Table 2.
Combination of anti-PD-1/PD-L1 therapeutic strategy with other treatments
| Treatments | Anti-PD-1/PD-L1 | Functions | Reference |
|---|---|---|---|
| RNS neutralizing agent | anti-PD-1 and anti-CTLA4 antibodies | enhances anti-CRPC efficacy | Feng et al.78 |
| Prophylactic TNF blockade | anti-PD-1/PD-L1 antibodies | attenuates autoimmune adverse events and enhances immunotherapy efficacy | Perez-Ruiz et al.77 |
| Anti-RANKL | PD-1/PD-L1 blockade therapy | enhances the efficacy of immunotherapy and suppresses tumor growth | Ahern et al.79 |
| IL-15 | anti-CTLA-4 and anti-PD-L1 antibodies | reduces tumor growth rate and improves animal survival | Yu et al.80 |
| Sigma1 inhibitor | PD-L1/PD-1 blockade | regulates the tumor immune microenvironment | Maher et al.81 |
| CD73 blockade | anti-CTLA-4 and anti-PD-1 antibodies | enhances the anti-tumor effect of anti-CTLA-4 and anti-PD-1 | Allard et al.82 |
| Nitroxoline | PD-1 blockade | inhibits tumor growth and enhances PD-1 blockade effect | Xu et al.83 |
| TGF-β blockade | anti-PD-L1 antibody | provokes T cell penetration | Mariathasan et al.72 |
| GDF15 | PD-1 antibody | reduces tumor growth | Husaini et al.84 |
| TH-302 | PD-1 blockade | reduces cancer progression | Jayaprakash et al.85 |
| A485 | anti-PD-L1 antibody | exerts tumor attack function | Liu et al.86 |
| Loss of ADAR1 | PD-1 blockade | enhances the sensitivity to PD-1 blockade | Ishizuka et al.74 |
| Androgen deprivation | PD-1 blockade | strengthens the efficacy of checkpoint blockade | Obradovic et al.,87 Benzon et al.,88 Yuan et al.,89 Graff et al.90 |
| TSAxCD28 | PD-1 blockade | produces long-term anti-tumor immunity | Waite et al.91 |
| Antitumor vaccine | PD-1/PD-L1 blockade | promotes anti-tumor immune response | Grenier et al.,92 Rekoske et al.,93 Simons et al.,94 Zhang et al.,95 Shi et al.,96 Fong et al.97 |
| Chemoradiotherapy | anti-PD-1/PD-L1 antibodies | enhances efficacy of chemoradiotherapy | Dudzinski et al.,98 Czernin et al.,99 Jin et al.,100 Truillet et al.101 |