Skip to main content
. 2021 Jun 4;11:11867. doi: 10.1038/s41598-021-91334-9

Table 1.

Summary of our findings.

Composition Particle size (nm) Adiabatic approach Non-adiabatic approach Non-adiabatic and radiating process
SLP (W/g) SLP (W/g) ϵ (W/K) SLP (W/g) ϵ (W/K) hair (W/(m2K))
Fe3O4 7.6±0.2 0.67±0.01 0.717±0.002 0.00939±0.00004 0.714±0.002 0.00453±0.00004 4.98±0.06
Fe3O4 12.7±0.2 1.60±0.02 1.940±0.003 0.01293±0.00003 1.925±0.003 0.00783±0.00003 8.61±0.06
MgFe2O4 13.4±0.3 0.86±0.01 0.891±0.002 0.01171±0.00004 0.887±0.002 0.00683±0.00004 7.51±0.06
MgFe2O4 18.1±0.2 1.07±0.01 1.167±0.002 0.01299±0.00004 1.161±0.002 0.00806±0.00004 8.87±0.07
MgFe2O4 24.2±0.2 1.43±0.01 1.704±0.003 0.01425±0.00003 1.693±0.003 0.00923±0.00003 10.15±0.07

The average particle size is estimated by TEM. The experimental thermal quantities for our magnetite and magnesium ferrite nanoparticles are estimated by fitting, using the theoretical approaches, from magnetic hyperthermia experiments performed with alternating magnetic field with frequency of 70.5 kHz and amplitude of 70 Oe. Specifically, we estimate SLP and ϵ, and consequently hair from Eq. (20), from our approach describing magnetic nanoparticles under AMF in a non-adiabatic and radiating process, as well as, for comparison, the SLP from the adiabatic model, and SLP and ϵ from the approach considering non-adiabatic conditions.