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Epigenetic dysregulation of immune-related
pathways in cancer: bioinformatics tools and
visualization
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Abstract
Cancer immune evasion is one of the hallmarks of carcinogenesis. Cancer cells employ multiple mechanisms to avoid
immune recognition and suppress antitumor immune responses. Recently, accumulating evidence has indicated that
immune-related pathways are epigenetically dysregulated in cancer. Most importantly, the epigenetic footprint of
immune-related pathways is associated with the patient outcome, underscoring the crucial need to understand this
process. In this review, we summarize the current evidence for epigenetic regulation of immune-related pathways in
cancer and describe bioinformatics tools, informative visualization techniques, and resources to help decipher the
cancer epigenome.

Introduction
Cancer immunotherapy constitutes a major paradigm

shift in cancer care. Recent successes with immune
checkpoint inhibitors, most notably CTLA41,2 and PD1/
PDL-13–6 inhibitors, have altered the landscape of sys-
temic therapy for cancer. Despite such breakthroughs, the
majority of cancer patients remain refractory to existing
cancer immunotherapeutic modalities, highlighting the
inherent capacity of tumor cells to evade the immune
system. Mechanisms that impede immune surveillance
during carcinogenesis are required for tumor cells to
progress towards the development of macroscopic
tumors. Indeed, cancer cells regulate immune-related
pathways to suppress the immune system7 via intricate
modulation at the transcriptional, translational, and
posttranslational levels7–9.
Echoing the pivotal importance of cancer immune

evasion, immune-related pathways are frequently dysre-
gulated in cancer. However, for heritable changes to

impact the entire tumor tissue, the initial cascade of tol-
erogenic signals must involve genetic or epigenetic
changes, and accordingly, the mutational landscape of
cancer includes crucial immune pathways regulating
tumor immunity in a subset of patients7. However, loss or
gain of function via somatic mutations are rare events,
whereas every tumor is required to acquire a tolerogenic
immune barrier to survive. In this context, there is a
growing consensus that the immune-evasive phenotype of
cancer cells relies in part on the epigenetic machinery,
which is based on changes that in turn make cancer cells
more adaptable. Indeed, cancer cells frequently utilize
epigenetic dysregulation to silence tumor suppressors or
activate oncogenes10; similarly, carcinogenesis may also
require epigenetic reprogramming of immune-related
pathways to evade immune killing.
Methylation is one of the major epigenetic mechanisms

modulating gene transcription in cancer. Furthermore,
increased stochastic variations in methylation events are
manifested in the cancer epigenome, thus contributing to
tumor heterogeneity11. Recent studies have also demon-
strated the crucial role of dysregulated methylation in
modulating tumor immunity12. Therefore, in this review,
we outline the key immune pathways active in cancer
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cells, the relevance of methylation in regulating these
pathways, and the bioinformatic methodologies and
resources to decipher the epigenetic manifestations of
cancer immune evasion.

The immune synapse
The immune synapse between Antigen-presenting cells

(APCs) and cognate T cells relays two signals. Signal 1
refers to the presentation of a specific peptide antigen by
major histocompatibility complex (MHC) molecules on
APCs to the cognate T cell receptor on tumor-specific
T cells. Signal 2 is the “danger signal” that alerts the
immune system to elicit functional immune responses via
engagement of costimulatory molecules, degradation of
immune checkpoints, and release of proinflammatory
cytokines, as APCs recognize conserved danger motifs,
such as Toll-like receptor ligands, pathogen-associated
molecular patterns (PAMPs), or damage-associated
molecular patterns (DAMPs). Indeed, the prototypic
immune synapse (Fig. 1a) has now been expanded to
encompass the complex interaction between APCs and
effector T cells (Fig. 1b), and the qualitative and quanti-
tative signal transmitted through the immune synapse
determines the ensuing antitumor immune response.
Consistent with this observation, many of the molecules
comprising the immune synapse, including but not lim-
ited to PD1, CTLA4, Tim3, LAG3, and TIGIT, are tar-
geted by the current generation of cancer immunotherapy
and new pipeline drugs (Fig. 1b).
More recently, STING and cyclic GMP-AMP synthase

(cGAS) have gained considerable attention as represent-
ing the pivotal pathway that regulates downstream
interferon signaling to provide danger signals. The
abnormal presence of cytosolic DNA from dying tumor
cells leads to cGAS activation and the generation of cyclic
GMP-AMP, which, upon binding to STING, activates
TANK-binding kinase 1 (TBK1) and IRF3, ultimately
triggering type 1 interferon signaling13. The STING-cGAS
pathway also induces NF-κB signaling and the transcrip-
tion of proinflammatory cytokines, including IL-6 and
TNFα (Fig. 1c)13.

Methylation in cancer
DNA methylation of cytosine residues, primarily on 5’-

C-phosphate-G-3 (CpG) dinucleotides, and covalent
modifications of histones via acetylation, methylation,
phosphorylation, and ubiquitination, confer a heritable
epigenetic code that profoundly regulates transcriptional
activity in normal tissues and cancer cells. Accumulating
evidence shows that aberrant epigenetic reprogramming
significantly contributes to tumor initiation and progres-
sion14,15. For instance, site-specific promoter hyper-
methylation of tumor suppressors has been considered
the key epigenetic event during carcinogenesis14. More

recent studies have shown increased stochastic variations
in methylation events in the cancer epigenome11, which
may contribute to tumor heterogeneity. Mechanistically,
DNA methyltransferase 1 (DNMT1), DNMT3A, and
DNMT3B have been shown to be important maintenance
and de novo methyltransferases in cancer16,17. By con-
trast, ten-eleven translocation methylcytosine dioxygen-
ase 1 (TET1), TET2 and TET3 mediate key steps in active
DNA demethylation18.

Dysregulated methylation of immune pathways in
cancer
In recent years, it has become apparent that immune-

related pathways in cancer are regulated by the epigenetic
machinery. For instance, mechanisms of human leukocyte
antigen (HLA) downregulation include mutations in
MHC class I heavy chain genes19,20, mutations in the b2m
gene21, mutations in genes encoding JAK/STAT pathway
components22 and hypermethylation of MHC class I gene
loci23. Furthermore, the expression of costimulatory and
immune checkpoint molecules is not limited to immune
cells; tumor cells also exploit these interactions to induce
a tolerogenic tumor microenvironment7. Indeed, com-
prehensive profiling of the DNA methylation status of
immune synapse genes using level 1 methylation data
from 8,186 solid tumors and 745 normal adjacent tissues
in 30 solid tumor types from The Cancer Genome Atlas
(TCGA) demonstrated hypomethylation of immune
checkpoint genes and hypermethylation of costimulatory
genes across disease sites in comparison to normal adja-
cent tissues, thus indicating that these cells adopted an
immune-tolerogenic phenotype12. Strikingly, the differ-
ential methylation status of the immune synapse genes
exhibited prognostic significance in immunogenic can-
cers, including melanoma, lung cancer, kidney cancer,
head and neck cancer, and breast cancer, with associated
changes in effector T cell trafficking to the tumor
microenvironment12.
Interestingly, the STING-cGAS pathway also appears to

be epigenetically regulated in cancer cells24. The methy-
lation status of the STING and cGAS genes in 8426 pri-
mary solid tumors and 747 normal adjacent tissues with
data deposited in the TCGA database revealed relative
hypermethylation of these crucial pathways to suppress
cytosolic DNA sensing and interferon signaling24.

Clinical relevance
As dysregulated methylation is deemed critical in

modulating antitumor immune responses, translational
studies to harness the immunogenic effects of manip-
ulating tumor methylation are underway, with strong
evidence from previous preclinical studies demonstrating
the efficacy of demethylating agents to augment immu-
notherapy25,26. Importantly, recent success with
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demethylating agents in combination with anti-PD1
therapy (nivolumab) in AML suggests the clinical merit
of this approach27. However, the negative preliminary

findings from the phase II randomized clinical trial of oral
5-azacitidine plus pembrolizumab (a PD1 blocker) vs.
pembrolizumab plus placebo in non-small-cell lung

Fig. 1 Immune-related pathways in cancer. a Schematic of the prototypic immune synapse. b Expanded depiction of the immune synapse
between APCs/tumor cells and T cells. A comprehensive interaction between costimulatory and immune checkpoint ligand-receptor pairs is
visualized. c STING-cGAS signaling pathway. Sensing of double-stranded DNA by cGAS leads to endogenous generation of cGAMP, which stimulates
STING tetramerization and downstream signaling through IRF3, TBK1, and NF-κB to elicit interferon signaling.
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carcinoma28 suggest that patient selection may be crucial
to harness the therapeutic efficacy of 5-azacitidine.
Indeed, given the multifaceted immune tolerance
mechanisms employed by cancer cells, the immunogenic
effects of 5-azacitidine may be largely limited to patients
with unfavorable methylation patterns, suggesting a need
for biomarker development to optimize the use of
demethylating agents to augment cancer immunotherapy
in the clinic.

The Illumina methylation array and bioinformatic
pipelines for analysis
The Illumina HumanMethylation450 BeadChip

(HM450) proved to be a success, providing an affordable,
user-friendly, and high-throughput platform for measur-
ing the DNA methylation status at single-base resolu-
tion64. HM450 evaluates over 480,000 CpG sites that
predominantly targeting RefSeq genes and CpG islands
with 99% and 96% coverage, respectively65.
The MethylationEPIC BeadChip (EPIC) utilizes the same

technology and design principles as HM450, but the EPIC
chip contains probes for over 850,000 CpG sites, retaining
91.1% percent of the probes on HM45066. EPIC expands
coverage of the genome by including 413,745 CpG sites
that were not on HM450, 333,265 of which newly target
enhancer regions distal to transcription start sites64,66.
Due to the success and popularity of Illumina methy-

lation BeadChips, there is a need for bioinformatics tools
that are able to import, preprocess, visualize, and analyze
the data produced by these platforms. Specialized soft-
ware packages that target a specific step in the analysis
pipeline are developed and released, often accompanying
published research. For example, the implementation of a
novel preprocessing method might be made freely avail-
able. For many researchers, however, comprehensive
software packages that allow the user to easily perform the
majority of the steps needed to convert raw data into
results are of interest. Table 1 gives an overview of such
packages. The majority of the packages are designed for
the R programming language and environment67 and are
available through the Bioconductor project68,69. Included
are three alternatives: a Java-based package, a suite of
Python modules, and a web-based application.

Sources of methylation data
Many methylation datasets for different tumor types

exist, many of which also include normal samples. Clinical
data are frequently included, and some also include
matching gene expression data. Below, we describe some
of the key sources of methylation datasets, focused on
methylation data based on the Illumina Infinium
HumanMethylation27 BeadChip (HM27), Illumina Infi-
nium HumanMethylation450 BeadChip (HM450), and
Illumina Infinium MethylationEPIC BeadChip (EPIC).Ta
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The Cancer Genome Atlas (TCGA, https://www.cancer.
gov/tcga) collates molecular data for more than 10,000
tumor and normal tissue samples across 33 different tumor
types. The vast majority of the methylation data are from
HM450, with some samples from HM27. All data from
TCGA are available through the Genomic Data Commons
(GDC) data portal70. Normalized methylation data, descri-
bed in Gao et al.71, are available at https://portal.gdc.cancer.
gov/, while the raw idat files can be retrieved through the
GDC Legacy Archive (https://portal.gdc.cancer.gov/legacy-
archive). Data from GDC can also be downloaded with tools
such as TCGAbiolinks72. Moreover, data from individual
TCGA studies are available at https://gdc.cancer.gov/about-
data/publications, which also includes the complete datasets
used in the PanCanAtlas Publications73,74 (https://gdc.
cancer.gov/about-data/publications/pancanatlas). This web
page provides all types of molecular data, including
methylation data, and clinical data for all TCGA samples in
simple text files.
The International Cancer Genome Consortium75,76

(ICGC) https://dcc.icgc.org/ is a resource similar to
TCGA and also contains TCGA samples. Therapeutically
Applicable Research to Generate Effective Treatments
(TARGET) is similar to TCGA in the sense that it con-
tains multiple types of molecular data, including methy-
lation data, for several different tumor types. The data are
available directly from https://ocg.cancer.gov/programs/
target/data-matrix or through the GDC Data Portal.
Gene Expression Omnibus77 (GEO) and ArrayExpress78

are two public molecular data repositories with multiple
methylation datasets available. The data can be accessed
directly from their corresponding web pages through
different application programming interfaces (APIs) and
through some of the tools listed in Table 1.
Methylation data are also available from the Cancer Cell

Line Encyclopedia79 (CCLE). Multiple types of molecular
data, including reduced representation bisulfite sequen-
cing (RRBS) methylation data, are available at https://
portals.broadinstitute.org/ccle/data. The publication by
Iorio et al.80 provides HM450 methylation data for 1028
CCLE cell lines and is available in GEO (GSE68379) or
through ArrayExpress (E-MTAB-3610).
Compiled datasets from GEO, TCGA, and other sources

are also available through different methylation databases.
EWAS Data Hub81, DiseaseMeth82,83, and PubMeth84 are
examples of such databases, but it should be noted that
online tools may not always be updated and/or functional,
while the source data from GEO, ArrayExpress, and
TCGA are always available and up to date.

Visualization of methylation data
Methylation data can be visualized similarly to other

types of molecular data, such as gene expression data, e.g.,
with heatmaps, PCA plots and boxplots, but there are

some unique features of methylation data that require
some special considerations. The TCGA prostate adeno-
carcinoma (PRAD) methylation dataset will be used as an
example dataset for different types of informative
visualizations.

Sample-to-sample density scatter plots
Replicates can be compared using sample-to-sample

density scatter plots, as exemplified in Siegel et al.85. In
Fig. 2a, four replicates from the TCGA PRAD study are
compared by plotting all CpG probes in a scatter plot and
assigning colors based on the density of each CpG probe.
The density can quickly and easily be calculated using the
algorithm described by Eilers and Goeman86. Even if there
are several hundred thousand markers in the plot, the
density clearly shows how similar each replicate pair is.
Most CpG probes are located on or close to the black y=x
line, indicating that the CpG probes have the same
methylation value across the two replicates. The numbers
of CpG probes that have a difference larger than 0.2 and
0.3 (|Δβ| > 0.2, (|Δβ| > 0.3) are listed in the top corner
together with the correlation coefficient. It is clear from
the density plots and the numbers that replicate 3 is dif-
ferent when compared to the other three replicate pairs.

Beta-value histograms
Histograms of all the beta-values for a sample can be

used to find low-quality samples. The beta-value for the
eight replicate samples from the TCGA PRAD study is
shown in Fig. 2b. A visual inspection of all samples can
easily identify samples that do not have a clear bimodal
distribution. It is clear from Fig. 2b that replicates 4A and
4B do not show the same bimodal distribution as the
other samples, with a much lower right peak and a higher
line in the middle. The distribution of beta-values is
especially important for samples where there can be a
mixed cell population and for FFPE samples where the
DNA quality may be poor.

PCA plots
Principal component analysis (PCA)87 score plots can

be used to visualize all samples using all CpG probes to
find groups, outlier samples, and batch effects. PCA is an
unsupervised analysis method that displays the major
trends in the data. Figure 2c shows the PCA score plot
from a PCA model using the methylation data from the
TCGA PRAD samples, including the replicates. The figure
highlights the replicates and clearly confirms the findings
from the two previous plots. Replicate pairs 1, 2, and 4 are
similar to each other, while replicates 3A and 3B are
located further from each other. The histogram in Fig. 2b
indicates that replicates 4A and 4B are different, which is
also confirmed in the PCA plot, since they are located far
from the origin.

Berglund et al. Experimental & Molecular Medicine (2021) 53:761–771 765

Official journal of the Korean Society for Biochemistry and Molecular Biology

https://www.cancer.gov/tcga
https://www.cancer.gov/tcga
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/
https://portal.gdc.cancer.gov/legacy-archive
https://portal.gdc.cancer.gov/legacy-archive
https://gdc.cancer.gov/about-data/publications
https://gdc.cancer.gov/about-data/publications
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://gdc.cancer.gov/about-data/publications/pancanatlas
https://dcc.icgc.org/
https://ocg.cancer.gov/programs/target/data-matrix
https://ocg.cancer.gov/programs/target/data-matrix
https://portals.broadinstitute.org/ccle/data
https://portals.broadinstitute.org/ccle/data


Fig. 2 Visualization of methylation data. a Sample-to-sample density scatter plot for the four replicate pairs from the TCGA PRAD methylation dataset.
The color indicates the density of the points, and the black line is the y=x line. The Pearson correlation coefficient is listed together with the numbers of probes
with |Δβ| > 0.2 and |Δβ| > 0.3. b Histogram of beta-values for the four replicate pairs from the TCGA PRAD methylation dataset. c Scatter plot for the first two
principal components, PC1 and PC2, from a PCA model using all the CpG probes and all the samples from the TCGA PRAD methylation dataset. The replicates
are indicated by distinct shapes and colors. d Same PCA plot but with the colors and shapes based on the sample type and molecular subtype, respectively.
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Figure 2d shows the same PCA score plot as Fig. 2c, but
colors are instead assigned by biological subgroup,
demonstrating separation based on biology. This plot
indicates that the major changes in methylation arise from
biological differences and not from batch effects or other
technical artifacts. Using distinct colors and shapes
improves the visual understanding of the PCA plot. The
first principal component, PC1, explains 23.4% of the
variation in the data and shows clear separation of the
normal samples (green stars) and tumor samples. In other
words, the methylation pattern in tumor samples is very
different from the methylation pattern in normal samples.
The PCA plot suggests that there is less variation in the
normal samples (green stars) than in the different types of
tumor samples. The second principal component, PC2,
explains 12% of the variation and demonstrates separation
of tumor samples with TMPRSS2 fusion (blue markers)
from those without TMPRSS2 fusion (yellow-red mar-
kers). Thus, it becomes clear that the status of TMPRSS2
fusion results in methylation differences between different
tumor types. This PCA plot also includes the ~150 sam-
ples (gray dots) not used in the TCGA PRAD publication
due to RNA quality issues88. The PCA plot indicates that
these samples are not different from the original
333 samples, since they are distributed across the whole
area and are not separated as a unique group. It is
recommended that probes with too many missing values
(>50%) are removed before PCA, since they may become
overly important to the PCA model. The nonlinear
iterative partial least squares (NIPALS) algorithm can
handle a moderate number of missing values, obviating
the need to completely remove all probes with missing
values. There are also available methods to impute miss-
ing values, which can be done before the PCA. CpG
probes with a narrow range across all samples (e.g., 0.1)
can also be removed before the PCA, since they are most
likely describing nonbiological changes. It is also recom-
mended to do the analysis on nonscaled data, i.e., without
each variable scaled to unit variance. Scaling increases the
importance of CpG probes with low variance, which have
a lower signal-to-noise ratio. PCA can also be used to
summarize the methylation level across multiple CpG
probes and genes into one or a few variables12. When
summarizing multiple variables using PCA, it is important
to confirm that the PCA model describes the expected
biology89–91.

Gene-level visualization of methylation
Visualizing methylation data for a gene has several

challenges. Frequently, there are several CpG probes
available for each gene, and the methylation pattern for
each CpG probe can be quite different, which makes it
problematic to select the CpG probes to include when
representing the gene. Using rules such as the position in

the gene body (TSS1500, TSS200, 5’UTR, 1st exon, body,
or 3’UTR) is not an optimal option, since a CpG probe
can be located in different gene regions when the gene has
multiple transcripts. Representing the gene by a single
CpG probe is not ideal either, since this approach does
not use all available data and is more sensitive to missing
values and noise. There is also no guarantee that CpG
probes within the same gene body region have similar
methylation patterns. Displaying the methylation levels
across all CpG probes for a gene as boxplots across
multiple groups—for example, normal vs. tumor—pro-
vides valuable information that can be used when select-
ing CpG probes. One example of such a plot is the gene
structure methylation (GSM) plot92, shown in Fig. 3a.
Figure 3a shows the methylation levels of the 15 CpG
probes for CD40 in the TCGA PRAD dataset. The
methylation level of each CpG probe is shown along the
x-axis (ranging from 0 to 1) and is represented by a
boxplot for each group, with normal samples shown in
green and tumor samples in blue. The genomic location is
displayed on the left y-axis, while the right y-axis shows
the probe ID with a star (*) indicating a significant dif-
ference between the normal and tumor samples. The
distance between each probe on the y-axis is logarith-
mically related to the number of base pairs between the
two probes. The leftmost column indicates the presence
of CpG islands, and the right column indicates the CpG
probes’ positions in the gene structure.
Twelve of the fifteen CD40 CpG probes show a sig-

nificant difference in methylation between the normal and
tumor samples. Eleven of the fifteen CD40 CpG probes
demonstrate hypermethylation in the tumor samples
compared to the normal samples, while one CpG probe,
cg07222575, shows the opposite trend, with a higher
degree of methylation in normal samples. Two of the CpG
probes, cg24575067 and cg01149415, demonstrate less
variation, with cg24575067 showing a low degree of
methylation and cg01149415 showing a high degree of
methylation in both normal and tumor samples. This
finding clearly exemplifies that CpG probes can show very
different methylation patterns for the same gene.
This observation is further confirmed in the correlation

heatmap in Fig. 3b, which illustrates the correlation
between each probe. The top two probes, cg07222575 and
cg06218285, are correlated to each other and to the bot-
tom CpG probe, cg01149415, while showing a negative
correlation with all the other CpG probes. Eleven probes,
ranging from cg16686951 to cg09053081 and excluding
cg4575067, are highly correlated with each other and
show a significantly higher methylation level in tumor
samples than in normal samples (Fig. 3a). This pattern
indicates that the expression of CD40 is suppressed in
tumors compared to normal tissues. The bar plot in
Fig. 3b clearly demonstrates that these eleven CpG probes

Berglund et al. Experimental & Molecular Medicine (2021) 53:761–771 767

Official journal of the Korean Society for Biochemistry and Molecular Biology



Fig. 3 (See legend on next page.)

Berglund et al. Experimental & Molecular Medicine (2021) 53:761–771 768

Official journal of the Korean Society for Biochemistry and Molecular Biology



show a negative correlation with the gene expression level
of CD40. These three figures clearly demonstrate that
using the average of these eleven CpG probes provides a
good representation of the CD40 methylation level.
The average methylation level of the 11 selected CD40

CpG probes is clearly negatively correlated with the CD40
gene expression level identified by RNAseq, as shown in
Fig. 3c. This finding indicates that CD40 is at least par-
tially regulated by methylation in prostate cancer.

Online visualization of methylation data
The figures and graphs described in the previous section

can be generated in many programming languages, such
as R, MATLAB, Python, and Julia, and through some of
the pipelines described in Table 1. Methylation data can
also be analyzed and visualized using online tools with
preloaded data from TCGA, GEO, and other sources.
These tools are great resources for researchers with lim-
ited bioinformatics or programming expertise.
DNMIVD (DNA Methylation Interactive Visualization

Database) is a web-based tool with many features93.
DNMIVD uses TCGA methylation data, RNAseq gene
expression data, and survival data together with the can-
cer hallmark pathways from Zhang et al.94. Both CpG-
level and gene-level information are available together
with survival information and various quantitative trait
loci (QTL) results.
The SMART App is an interactive web application

through which TCGA data are also available95. Normal vs.
tumor boxplots are provided for specific CpG probes but
can also be aggregated for selected CpG probes. Similar
boxplots can also be generated to visualize the stage and
mutational status. In addition, correlations between
methylation and gene expression levels, as well as survival
curves, are available.
Wanderer96 provides CpG-probe-level visualization of

the methylation status for TCGA data, including both
normal and tumor samples. CpG-probe correlation plots
for RNAseq data are also available. All results for normal
and tumor samples are separated. The data can easily be
downloaded.
MEXPRESS97,98 provides a slightly different type of

visualization of TCGA methylation data, where many

types of clinical data are overlaid with clinical annotations.
MethSurv99 is focused on the survival analysis of

patients with 25 types of cancer from TCGA. The analysis
is CpG probe specific only, and no gene expression data
are available. There are options to create both heatmaps
and PCA plots.

Summary
Methylation is one of the main epigenetic mechanisms

controlling gene transcription and is thus increasingly
recognized as one of the major mechanisms of cancer
immune escape. As cancer cells evade the immune system
via dysregulated methylation of immune pathway-related
genes during carcinogenesis, these alterations evolve into
resistance mechanisms against the current immunother-
apeutic agents. Epigenetic dysregulation of immune-
related pathways in cancers may be mediated by natural
selection and clonal expansion of cancer cells that display
the immune-evasive phenotype acquired in response to
immune surveillance. This evolutionary concept implies
the crucial role of tumor-immune crosstalk throughout
carcinogenesis and underscores the need for in-depth
characterization of the role of methylation in modulating
antitumor immune responses, which may reveal action-
able targets to overcome immune evasion. There exists a
vast amount of methylation data that are ready to be
analyzed using well-established bioinformatics pipelines.
The results can be visualized in informative figures that
clearly show the epigenetic changes in tumor samples.
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Fig. 3 Gene-level visualization of methylation data. a Gene structure methylation (GSM) plot for CD40 demonstrating the methylation of the 15
CpG probes across the tumor and normal samples from the TCGA PRAD dataset. The x-axis shows the beta-values, which are shown in boxplots for
each CpG probe and group, with normal samples shown in green and tumor samples in blue. The left y-axis displays the genomic position, while the
right y-axis displays the probe id. The leftmost vertical column indicates CpG islands, and the right vertical column indicates the gene structure
location. *q < 0.05 and |Δβ| > 0.1, **q < 0.01 & |Δβ| > 0.2. b The bar plot shows the Pearson correlation coefficient between each CD40 CpG probe and
the gene expression level for the TCGA PRAD samples. The heatmap demonstrates the Pearson correlation of the methylation level between each
CpG-probe pair. c The CD40 RNAseq gene expression level vs. the average methylation level for the 11 selected CD40 CpG probes using TCGA PRAD
samples. Normal samples are shown as green circles, and tumors are shown as blue diamonds.
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