositions, a hybrid E/M 

population can quickly give rise to a mixed population with both epithelial and 

mesenchymal cells. Such behavior has been confirmed in populations of mouse prostate 
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cancer cells [17] and a comparison of experimental dynamics with the predictions from the 

model is shown in Fig. 5 (bottom panel).

The model thus shows that random partitioning of parent cell proteins and RNAs among the 

daughter cells can generate epithelial-mesenchymal heterogeneity in a population of cancer 

cells. Arising from cell division, this heterogeneity can emerge and be propagated from a 

small population, such as the one left after an anticancer regime. Note that the model 

proposed here is not sensitive to the choice of the core EMT/MET regulatory circuit. Any 

circuit topology can be used within the framework of this model as long as the circuit 

dynamics is multi-stable which is a key feature of EMT regulation.

6 Heterogeneity from Cell–Cell Communication Via Notch Signaling

In addition to the regulatory mechanism at the single-cell level, cell–cell communication 

also plays a major role in modulating EMT [6, 7]. Notch signaling [70, 71] is one such 

mechanism which operates via the binding of Notch, a transmembrane receptor, to a ligand 

expressed on the surface of a neighboring cell. This binding event triggers the cleavage of 

the Notch intracellular domain (NICD). NICD is then released into the cytoplasm where it 

can act as a transcriptional cofactor thereby promoting or inhibiting the expression of certain 

genes [70]. Notch signaling between neighboring cells can create varied spatial patterns in a 

population. The pattern type depends on the type of Notch ligands that are active in the 

population. NICD inhibits the expression of Delta ligands and promotes the expression of 

ligands of the Jagged family. Notch-Delta signaling leads to neighboring cells acquiring 

distinct phenotypes—the cell expressing high levels of the Notch receptor and low levels of 

Delta ligands acts as the “sender” cell while the neighboring cell with low levels of Notch 

expression and high expression levels of Delta ligands acts as the “receiver” cell [72] 

(“lateral inhibition”; Fig. 6 (top panel)). Notch-Jagged signaling, on the other hand, leads to 

neighboring cells acquiring the same phenotype which is characterized by the co-expression 

of Notch receptors and Jagged ligands [73] (“lateral induction”; Fig. 6 (bottom panel)).

The role of Notch signaling in EMT regulation arises from the coupling between the Notch 

signaling machinery and the core regulatory circuit that drives EMT (Fig. 7; top panel). 

miR-34 can posttranscriptionally inhibit the expression of Notch receptors and that of Delta 

ligands. miR-200 similarly inhibits the expression of Jagged ligands. Further, NICD 

promotes the expression of SNAIL, thereby acting as an EMT promoter [4]. Due to the cross 

talk between the Notch signaling and EMT circuits, the spatial patterns that emerge from 

Notch signaling translate into spatial patterning in the expression of epithelial and 

mesenchymal markers in a population of cells. In general, since NICD is an EMT promoter 

and Notch-Delta signaling leads to neighboring cells acquiring distinct phenotypes, Notch-

Delta signaling leads to a spatial expression profile wherein hybrid E/M and mesenchymal 

cells are surrounded by epithelial cells. On the other hand, Notch-Jagged signaling can lead 

to the emergence of spatial clusters of hybrid E/M and mesenchymal cells due to the 

tendency of neighboring cells to acquire the same phenotype in the presence of in the 

presence of Notch-Jagged signaling (Fig. 7).
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The spatial expression of epithelial and mesenchymal factors in a population in the presence 

of Notch signaling can be probed using ordinary differential equations to model the behavior 

of coupled Notch signaling and EMT circuits. The methodology differs from previous 

models of EMT regulation in that the dynamics of the circuit within each cell depends not 

only on the concentrations of molecules within the cell but also on the concentrations of 

molecules, particularly Notch receptors and ligands, on neighboring cells that are in direct 

contact with the given cell. Therefore, before simulating Notch signaling-mediated 

dynamics, one must choose a suitable spatial lattice wherein each lattice position is occupied 

by a single cell. This is essential in order to properly identify the neighboring cells for each 

cell in the population. We will not describe the mathematical form of the ordinary 

differential equations here since these equations have been described in detail previously [4].

Figure 7 (bottom panel) shows the spatial patterns that emerge via Notch signaling between 

cells occupying a hexagonal lattice wherein each cell communicates with six neighboring 

cells in the population. The results indicate that spatial epithelial-mesenchymal 

heterogeneity can emerge in a population of cancer cells due to the activity of the Notch 

signaling mechanism. Cells with differing expression levels of epithelial and mesenchymal 

factors can be spatially organized in distinct patterns in different contexts. While Notch-

Delta signaling leads to a “salt-and-pepper” patterning wherein hybrid E/M and 

mesenchymal cells are surrounded by epithelial cells, Notch-Jagged signaling leads to the 

emergence of clusters of these cell types. The spatial organization of epithelial-mesenchymal 

heterogeneity is a distinguishing feature of this mechanism for emergence of heterogeneity. 

Neither cell-to-cell variation in kinetic parameters governing EMT regulation nor random 

partitioning of molecules during cell division can lead to such behavior. Spatial 

heterogeneity in the abundance of different phenotypes is a characteristic of tumors [74]. For 

example, mesenchymal cancer stem cells are abundant near the tumor-stroma boundary 

while cancer stem cells exhibiting a hybrid E/M phenotype tend to localize in the interior of 

the tumor [75]. The cell–cell communication-dependent mechanism for the generation of 

phenotypic heterogeneity described here can be used to understand and describe such 

features of the tumor microenvironment [76].

7 Modeling the Coupling Between EMT and Stemness in Cancer Cells

Across cancer types, subpopulations of tumor cells that exhibit stem-cell-like behavior, i.e., 

an increased capacity to repopulate tumors, have been observed [77]. These cancer stem 

cells (CSCs), often inherently resistant to anticancer therapies, can not only repopulate the 

tumor post-therapy but also re-create the intra-tumoral heterogeneity exhibited by the 

original tumor. The connection between EMT and the appearance of stem-cell-like 

properties in cancer cells has been studied for a long time. Initial studies argued that tumor 

cells must undergo a complete EMT in order to exhibit traits of CSCs [78, 79]. This 

proposition was consistent with the then prevalent perception of EMT as a binary process. 

Later studies showed that EMT/MET and cancer cell stemness are both highly dynamic 

processes. Cancer cells can exhibit hybrid E/M phenotypes and inter-convert between the 

different EMT-associated phenotypes. Similarly, cancer cells can switch between CSC and 

non-CSC phenotypic states, maintaining a dynamic equilibrium in a population of cancer 

cells [80–83]. Due to these developments, a more nuanced picture of the EMT-stemness 
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connection has emerged wherein all EMT-associated phenotypes—epithelial, mesenchymal, 

and hybrid E/M—can exhibit stemness properties depending on the strength of the coupling 

between the modules regulating EMT and stemness.

In cancer cells, stemness is regulated by a 2-component decision-making circuit (Fig. 8) 

wherein LIN28 and let-7, a micro-RNA, form a mutual inhibitory loop. NF-κB activates the 

expression of both LIN28 and let-7 and thus acts as an input to this regulatory module. Both 

LIN28 and let-7 can also activate their own expression. The dynamics of this regulatory 

circuit can be modeled using ODEs as has been done previously for the EMT regulatory 

circuit. These ODEs have been described in detail elsewhere [19]. The ODEs can be 

integrated numerically to obtain the steady state expression levels of LIN28 and let-7 for 

different concentrations of NF-κB. Three distinct phenotypes are evident from this analysis

—high LIN28, low LIN28, and intermediate LIN28. LIN28 activates the expression of the 

pluripotency marker OCT4 [84] and the stem cell state is characterized by the expression of 

OCT4 within a range—both very low and very high levels of OCT4 expression lead to the 

loss of stemness [85–88]. Thus, only cells with such intermediate levels of OCT4 expression 

can acquire a cancer stem cell phenotype.

The stemness regulatory module couples with the EMT regulatory module via two micro-

RNA mediated regulatory interactions. miR-200 inhibits the expression of LIN28 

posttranscriptionally. Similarly, let-7 inhibits the expression of the EMT-driver ZEB (Fig. 8). 

These interactions can easily be included in the ODE-based models of EMT and stemness 

regulation to couple the two regulatory units [89]. Since both very low and very high levels 

of OCT4 expression lead to loss of stemness, to determine if a certain EMT-associated 

phenotype can acquire stemness, one can define a “stemness window”—range of expression 

levels of OCT4 for which a cell can acquire stemness. EMT-associated phenotypes that 

overlap with this stemness window can then acquire stemness. This overlap, and thus the set 

of EMT-associated phenotypes that can acquire stemness can be modulated by varying the 

strength of the coupling between the two regulatory units. This coupling is modeled via two 

parameters—α1, the maximum fold change in the expression level of LIN28 that miR-200 

can cause, and α2, the maximum fold change in the expression level of ZEB that let-7 can 

cause. Since miR-200 inhibits LIN28 and let-7 inhibits ZEB, 0 ≤ α1, α2 ≤ 1. A fold change 

close to 1 indicates weak coupling while a fold change close to 0 indicates strong coupling.

When there is no coupling between the two regulatory units (α1 = 1, α2 = 1), cells can 

exhibit three distinct phenotypes associated with the EMT circuit (epithelial, mesenchymal, 

and hybrid E/M) provided the concentration of the EMT-driver SNAIL is within the range 

for which the EMT circuit can exhibit tri-stability. Cells can further exhibit three distinct 

phenotypes corresponding to the stemness circuit (low LIN28, high LIN28, and intermediate 

LIN28). Thus, 9 (3 × 3) total phenotypes are possible. This number decreases when the 

strength of the coupling between the circuits is increased. Which of the EMT-associated 

phenotypes exist within the stemness window depends on the relative values of α1 and α2. 

When both α1 and α2 are close to 1 (weak coupling), all three EMT-associated phenotypes 

lie within the “stemness window” and thus can acquire stemness. Upon decreasing α1, the 

stemness window shifts toward the mesenchymal phenotype. Epithelial cells can no longer 

acquire stemness in this scenario. When α2 is decreased while keeping α1 close to 1, the 
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stemness window shifts toward the epithelial phenotype and mesenchymal cells cannot 

acquire stemness with such a coupling between the regulatory units. The different scenarios 

have been illustrated in Fig. 9.

The total number of phenotypes that may be exhibited by cells in a population will further 

depend on the concentration of SNAIL. For example, when the SNAIL concentration is very 

high, cells can only exhibit the mesenchymal phenotype. These mesenchymal cells can then 

acquire stemness provided the “stemness window” overlaps with the mesenchymal 

phenotype. Similarly, very low concentrations of SNAIL will lead to cells in the population 

exhibiting only the epithelial phenotype. In such a scenario, two distinct phenotypes may be 

acquired by tumor cells in the population—epithelial stem-like and epithelial non-stem-like. 

The number of phenotypes exhibited can further be tuned by varying the concentration of 

NF-κB which activates the expression of both LIN28 and let-7. Very low or very high NF-

κB concentrations, for example, will cause cells to lose their ability to acquire and maintain 

stemness due to very low and very high OCT4 expression levels, respectively.

The coupling of EMT and stemness regulatory modules thus allows for the existence of a 

myriad of phenotypes. Tumor cells in a population may exhibit all or some of these 

phenotypes depending on the signaling profile. Coupled with the spatial heterogeneity of 

signaling states within a tumoral mass, subpopulations exhibiting different phenotypic 

profiles can exist in different parts of the tumor. The EMT regulatory circuit in cancer cells 

is further coupled with other regulatory modules including the Notch signaling module. 

Such additional couplings can further increase the number of phenotypes that can be 

exhibited by cells in a population in a manner similar to the EMT-stemness coupling 

described above. Additionally, since Notch signaling leads to the emergence of spatial 

patterns in the distribution of different phenotypes, EMT-Notch-stemness coupling can lead 

to the localization of different stemness associated phenotypes in different parts of the tumor 

microenvironment [76].

8 Conclusion

Here, we have presented EMT from the lens of computational systems biology where the 

focus is on the emergent properties of the underlying regulatory network, instead of those of 

individual nodes in the network. We have highlighted various examples of how physics/

engineering/mathematics driven approaches can reveal unprecedented insights into various 

aspects of EMT dynamics, such as multi-stability, reversibility/irreversibility, symmetry (or 

not) in EMT/MET, the effects of non-cell autonomous mechanisms in EMT/MET, and 

finally the connection of EMT/MET with other cellular traits such as stemness. The in silico 

models presented here have their own strengths, limitations, and assumptions, just as is the 

case with any in vitro, in vivo, or ex vivo model. The examples presented here emphasize 

how an iterative cross talk between mathematical modeling and experimental biology can 

help decode plasticity and heterogeneity in EMT/MET.
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Fig. 1. 
Core EMT regulatory network that leads to epithelial, hybrid E/M, and mesenchymal 

phenotypes (adapted from [13]). Pointed arrows represent activation, blunt-end arrows 

represent inhibition, and the dashed lines represent links first proposed in the modeling study 

by Lu et al. [9]
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Fig. 2. 
Transcription factors A and B with a mutual inhibitory feedback loop (top). RACIPE was 

used to generate 100 kinetic models corresponding to this topology. A total of 122 distinct 

steady states were obtained—78 kinetic models exhibited only one steady state while 22 

kinetic models exhibited two steady states. Hierarchical clustering of this collection of 

steady states (bottom) revealed that these steady states can be divided into two phenotypic 

classes: high A, low B (highlighted in red) and low A, high B (highlighted in green). Thus, 

in a population wherein each cell carries a copy of this circuit, cells can exhibit two distinct 

phenotypic states. Hierarchical clustering was carried out using the Z-scores of the log2 

transformed expression levels
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Fig. 3. 
The 26-node EMT topology (top). RACIPE was used to generate 5000 kinetic models 

corresponding to this topology. A total of 13,486 steady states were obtained via numerical 

integration of the ODEs in these kinetic models. Using hierarchical clustering, these steady 

states were grouped into four phenotypic classes (bottom)—epithelial (red), mesenchymal 

(green), and two hybrid E/M phenotypic classes (light blue and dark blue). Hierarchical 

clustering was carried out using the Z-scores of the log2 transformed expression levels
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Fig. 4. 
A schematic representation of the model to investigate how epithelial-mesenchymal 

heterogeneity can arise from the random partitioning of proteins and RNAs during cell 

division. (Figure adapted from Tripathi et al. [65])
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Fig. 5. 
(Top) Average number of epithelial, mesenchymal, and hybrid E/M daughter cells generated 

during the division of an epithelial cell (left), a hybrid E/M cell (middle), or a mesenchymal 

cell (right). Daughter cells can exhibit a phenotype distinct from that of the parent cell due to 

the random partitioning of Isig during cell division. (Bottom) Change in the fraction of 

different phenotypes in a population of cancer cells when starting with a purely epithelial 

(left), a purely hybrid E/M (middle), or a purely mesenchymal population on day 0. Solid 

lines indicate the predictions from the proposed model. Dotted lines indicate the behavior for 

a population of mouse prostate cancer cells re-plotted from Ruscetti et al. [17]. (Figure 

adapted from Tripathi et al. [65])
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Fig. 6. 
Two types of Notch signaling-mediated coupling between neighboring cells. In the presence 

of Notch-Delta signaling (top), neighboring cells form a mutual inhibitory feedback loop 

causing them to exhibit distinct phenotypes. One of the cells acts as the receiver (green cell 

in the top panel) with high Notch, low Delta expression. The other cell acts as the sender 

(orange cell in the top panel) with low Notch, high Delta expression. On the other hand, in 

the presence of Notch-Jagged signaling (bottom), neighboring cells form a mutual excitatory 

feedback loop causing them to acquire the same phenotype. Each cell acts both as a sender 

and a receiver and both cells co-express Notch receptors and Jagged ligands
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Fig. 7. 
(Top) Coupling between Notch-Delta-Jagged signaling and EMT regulation. (Bottom) 

Spatial heterogeneity in the expression of epithelial and mesenchymal markers in the 

presence of Notch-Delta signaling (left) and in the presence of Notch-Jagged signaling 

(right)
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Fig. 8. 
Coupling between the circuits regulating EMT and stemness. The strength of coupling 

between the two circuits is governed by the parameters α1 and α2. α1 is the maximum fold 

change in the rate of production of LIN28 that miR-200 can cause while α2 is the maximum 

fold change in the rate of ZEB production that let-7 can cause. Since both coupling 

interactions are inhibitory, 0 ≤ α1, α2 ≤ 1 with α1, α2 ~ 1 indicating weak coupling
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Fig. 9. 
The coupling parameters determine the overlap of the stemness window (expression of 

OCT4 within a range) with the spectrum of EMT-associated phenotypes. The overlap 

determines which of the phenotypes can acquire stemness. In the top panel, all three 

phenotypes can acquire stemness. In the middle panel, only epithelial and hybrid E/M 

phenotypes can acquire stemness. In the bottom panel, only hybrid E/M and mesenchymal 

phenotypes can acquire stemness
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