Skip to main content
. 2021 May 7;53(5):761–771. doi: 10.1038/s12276-021-00612-z

Table 1.

Bioinformatic tools and pipelines for analyzing methylation data.

Name Platfor GUI Data Types QC Preprocess Cell DMP DMR
RnBeads29,30 R/Bioc Yes IDAT, betas, GEO, Bis-Seq bed Control Plots, PCA/MDS BMIQ31, SWAN32, dasen33, NOOB34 Yes limma35,36, t-test, RefFreeEWAS37, rank-based Aggregate p-value
ChAMP38,39 R/Bioc No IDAT, betas Control Plots, PCA/MDS BMIQ, FunNorm40, SWAN Yes limma Probe Lasso41, bumphunter42, DMRcate43
SeSAMe44 R/Bioc No IDAT QC statistics Nonlinear dye44, NOOB Yes No No
Minfi45,46 R/Bioc No IDAT, GEO, betas Control Plots, Beta Density, MDS SWAN, NOOB, FunNorm, SQN47, Illumina Yes limma bumphunter
shinyÉPICo48 R/Bioc Yes IDAT Beta Density, PCA As minfi No limma mCSEATest49
ENmix50 R/Bioc No IDAT Control Plots, PCR Enmix51, RELIC52, RCP53 Yes No comb-p54, ipDMR55
MADA56 Web Yes IDAT Beta Density, MDS As minfi, BMIQ, dasen No limma, samr57 Probe Lasso, bumphunter, DMRcate, seqlm58
FOXO BioScience5961 Python No IDAT, GEO, ArrayExpress Control Plots, Beta Density, MDS NOOB No linear regression, logistic regression No
DimMer62,63 Java Yes IDAT No Illumina, SQN Yes t-test, linear regression sliding window

Bioc bioconductor, MDS multidimensional scaling, PCA principal component analysis, PCR principal component regression, DMP differentially methylated position, DMR differentially methylated region.