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Abstract

Background: Multicompartmental modeling outperforms conventional DWI in the assessment 

of prostate cancer. Optimized multicompartmental models could further improve the detection and 

characterization of prostate cancer.

Purpose: To optimize multicompartmental signal models and apply them to study diffusion in 

normal and cancerous prostate tissue in vivo.

Study Type: Retrospective.

Subjects: 46 patients who underwent MRI examination for suspected prostate cancer; 23 had 

prostate cancer and 23 had no detectable cancer.

Field strength/Sequence: 3T multi-shell diffusion-weighted sequence.

Assessment: Multicompartmental models with 2–5 tissue compartments were fit to DWI data 

from the prostate to determine optimal compartmental ADCs. These ADCs were used to compute 

signal contributions from the different compartments. The Bayesian Information Criterion (BIC) 

and model-fitting residuals were calculated to quantify model complexity and goodness-of-fit. 

Tumor contrast-to-noise ratio (CNR) and tumor-to-background signal intensity ratio (SIR) were 

computed for conventional DWI and multicompartmental signal-contribution maps.

Statistical Tests: ANOVA and two-sample t-tests (α=0.05) were used to compare fitting 

residuals between prostate regions and between multicompartmental models. T-tests (α=0.05) 
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were also used to assess differences in compartmental signal-fraction between tissue types and 

CNR/SIR between conventional DWI and multicompartmental models.

Results: The lowest BIC was observed from the 4-compartment model, with optimal ADCs of 

5.2e-4, 1.9e-3, 3.0e-3, and >3.0e-2 mm2/s. Fitting residuals from multicompartmental models were 

significantly lower than from conventional ADC mapping (P<0.05). Residuals were lowest in the 

peripheral zone and highest in tumors. Tumor tissue showed the largest reduction in fitting residual 

by increasing model order. Tumors had a greater proportion of signal from compartment 1 than 

normal tissue (P<0.05). Tumor CNR and SIR were greater on compartment-1 signal maps than 

conventional DWI (P<0.05) and increased with model order.

Data Conclusion: The 4-compartment signal model best described diffusion in the prostate. 

Compartmental signal-contributions revealed by this model may improve assessment of prostate 

cancer.
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Introduction

While biopsy is the standard technique for diagnosing prostate cancer, it is prone to 

sampling errors that can significantly impact risk stratification and treatment (1, 2). 

Multiparametric MRI has become a useful tool for improving diagnostic capabilities, aiding 

in the detection and characterization of prostate tumors, as well as providing image guidance 

for biopsy and focal intervention (3–6). A critical component of multiparametric MRI is 

diffusion-weighted imaging (DWI), which measures the diffusion properties of water at a 

microscopic level to assess tissue microstructure (7).

On conventional DWI, cancerous lesions are characterized by decreased apparent diffusion 

coefficients (ADCs) compared to normal prostate tissue (3). However, the expected changes 

in ADC that accompany cancer are often confounded by edema or necrosis (8) and may not 

be detectable from ADC maps alone (9). It is particularly difficult to identify cancer in the 

transition zone of the prostate due to the common occurrence of benign prostatic hyperplasia 

(BPH), which exhibits DWI signal and ADC characteristics similar to that of tumors (10, 

11).

Restriction spectrum imaging (RSI) is a multicompartmental approach to DWI that employs 

a multi-shell diffusion acquisition and high b-values to account for cellular geometry and 

compartmentalization (8, 12, 13). RSI and other multicompartmental DWI methods (14, 15) 

model the diffusion-weighted signal as a linear combination of exponential decays, with the 

individual decay-curves corresponding to different tissue compartments. The ADC value of 

each compartment is fixed, and variation in diffusion signal between voxels is, therefore, 

interpreted as variation in the proportion of each tissue compartment comprising the total 

diffusion signal. Fixing compartmental ADC values enables linearization of the DWI signal 

decay and rapid discrimination of the different tissue compartments within each voxel (12).
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Meaningful assessment of prostate cancer with RSI requires that the number of signal-model 

compartments and their corresponding ADC values accurately characterize the diffusion 

properties of both normal and cancerous prostate tissue. Previous studies demonstrated 

improved discrimination between normal and cancerous prostate tissue using simple 2-

compartment RSI models, with fixed ADC values corresponding to restricted and free 

diffusion of water (16–19) but stopped short of determining optimal ADC values or 

comparing it to higher-order models with additional tissue compartments. Optimizing the 

number of tissue compartments and associated ADCs of the RSI signal model could lead to 

improved characterization of prostate cancer and better discrimination of tumors in 

radiographically-complex regions like the transition zone.

This study aimed to optimize multicompartmental RSI models and apply them to study the 

diffusion properties of normal and cancerous prostate tissue in vivo.

Materials and Methods

This retrospective study was approved by the local institutional review board (IRB). A 

waiver of consent was obtained from the IRB to access patient MRI data and other clinical 

records. Forty-six patients who underwent MRI examination for suspected prostate cancer 

were included. As part of this examination, routine clinical scans were performed and 

assessed in accordance with version 2 of the Prostate Imaging Reporting and Data System 

(PI-RADS v2) (3). Any lesions suspicious for prostate cancer were defined and reported on 

the clinical images by board-certified radiologists with sub-specialization in abdominopelvic 

imaging. Lesion contours were defined in DynaCAD (Philips, Best, Netherlands) and 

imported in the UroNav MRI/ultrasound guided fusion biopsy system (Philips, Best, 

Netherlands) for transrectal targeted biopsy. Systematic 12-core biopsy of the prostate was 

also performed in the same session as targeted biopsy, and the location of each tissue sample 

was recorded to enable correspondence between histology and imaging. The presence of 

prostate cancer in these tissue samples and the corresponding Gleason Grade groups were 

determined via routine clinical histopathologic analysis by board-certified pathologists.

This evaluation determined that 23 patients (age: 64±9 years; PSA: 9.5±7.5 ng/mL) had 

cancerous lesions in the prostate. Seventeen lesions were located (radiographically) in the 

peripheral zone of the prostate, 4 were located in the transition zone, and 2 extended into 

both the peripheral and transition zones. The PI-RADS v2 scores for these lesions ranged 

from 3 to 5, with 13 lesions scored as a 5, 8 lesions scored as a 4, and 2 lesions scored as a 3. 

Gleason Grade groups reported for the lesions ranged from 1 to 5, with 4 lesions scored as a 

5, 1 lesion scored as a 4, 7 lesions scored as a 3, 8 lesions scored as a 2, and 3 lesions scored 

as a 1. A detailed summary of these clinical findings is presented in Table 1.

Biopsy results were cancer-negative from 21 patients. Two patients were not biopsied but 

had PI-RADS v2 lesion scores of 1 and 2 and were presumed cancer free, for a total of 23 

patients without detectable cancer (age: 64±11 years; PSA: 12.2±23.8 ng/mL).
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MRI data acquisition

All MR imaging was performed on a 3T clinical scanner (Discovery MR750; GE 

Healthcare, Waukesha, WI) using a 32-channel phased-array body coil surrounding the 

pelvis. Routine clinical scans were first acquired in accordance with PI-RADS v2 

specifications (3). Axial DWI volumes (TR: 3900 ms, TE: 65 ms, matrix 160×160, FOV: 

260 mm, slices: 30, slice thickness: 5 mm) were acquired at b-values of 50 and 1000 s/mm2, 

and an ADC map was automatically generated from these DWI volumes by the scanner 

software. A LAVA-flex pulse sequence (20) was used to acquire axial T1-weighted water-

only and fat-only pelvic volumes (TR: 4.12 ms, TE: 1.7 ms, flip angle: 12°, matrix: 

320×224, FOV: 320 mm, slices: 104, slice thickness: 4 mm). Dynamic contrast-enhanced 

(DCE) MRI was performed using a time-resolved imaging of contrast kinetics (TRICKS) 

(21) protocol that acquired 32 frames with a temporal resolution of one frame every 7 

seconds (TR: 4.6 ms, TE: 2.1 ms, flip angle: 30°, matrix: 256×168, FOV: 220 mm, slices: 

32, slice thickness: 3 mm). Baseline-subtracted volumes were automatically generated from 

TRICKS data by the scanner software. These clinical datasets were retained as a reference to 

aid in the definition of tissue contours on RSI acquisitions, but were not otherwise evaluated 

as part of this study.

For RSI, an axially-oriented multi-shell DWI volume was acquired for each patient that 

sampled 5 b-values (0, 200, 1000, 2000, and 3000 s/mm2) at 6 unique diffusion-encoding 

gradient directions (default tensor directions, one average per direction, δ: 25 ms, Δ: 37 ms, 

TR: 5000 ms, TE: 80 ms, resolution: 2.5×2.5 mm, matrix: 96×96 resampled to 128×128, 

slices: 34, slice thickness: 3 mm, fat saturation: spatial-spectral, parallel imaging: none, 

acquisition time: 5 min). The b = 0 s/mm2 volumes were acquired using both forward and 

reverse phase encoding to allow for correction of distortion caused by B0 inhomogeneity 

(22). As an anatomical reference, a T2-weighted volume was acquired with scan coverage 

identical to that of the multi-shell DWI volume (TR: 6225 ms, TE: 100 ms, resolution: 

0.75×0.75 mm, matrix: 320×320 resampled to 512×512, slices: 34, slice thickness: 3 mm, 

fat saturation: off, acquisition time: 5 min).

RSI MRI data post-processing

All post-processing and analysis of MRI data was performed using custom programs written 

in MATLAB (The MathWorks, Inc; Natick, MA). The multi-shell DWI volumes were first 

corrected for distortions due to B0 inhomogeneity, gradient nonlinearity, and eddy currents 

(12, 22). Because noise in MR images can bias estimated DWI parameters (18, 23), signal 

intensity in the multi-shell DWI volumes was corrected to account for the presence of the 

noise floor (18). Briefly, the mean background signal intensity of each volume was 

estimated and then subtracted from the observed signal intensity of each voxel to obtain the 

corrected signal intensity (Scorr). Isotropic diffusion in the prostate was assumed, so the 6 

directional diffusion volumes at each b-value were averaged together. For comparison 

against RSI, conventional ADC maps were computed from this DWI data by fitting the 

signal at b-values 0 and 1000 s/mm2 to a monoexponential signal decay model.

All tissue contouring was performed by a radiation oncologist (C.H.F.; 3 years of experience 

contouring images) and reviewed for accuracy by two board-certified radiologists (M.E.H. 

Conlin et al. Page 4

J Magn Reson Imaging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



and R.R.P.; 6 and 3 years of experience reviewing contours, respectively) using MIM 

software (MIM Software, Inc; Cleveland, OH). For patients without cancer, regions of 

interest (ROIs) were defined to include the entire prostate and seminal vesicles. To allow for 

examination of signal from different anatomical regions, separate sub-ROIs were also 

defined over the peripheral and transition zones of the prostate, as well as the seminal 

vesicles. For patients with prostate cancer, ROIs were defined over the tumor in agreement 

with standard-of-care clinical assessment: lesion signal intensity on all available imaging 

modalities (principally T2-weighted and DWI) was considered alongside pathologic findings 

to determine the extent of the tumor ROI. All ROIs were examined by the two radiologists 

and, if necessary, the contours were adjusted to achieve consensus between readers. The 

finalized ROIs were then exported as binary masks in a MATLAB-readable format.

Multicompartmental RSI modeling

The RSI model is defined by the following formula:

Scorr(b) = ∑
i = 1

K
Cie−bDi

where Scorr(b) denotes the noise-corrected DWI signal at a particular b-value, K is the 

number of tissue compartments, Ci is a unit-less weighting factor describing the contribution 

of a particular compartment to the overall signal, and Di is the compartmental ADC. By 

convention, the compartments are ordered from lowest to highest ADC, such that the first 

compartment (C1) describes the most restricted class of diffusion. To determine optimal K 

and Di values for the prostate, a global fitting of the model to the multi-shell DWI data from 

all voxels within all ROIs (normal+cancer tissue; >200,000 voxels) was performed, with K 

ranging from 2 to 5 (the maximum number of compartments was limited to the number of b-

values employed during image acquisition). For each K value, model fitting was performed 

using a simplex search method (24) to minimize a quadratic (convex) cost function that 

quantifies the difference between observed and model-predicted signal values for all voxels 

simultaneously. To compute the cost function for a given set of Di values, a nonnegative 

least-squares optimization (25) was necessary to estimate the corresponding Ci values and 

generate the model-predicted signal values. Minimizing this cost function returned optimal 

Di values for each of the K compartments of the model. Once optimal RSI models were 

determined, tissue signal-contribution (Ci) maps were computed for each patient via 

nonnegative least-squares fitting of the model to the signal-vs-b-value curve from each 

voxel. Computation time for these voxel-wise signal-contribution maps was 0.59 ± 0.01 s/

patient on a desktop computer with 64 GB RAM and an 8-core, 2.40 GHz CPU (Intel Xeon 

E5–2630 v3).

Fractional signal contribution or “signal fraction” was computed from the signal contribution 

by normalizing the C value for each compartment by the sum of C values for all 

compartments in the model: Ci/∑i = 1
K Ci. This normalization eliminates T2, proton density, 

and scanner-dependent scaling effects that limit comparisons across patients.
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Statistical analysis

To assess the variance of the Di parameters estimated from RSI model fitting, 1000 iterations 

of bootstrapping were performed by randomly resampling the DWI signal data at the patient 

level and re-fitting the RSI models to the resampled data. 95% confidence intervals for each 

Di value were then computed from the bootstrapped parameter distributions.

To determine how well the various multi-compartmental RSI models described the prostate 

diffusion data, the Bayesian Information Criterion (BIC; (26)) was computed for each model 

as follows:

BIC = ln N ⋅ K + N ⋅ ln R
N

where N is the sample size (taken to be the number of patients in this study — 46), K is the 

number of tissue compartments in the model, and R is the model-fitting’s sum of squared 

residuals. The relative BIC (ΔBIC) for each RSI model was calculated: ΔBIC = BICi − 
BICmin, where BICi is the BIC value of a particular model and BICmin is the minimal BIC 

observed from any of the models.

Relative fitting residual (percent variance of the difference between model-predicted and 

measured signal) was recorded from 1000 bootstrap iterations of model-fitting with patient-

level resampling to assess each model’s goodness-of-fit. Paired t-tests (α=0.05) were used to 

determine if the fitting residuals from RSI models were smaller than those from 

conventional ADC mapping. For the optimal RSI model with lowest ΔBIC, one-way 

analysis of variance (ANOVA) was performed to check for any significant variation in fitting 

residual between anatomical regions of the prostate (peripheral and transition zones, seminal 

vesicles, and tumors). If significant variation between regions was detected, two-sample t-

tests (α=0.05) were performed to ascertain which specific regions were significantly 

different. Compartmental signal fractions were compared between normal tissues (peripheral 

zone, transition zone, seminal vesicles) and tumors using two-sample t-tests (α=0.05).

To quantify tumor prominence on the conventional DWI images (ADC maps and trace DWI 

images at each b-value) and RSI C1 maps, tumor contrast-to-noise ratio (CNR) and signal 

intensity ratio (SIR) were computed. CNR was calculated as the absolute difference in mean 

signal between the tumor and surrounding parenchyma, normalized by the standard 

deviation of the non-tumor signal. SIR was defined as the ratio of mean signal in the tumor 

to mean signal in the surrounding parenchyma, and has previously been used as a measure of 

tumor conspicuity (8). CNR and SIR were compared between the conventional DWI images 

and RSI C1 maps using paired t-tests (α=0.05). CNR and SIR were also compared between 

the C1 maps of RSI models with different numbers of compartments using paired t-tests 

(α=0.05). The hypothesis testing described above was all performed at the ROI-level (rather 

than the voxel level), meaning that voxel-wise estimates were averaged within each ROI 

prior to comparison.
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Results

Optimal ADC values and 95% confidence intervals are listed in Table 2 for the different RSI 

models, alongside the relative BIC (ΔBIC) for each model. ΔBIC values were substantially 

lower for the 4- and 5-compartment models than for the 2- and 3-compartment models, with 

the 4-compartment model yielding the lowest BIC value overall. Figure 1 compares the 

bootstrapped distribution of fitting-residuals between conventional ADC mapping and the 

different RSI models. In normal prostate tissue, the fitting residuals from any of the RSI 

models was significantly lower than the residuals from conventional ADC mapping (P < 

0.05). In tumor tissue, fitting residuals from the 3-, 4-, and 5-compartment RSI models were 

significantly lower than the residuals from conventional ADC mapping (P < 0.05). One-way 

ANOVA and subsequent pairwise t-tests indicated that fitting residuals from the 4-

compartment model varied significantly between each of the different anatomical regions of 

the prostate (P < 0.05 for ANOVA and all pairwise t-tests). Mean fitting residual (in percent 

variance) was lowest in the peripheral zone (0.05 %), followed in ascending order by the 

mean residual in the transition zone (0.06 %), seminal vesicles (0.10 %), and tumors (0.11 

%). Overall, an improved fit to the data (i.e., reduced fitting residual) was observed with 

increasing RSI model order. As model order increased from 2 to 5 compartments, the fitting 

residual decreased by 0.15 % across all voxels, 0.11 % in the peripheral zone, 0.11 % in the 

transition zone, 0.14 % in the seminal vesicles, and 4.57 % in tumors. Tumor tissue showed 

the largest reduction in fitting residual by increasing model order.

Signal contribution (Ci) maps that were computed from the optimized RSI models are shown 

in Figure 2 for a subject with a primary tumor in the transition zone. The compartmental 

signal fractions of different tissues are quantified in Figure 3. Across all models, prostate 

tumors showed a significantly greater (P < 0.05) proportion of signal from compartment C1 

than was observed in normal tissue. With the 4- and 5-compartment RSI models, the fraction 

of signal from C2 was also significantly higher (P < 0.05) in tumors compared to normal 

tissue, while that of C3 was significantly lower (P < 0.05). The signal fractions from both C3 

of the 3-compartment model and C4 of the 4-compartment model were significantly lower in 

tumors than in any region of normal prostate tissue (P < 0.05 for both comparisons).

Among normal tissues, the peripheral zone and transition zone had substantially different 

signal-fraction profiles. For all models, the C1 signal fraction was significantly greater (P < 

0.05) in the transition zone than the peripheral zone. In the 2- and 3-compartment models, 

the C2 signal fraction was significantly larger in the peripheral zone (P < 0.05). In the 4- and 

5-compartment models, the C2 signal fraction was significantly higher in the transition zone 

(P < 0.05). The 4-compartment model showed a significantly greater proportion of signal 

from C3 in the peripheral zone (P < 0.05). The signal proportions computed from the 5-

compartment model differed significantly between the peripheral and transition zones in 

compartments C3 (P < 0.05) and C4 (P < 0.05). In the 4th compartment of the 4-compartment 

model and the 5th compartment of the 5-compartment model (which have the highest Di 

values and correspond to the vessel images in Figure 2) the signal fraction from the 

transition zone was significantly larger than from the peripheral zone (P < 0.05). None of the 

compartmental signal fractions were significantly different between the peripheral zone and 

seminal vesicles (P > 0.1 for all comparisons of all models).
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Figure 4 compares tumor CNR and SIR from conventional DWI images to those from the C1 

maps of the optimized RSI models. CNR from RSI models with 3, 4, or 5 compartments was 

significantly higher than CNR from conventional ADC mapping (P < 0.05) or any of the 

trace DWI images (P < 0.05). CNR increased significantly when RSI model order increased 

from 2 to 3 compartments (P < 0.05), and from 3 to 4 compartments (P < 0.05). SIR from 

any of the RSI models was significantly greater than the SIR from the conventional ADC 

map (P < 0.05) or any of the trace images (P < 0.05). Tumor SIR on the RSI C1 map 

generally increased with the number of model compartments. The increase in SIR from 2 to 

3 compartments was statistically significant (P < 0.05), as was the increase in SIR from 3 to 

4 compartments (P < 0.05).

Discussion

In this study, we evaluated different RSI models to determine an optimal characterization of 

diffusion properties in both normal and cancerous prostate tissue. The diffusion properties 

(Di) of each model were determined through simultaneous, global fitting to diffusion-signal 

data from 46 clinically-representative patients (over 200,000 voxels). Unlike more 

conventional DWI analysis that examines only the averaged signal within pre-identified 

lesion ROIs (27–29), our approach considers the diffusion properties of every tissue voxel, 

whether it is cancerous or not, throughout the entire prostate and seminal vesicles. Other 

multi-shell DWI methods have examined diffusion at the voxel level (14, 15), but the RSI 

approach employing fixed, globally-optimal Di values enables more stable estimates than 

can be achieved with fully-independent model fitting at each voxel. Enhanced estimation 

stability is particularly important when fitting higher-order multicompartmental models as 

was done in this study.

To examine how RSI fits into the broader context of prostate MRI, it is important to 

recognize that RSI and many other modeling approaches are all specific implementations of 

a broader multicompartmental framework. These implementations differ principally in the 

number of model compartments, whether the compartmental diffusion coefficients are free 

parameters or fixed, and whether the model describes the normalized or unnormalized DWI 

signal. The intravoxel incoherent motion (IVIM) model, for example, is a biexponential 

signal-decay model with two freely varying diffusion coefficients per signal curve: a slow 

component representing true diffusion in tissue and a fast pseudo-diffusion component that 

accounts for perfusion in the vascular network (30). By contrast, RSI does not explicitly 

prescribe a particular number of compartments (here we empirically determined that 4 

compartments are appropriate for prostate imaging), and the compartmental diffusion 

coefficients are fixed across voxels. RSI and IVIM are also generally applied to study 

different aspects of physiology. IVIM aims to quantify fast-flowing (very high ADC) fluid in 

the vasculature and therefore requires sampling of the DWI signal at very low b-values (< 

100 s/mm2) (31), while RSI is primarily concerned with restricted diffusion (very low ADC) 

in tumors and as a result requires sampling at very high b-values (≥ 2000 s/mm2) (12). The 

“Vascular, Extracellular, and Restricted Diffusion for Cytometry in Tumors” (VERDICT) 

framework models DWI signal similarly to RSI. It specifies a 3-compartment model that 

represents signal contributions from restricted diffusion within cells, hindered diffusion 

within the extracellular-extravascular space, and pseudo-diffusion (flow) within blood 
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vessels (14, 32). This a priori decomposition of the DWI signal turns out to be quite similar 

to that of the 3-compartment RSI model empirically determined in this study (D1: 8.7e-4, 

D2: 2.6e-3, D3: 9.1e-3 mm2/s). Although the diffusion coefficients of the VERDICT model 

compartments are allowed to vary freely, in practice they may be fixed as with RSI in order 

to enhance model-fitting stability (32). The precise mathematical forms of the VERDICT 

compartments may also vary from the RSI compartments outlined here, but they nonetheless 

seek to examine the same aspects of tissue microstructure. Techniques such as luminal water 

imaging (33) and Hybrid Multidimensional MRI (15) are significant departures from the RSI 

approach presented here because they acquire image data at multiple echo times in order to 

measure T2 within different tissue compartments. T2 effects can be readily incorporated into 

RSI through addition of an exponential decay term dependent on T2 and echo time, resulting 

in a model similar to that of Hybrid Multidimensional MRI (minus the histological 

interpretation of the different compartments (15)). Unfortunately, lacking data acquired at 

multiple echo times that are necessary to investigate T2, we must reserve any direct 

comparisons between these techniques and RSI for future work. DWI signal normalization is 

enforced by all of these models except RSI. Normalization allows for easier physiological 

interpretation of results by converting signal contributions, generally dependent on proton 

density and scanner-specific factors, into volume fractions related to the concentration of 

specific cells or vessels, depending on the model (15, 30, 32). However, signal normalization 

can produce visually noisy parameter maps that might limit the conspicuity of specific 

features like tumors. For this reason, RSI signal contribution maps, like those shown in this 

study, are generally left unnormalized to ensure high tumor visibility.

Compared to the monoexponential signal model widely used for conventional ADC 

mapping, the multicompartmental RSI models examined in this study showed substantially 

better fits (i.e., lower fitting residuals) to DWI data from the prostate. This aligns with the 

results of previous studies that suggest the standard monoexponential model does not 

adequately describe the diffusion characteristics of the prostate (15, 18, 32, 34, 35). While 

PI-RADS specifies careful application of this model only over the range of b-values where 

the DWI signal can be well-approximated by a monoexponential decay (~100–1000 s/mm2) 

(3), synthetic DWI methods regularly use the monoexponential model to extrapolate DWI 

signal far beyond this range (36, 37). Given the poor fit of the monoexponential model to 

high-b-value DWI data in this study, it is likely that the standard monoexponential approach 

to synthetic DWI introduces significant error into the extrapolated signal data and may need 

to be reexamined.

Among the RSI models examined in this study, the lowest BIC was observed from the 4-

compartment model. This suggests that it provides the optimal characterization of diffusion 

properties throughout the entire prostate and seminal vesicles. BIC is a more conservative 

metric (biased towards model parsimony) than the Akaike information criterion (AIC), 

which is also commonly used to compare different models. A conservative information 

criterion is an appropriate choice for this study since prevailing DWI models have relatively 

few tissue compartments compared to what we examined here. Even the more advanced 

approaches like VERDICT and Hybrid Multidimensional MRI are limited to only 3 

compartments (14, 15). Overfitting was also a more likely pitfall for this study than 

underfitting, since models with 5 or fewer compartments were fit to hundreds of thousands 
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of voxels simultaneously, which reinforces the selection of a conservative information 

criterion like BIC (38).

By examining the optimal Di values for the 4-compartment model, we can begin to discern 

the different types of diffusion that contribute to DWI signal in the prostate. The optimal D 

value of compartment C1, 5.2e-4 mm2/s, is consistent with the characterization of restricted 

diffusion from previous studies (12, 16–18). Compartment C2 likely accounts for hindered 

diffusion through the extracellular extravascular space (12, 39), having an optimal D of 

1.9e-3 mm2/s. Compartment C3, with an optimal D of 3.0e-3 mm2/s, reflects the free 

diffusion of water (12, 40). Finally, the fourth compartment C4 considers rapid pseudo-

diffusion (IVIM flow effects (30)) with an optimal D much greater than that of free diffusion 

(>3.0e-2 mm2/s). We were unable to estimate a precise D value for this pseudo-diffusion 

component because the smallest non-zero b-value used for data acquisition (200 s/mm2) was 

much too high for reliable measurement of the rapidly-decaying signal from vascular flow. 

Precise estimation of this D value would require additional sampling of the DWI signal at b-

values less than 100 s/mm2 (31).

Similarly, when we report a D value of 0 s/mm2, either as the point estimate for 

compartment 1 of the 5-compartment model or as the lower-bound of the 95% confidence 

interval for compartment 1 of the 3-, 4-, and 5-compartment models, we do not mean to 

assert that there is no diffusion at all. Rather, we are stating that diffusion in this 

compartment is too slow for us to measure given the relatively long diffusion time at which 

data were acquired. There is evidence this compartment with D of “0” accounts for diffusion 

of intracellular water (12, 41), but further investigation is needed to verify this directly. If 

this compartment does in fact correspond to intracellular diffusion, it could potentially be a 

more accurate measurement of restricted diffusion than estimates from previous studies 

using RSI (16–19) or VERDICT (32), which likely included contributions from highly-

hindered or tortuous extracellular diffusion (42) in the reported “restricted diffusion” 

compartment.

By fitting an RSI model to multi-shell diffusion data from the prostate, the distribution of 

signal among the various tissue compartments is revealed. This distribution may provide 

insight into the cytostructural changes that accompany prostate cancer development. Of 

particular interest is the signal contribution from compartment 1, i.e., the compartment with 

lowest diffusion coefficient D. Previous RSI studies (16–19) have linked increased signal 

from this compartment to increased tissue cellularity, an important prognostic indicator for 

prostate cancer (19, 43). Here we showed that the signal contribution from compartment 1 

was significantly higher in tumors than in normal prostatic tissue, in agreement with those 

previous findings. Recent work by Chatterjee et al. (15) suggests that diffusional changes 

accompanying prostate cancer result from an increase in epithelial cell partial volume, rather 

than a just simple increase in tissue cellularity. Increased signal contribution observed in 

compartment 1 of tumors may therefore be attributed to a cancer-induced proliferation of 

tightly packed epithelial cells, but thorough histological examination would be necessary to 

verify this hypothesis.
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Whatever the biophysical interpretation, it is clear that signal from RSI compartment 1 is 

enriched in tumors and may be helpful in the discrimination of prostate cancer. Such 

potential is highlighted by the significant increase in tumor CNR and SIR on RSI C1 maps 

compared to conventional DWI. Improvement in CNR and SIR with RSI is driven in part 

from the reduction of signal in the parenchyma surrounding the tumor, which may help to 

discriminate between cancerous and benign tissue in radiographically-complex regions like 

the transition zone. Benign factors like BPH often decrease ADC in the transition zone and 

make identification of transition-zone tumors on conventional ADC maps difficult. By 

contrast, C1 maps of the 4- and 5-compartment RSI models show almost no signal from 

benign tissue in the transition zone. This suppression of benign signal is a clinically-relevant 

benefit that could potentially outweigh the increase in scan time required to obtain data at 

the additional b-values needed to implement these models. Furthermore, higher order (4- and 

5-compartment) models provide increased resolution that reveals diffusion-signal 

heterogeneity within tumors that is not apparent with simpler models. Tumor signal 

contributions from different model compartments may reflect different histological aspects 

of cancer progression, but this requires further investigation.

Finally, it should be mentioned that the RSI model-optimization procedure outlined here can 

be readily applied to tissues other than the prostate. As a straightforward extension of this 

study, we optimized RSI models for all tissues included in the original imaging volume, not 

just the prostate and seminal vesicles (see Supplementary Material online). We hypothesize 

that such models will better characterize the diffusion of both normal and malignant tissue 

throughout the body, potentially leading to improved identification of cancer in tissues 

beyond just the prostate. Future work will focus on leveraging these models to develop 

automated cancer screening methods.

Limitations

The generalizability of our findings may be limited since data was obtained from a relatively 

small number of subjects at a single institution. However, the subjects that were included are 

largely representative of the broader clinical population, and there was sufficient statistical 

power for the reported hypothesis testing. Another limitation is that this study evaluated the 

different models only in terms of their ability to fit diffusion data (i.e., using BIC and fitting 

residual) and not their actual sensitivity and specificity for prostate tumors. While the 

higher-order models showed a better fit to the diffusion data, it is not clear whether they 

would outperform simpler models in terms of classifying tissue as cancerous or benign. 

Nevertheless, the results of this current study are still valuable for developing a 

comprehensive model of diffusion in the prostate. Subsequent studies will evaluate RSI 

models for prostate cancer screening specifically. Finally, stronger conclusions could be 

drawn regarding the microstructural components underpinning RSI signal compartments if 

we had more comprehensive tissue samples available for this study (ideally whole-mount 

prostate sections). However, such extensive histology was not necessary for this study since 

our primary aim was to broadly characterize diffusion in both normal and cancerous prostate 

tissue, not to investigate specific radiologic-pathologic correspondence.
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Conclusion

A 4-compartment RSI model with compartmental D values of 5.2e-4, 1.9e-3, 3.0e-3, and 

>3.0e-2 mm2/s provides a comprehensive characterization of the diffusion properties in both 

normal and cancerous prostate tissue. Compartmental signal-contributions revealed by this 

model may help to discriminate tumors from healthy prostatic tissue and assess the 

microstructural changes that accompany prostate cancer development.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

Acknowledgments:

Grant Support:

USAMR DoD W81XWH-17-1-0618

NIH K08 NIBIB EB026503

Prostate Cancer Foundation

UC San Diego Center for Precision Radiation Medicine

References

1. Norberg M, Egevad L, Holmberg L, Sparén P, Norlén BJ, Busch C: The sextant protocol for 
ultrasound-guided core biopsies of the prostate underestimates the presence of cancer. Urology 
1997; 50:562–566. [PubMed: 9338732] 

2. Hu Y, Ahmed HU, Carter T, et al.: A biopsy simulation study to assess the accuracy of several 
transrectal ultrasonography (TRUS)-biopsy strategies compared with template prostate mapping 
biopsies in patients who have undergone radical prostatectomy. BJU Int 2012; 110:812–820. 
[PubMed: 22394583] 

3. Weinreb JC, Barentsz JO, Choyke PL, et al.: PI-RADS Prostate Imaging – Reporting and Data 
System: 2015, Version 2. Eur Urol 2016; 69:16–40. [PubMed: 26427566] 

4. Ahmed HU, El-Shater Bosaily A, Brown LC, et al.: Diagnostic accuracy of multi-parametric MRI 
and TRUS biopsy in prostate cancer (PROMIS): a paired validating confirmatory study. The Lancet 
2017; 389:815–822.

5. Rouvière O, Puech P, Renard-Penna R, et al.: Use of prostate systematic and targeted biopsy on the 
basis of multiparametric MRI in biopsy-naive patients (MRI-FIRST): a prospective, multicentre, 
paired diagnostic study. Lancet Oncol 2019; 20:100–109. [PubMed: 30470502] 

6. Moore CM, Giganti F, Albertsen P, et al.: Reporting Magnetic Resonance Imaging in Men on Active 
Surveillance for Prostate Cancer: The PRECISE Recommendations—A Report of a European 
School of Oncology Task Force. Eur Urol 2017; 71:648–655. [PubMed: 27349615] 

7. Le Bihan D: Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 1991; 7:1–
30. [PubMed: 2043461] 

8. White NS, McDonald CR, Farid N, Kuperman JM, Kesari S, Dale AM: Improved Conspicuity and 
Delineation of High-Grade Primary and Metastatic Brain Tumors Using “Restriction Spectrum 
Imaging”: Quantitative Comparison with High B-Value DWI and ADC. Am J Neuroradiol 2013; 
34:958–964. [PubMed: 23139079] 

9. Hoeks CMA, Barentsz JO, Hambrock T, et al.: Prostate Cancer: Multiparametric MR Imaging for 
Detection, Localization, and Staging. Radiology 2011; 261:46–66. [PubMed: 21931141] 

10. Hoeks CMA, Vos EK, Bomers JGR, Barentsz JO, Hulsbergen-van de Kaa CA, Scheenen TW: 
Diffusion-Weighted Magnetic Resonance Imaging in the Prostate Transition Zone: 

Conlin et al. Page 12

J Magn Reson Imaging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Histopathological Validation Using Magnetic Resonance–Guided Biopsy Specimens. Invest Radiol 
2013; 48:693–701. [PubMed: 23614975] 

11. Oto A, Kayhan A, Jiang Y, et al.: Prostate Cancer: Differentiation of Central Gland Cancer from 
Benign Prostatic Hyperplasia by Using Diffusion-weighted and Dynamic Contrast-enhanced MR 
Imaging. Radiology 2010; 257:715–723. [PubMed: 20843992] 

12. White NS, McDonald CR, Farid N, et al.: Diffusion-Weighted Imaging in Cancer: Physical 
Foundations and Applications of Restriction Spectrum Imaging. Cancer Res 2014; 74:4638–4652. 
[PubMed: 25183788] 

13. White NS, Leergaard TB, D’Arceuil H, Bjaalie JG, Dale AM: Probing Tissue Microstructure with 
Restriction Spectrum Imaging: Histological and Theoretical Validation. Hum Brain Mapp 2013; 
34:327–346. [PubMed: 23169482] 

14. Panagiotaki E, Walker-Samuel S, Siow B, et al.: Noninvasive Quantification of Solid Tumor 
Microstructure Using VERDICT MRI. Cancer Res 2014; 74:1902–1912. [PubMed: 24491802] 

15. Chatterjee A, Bourne RM, Wang S, et al.: Diagnosis of Prostate Cancer with Noninvasive 
Estimation of Prostate Tissue Composition by Using Hybrid Multidimensional MR Imaging: A 
Feasibility Study. Radiology 2018; 287:864–873. [PubMed: 29393821] 

16. Rakow-Penner RA, White NS, Parsons JK, et al.: Novel technique for characterizing prostate 
cancer utilizing MRI restriction spectrum imaging: proof of principle and initial clinical 
experience with extraprostatic extension. Prostate Cancer Prostatic Dis 2015; 18:81–85. [PubMed: 
25559097] 

17. McCammack KC, Schenker-Ahmed NM, White NS, et al.: Restriction spectrum imaging improves 
MRI-based prostate cancer detection. Abdom Radiol 2016; 41:946–953.

18. Karunamuni RA, Kuperman J, Seibert TM, et al.: Relationship between kurtosis and biexponential 
characterization of high b-value diffusion-weighted imaging: application to prostate cancer. Acta 
Radiol 2018; 59:1523–1529. [PubMed: 29665707] 

19. Liss MA, White NS, Parsons JK, et al.: MRI-Derived Restriction Spectrum Imaging Cellularity 
Index is Associated with High Grade Prostate Cancer on Radical Prostatectomy Specimens. Front 
Oncol 2015; 5.

20. Li XH, Zhu J, Zhang XM, et al.: Abdominal MRI at 3.0 T: LAVA-flex compared with conventional 
fat suppression T1-weighted images. J Magn Reson Imaging 2014; 40:58–66. [PubMed: 
24222639] 

21. Korosec FR, Frayne R, Grist TM, Mistretta CA: Time-resolved contrast-enhanced 3D MR 
angiography. Magn Reson Med 1996; 36:345–351. [PubMed: 8875403] 

22. Holland D, Kuperman JM, Dale AM: Efficient correction of inhomogeneous static magnetic field-
induced distortion in Echo Planar Imaging. NeuroImage 2010; 50:175–183. [PubMed: 19944768] 

23. Taylor PA, Biswal B: Geometric analysis of the b-dependent effects of Rician signal noise on DTI 
estimates and determining an optimal b-value. Magn Reson Imaging 2011; 29:777–788. [PubMed: 
21550747] 

24. Lagarias JC, Reeds JA, Wright MH, Wright PE: Convergence Properties of the Nelder--Mead 
Simplex Method in Low Dimensions. SIAM J Optim 1998; 9:112–147.

25. Lawson CL, Hanson RJ: Solving Least-Squares Problems. Upper Saddle River, NJ: Prentice Hall; 
1974:161.

26. Schwarz G: Estimating the Dimension of a Model. Ann Stat 1978; 6:461–464.

27. Vidić I, Egnell L, Jerome NP, et al.: Modeling the diffusion-weighted imaging signal for breast 
lesions in the b = 200 to 3000 s/mm2 range: quality of fit and classification accuracy for different 
representations. Magn Reson Med 2020; 00:1–13.

28. Donati OF, Mazaheri Y, Afaq A, et al.: Prostate Cancer Aggressiveness: Assessment with Whole-
Lesion Histogram Analysis of the Apparent Diffusion Coefficient. Radiology 2013; 271:143–152. 
[PubMed: 24475824] 

29. Vargas HA, Akin O, Franiel T, et al.: Diffusion-weighted Endorectal MR Imaging at 3 T for 
Prostate Cancer: Tumor Detection and Assessment of Aggressiveness. Radiology 2011; 259:775–
784. [PubMed: 21436085] 

Conlin et al. Page 13

J Magn Reson Imaging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



30. Le Bihan D, Breton E, Lallemand D, Aubin ML, Vignaud J, Laval-Jeantet M: Separation of 
diffusion and perfusion in intravoxel incoherent motion MR imaging. Radiology 1988; 168:497–
505. [PubMed: 3393671] 

31. Döpfert J, Lemke A, Weidner A, Schad LR: Investigation of prostate cancer using diffusion-
weighted intravoxel incoherent motion imaging. Magn Reson Imaging 2011; 29:1053–1058. 
[PubMed: 21855241] 

32. Panagiotaki E, Chan RW, Dikaios N, et al.: Microstructural Characterization of Normal and 
Malignant Human Prostate Tissue With Vascular, Extracellular, and Restricted Diffusion for 
Cytometry in Tumours Magnetic Resonance Imaging. Invest Radiol 2015; 50:218. [PubMed: 
25426656] 

33. Hectors SJ, Said D, Gnerre J, Tewari A, Taouli B: Luminal Water Imaging: Comparison With 
Diffusion-Weighted Imaging (DWI) and PI-RADS for Characterization of Prostate Cancer 
Aggressiveness. J Magn Reson Imaging 2020; 52:271–279. [PubMed: 31961049] 

34. Quentin M, Pentang G, Schimmöller L, et al.: Feasibility of diffusional kurtosis tensor imaging in 
prostate MRI for the assessment of prostate cancer: Preliminary results. Magn Reson Imaging 
2014; 32:880–885. [PubMed: 24848289] 

35. Wang X, Tu N, Qin T, Xing F, Wang P, Wu G: Diffusion Kurtosis Imaging Combined With DWI at 
3-T MRI for Detection and Assessment of Aggressiveness of Prostate Cancer. Am J Roentgenol 
2018; 211:797–804. [PubMed: 30085835] 

36. Cui Y, Han S, Liu M, et al.: Diagnosis and Grading of Prostate Cancer by Relaxation Maps From 
Synthetic MRI. J Magn Reson Imaging 2020; 52:552–564. [PubMed: 32027071] 

37. Arita Y, Takahara T, Yoshida S, et al.: Quantitative Assessment of Bone Metastasis in Prostate 
Cancer Using Synthetic Magnetic Resonance Imaging. Invest Radiol 2019; 54:638–644. [PubMed: 
31192827] 

38. Dziak JJ, Coffman DL, Lanza ST, Li R, Jermiin LS: Sensitivity and specificity of information 
criteria. Brief Bioinform 2020; 21:553–565. [PubMed: 30895308] 

39. Koh TS, Bisdas S, Koh DM, Thng CH: Fundamentals of tracer kinetics for dynamic contrast-
enhanced MRI. J Magn Reson Imaging 2011; 34:1262–1276. [PubMed: 21972053] 

40. Le Bihan D: Looking into the functional architecture of the brain with diffusion MRI. Nat Rev 
Neurosci 2003; 4:469–480. [PubMed: 12778119] 

41. Hope TR, White NS, Kuperman J, et al.: Demonstration of Non-Gaussian Restricted Diffusion in 
Tumor Cells Using Diffusion Time-Dependent Diffusion-Weighted Magnetic Resonance Imaging 
Contrast. Front Oncol 2016; 6.

42. White NS, Dale AM: Distinct effects of nuclear volume fraction and cell diameter on high b-value 
diffusion MRI contrast in tumors. Magn Reson Med 2014; 72:1435–1443. [PubMed: 24357182] 

43. Kuwano H, Miyazaki T, Tsutsumi S, et al.: Cell Density Modulates the Metastatic Aggressiveness 
of a Mouse Colon Cancer Cell Line, Colon 26. Oncology 2004; 67:441–449. [PubMed: 15714001] 

Conlin et al. Page 14

J Magn Reson Imaging. Author manuscript; available in PMC 2022 February 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 1: 
RSI model-fitting residual by tissue type. Each bar shows the mean and standard deviation 

of 1000 bootstrap estimates of the fitting residual for a particular model and tissue type. A 

significant decrease in fitting residual compared to conventional ADC mapping is indicated 

by an asterisk (*). Double daggers (‡) denotes a significant difference in fitting residual from 

the 4-compartment model (the model with lowest ΔBIC) between the different anatomical 

regions of the prostate. Whole: whole prostate plus seminal vesicles, PZ: peripheral zone of 

the prostate, TZ: transition zone of the prostate, SV: seminal vesicles.
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Figure 2: 
Axial images of the prostate from a patient with a primary tumor (red arrow) in the transition 

zone (PI-RADS v2 score: 5, Gleason Grade group: 2). The top row details tissue contours 

defined on the axial slice shown here, overlaid on both a high-resolution T2-weighted image 

and lower-resolution DWI images. Conventional DWI images are shown in the second row, 

with RSI signal-contribution maps (Ci) calculated from the optimized models in the 

following rows. The corresponding Di of each compartment is listed in parentheses next to 

the compartment label. The tumor appears as a bright region of the C1 map of each model. 

Note the reduction of signal in surrounding parenchyma as model order increases, 

particularly of benign signal in the transition zone. The 4- and 5-compartment RSI models 

show tumor signal contributions from multiple compartments, revealing diffusion-signal 

heterogeneity within the tumor that is not apparent in the conventional ADC map.
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Figure 3: 
Compartmental signal fractions of different tissues for each RSI model. The height of each 

bar indicates the mean signal fraction across all subjects, with the overlaid error bar 

indicating the standard deviation. An asterisk (*) over a bar indicates that the signal fraction 

in this compartment is significantly different in tumors compared to normal tissue 

(peripheral zone, transition zone, or seminal vesicles). Double daggers (‡) indicate a 

significant difference in signal fraction between the transition and peripheral zones. Signal 

fractions were not significantly different between the peripheral zone and seminal vesicles. 

PZ: peripheral zone of the prostate, TZ: transition zone of the prostate, SV: seminal vesicles.
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Figure 4: 
Tumor contrast to noise ratio (CNR) and signal intensity ratio (SIR) on conventional DWI 

images and C1 maps of optimized RSI models. The dashed horizontal line marks the 1:1 

tumor:parenchyma CNR or SIR. The upper and lower bounds of each box indicate the 

interquartile range of CNRs/SIRs from all patients with tumors, while the horizontal line 

within each box denotes the median CNR/SIR. The whiskers mark the minimum and 

maximum CNRs/SIRs, excluding any outliers which are marked by a “+”. An asterisk (*) 

indicates that tumor CNR/SIR is significantly higher on RSI C1 maps than conventional 

ADC maps. Double daggers (‡) denotes a significant increase in CNR/SIR compared to the 

trace DWI images at any b-value. A section mark (§) indicates a significant increase in 

tumor CNR/SIR compared to the RSI model with one fewer compartment.
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Table 1:

Clinical findings from the 23 patients with prostate lesions included in this study.

Subject Age
PI-RADS 
v2 lesion 

score

Radiologic lesion 
location

PSA 
(ng/mL)

Gleason 
Grade 
Group

Pathology Specimen Type Clinical 
Risk Group

1 59 5 Right TZ and PZ 7.8 2 Biopsy (Systematic) FIR

2 54 5 Right PZ 10.6 3 Biopsy (Systematic), Radical 
Prostatectomy UIR

3 71 5 Right PZ and TZ 4.0 5
Biopsy (Systematic and 

Targeted), Radical 
Prostatectomy

HR

4 72 5 Right PZ 5.7 2 Biopsy (Systematic) UIR

5 54 5 Right PZ 7.3 3 Biopsy (Systematic), Radical 
Prostatectomy HR

6 63 5 Right PZ 16.8 3 Biopsy (Systematic), Radical 
Prostatectomy HR

7 74 5 Right PZ 29.3 5 Biopsy (Systematic) HR

8 53 4 Left PZ 8.0 1 Biopsy (Systematic), Radical 
Prostatectomy FIR

9 66 4 Right PZ 8.7 3 Biopsy (Systematic and 
Targeted) UIR

10 67 5 Left PZ 4.6 2 Biopsy (Systematic and 
Targeted) FIR

11 62 5 Left PZ 14.0 3 Biopsy (Systematic), Radical 
Prostatectomy HR

12 74 4 Left PZ 4.4 3
Biopsy (Systematic and 

Targeted), Radical 
Prostatectomy

UIR

13 50 3 Left PZ 4.3 2 Biopsy (Systematic), Radical 
Prostatectomy HR

14 65 4 Right TZ 8.0 1 Biopsy (Systematic) LR

15 81 5 Anterior TZ 8.5 2 Biopsy (Systematic and 
Targeted) FIR

16 77 5 Right PZ 3.5 4 Biopsy (Systematic), Radical 
Prostatectomy HR

17 70 4 Left PZ 7.4 2 Biopsy (Systematic and 
Targeted) FIR

18 58 4 Left PZ 7.4 2 Biopsy (Systematic), Radical 
Prostatectomy UIR

19 62 4 Left PZ 5.0 1 Biopsy (Systematic) LR

20 68 4 Right PZ 5.9 5
Biopsy (Systematic and 

Targeted), Radical 
Prostatectomy

HR

21 64 5 Midline to Right TZ 8.6 2 Biopsy (Systematic and 
Targeted) FIR

22 51 5 Diffuse PZ 33.0 5 Biopsy (Systematic) VHR

23 51 3 Right TZ 5.4 3 Biopsy (Systematic), Radical 
Prostatectomy UIR

PI-RADS v2: Prostate Imaging – Reporting and Data System, version 2; PZ: peripheral zone of the prostate; TZ: transition zone of the prostate; 
PSA: prostate-specific antigen; FIR: Favorable intermediate risk; UIR: Unfavorable intermediate risk; HR: High risk; VHR: Very high risk.
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Table 2:

Optimal compartmental apparent diffusion coefficient (Di) values for RSI models of the prostate. The 95% 

confidence interval for each Di value is shown in brackets. The relative Bayesian information criterion (ΔBIC) 

describes how well each model fits the data, with a lower ΔBIC indicating a better fit.

Number of tissue 
compartments

Optimal Di for each compartment (mm2/s)
ΔBIC

1 2 3 4 5

2 2.0e-3 [1.6e-3, 
2.3e-3]

5.2e-3 [3.9e-3, 
>3e-2] 45.2

3 8.7e-4 [0, 1.3e-3] 2.6e-3 [2.3e-3, 
2.7e-3]

9.1e-3 [6.8e-3, 
1e-2] 11.8

4 5.2e-4 [0, 8e-4] 1.9e-3 [1.6e-3, 
2.0e-3]

3.0e-3 [2.8e-3, 
3.0e-3]

3.0e-2 [1.2e-2, 
3.0e-2] 0.0

5 0 [0, 5.9e-4] 1.3e-3 [1.2e-3, 
1.7e-3]

2.2e-3 [2.2e-3, 
2.4e-3]

3.1e-3 [3.1e-3, 
3.3e-3]

3.0e-2 [3.0e-2, 
3.0e-2] 0.6

Di: compartmental apparent diffusion coefficient.
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