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Abstract

Objectives: With ever increasingly complex healthcare settings, technology enhanced simulation (TES) is well
positioned to explore all perspectives to enhance patient safety and patient outcomes. Analysis from a Safety-II
stance requires identification of human adjustments in daily work that are key to maintaining safety. The aim of this
paper is to describe an approach to explore the consequences of human variability from a Safety-II perspective and
describe the added value of this to TES.

Methods: The reader is guided through a novel application of functional resonance analysis methodology (FRAM),
a method to analyse how a system or activity is affected by human variability, to explore human adaptations
observed in in situ simulations (ISS). The structured applicability of this novel approach to TES is described by
application to empirical data from the standardised ISS management of paediatric time critical head injuries (TCHI).

Results: A case series is presented to illustrate the step-wise observation of key timings during ISSs, the
construction of FRAM models and the visualisation of the propagation of human adaptations through the FRAM
models. The key functions/actions that ensure the propagation are visible, as are the sequelae of the adaptations.

Conclusions: The approach as described in this paper is a first step to illuminating how to explore, analyse and
observe the consequences of positive and negative human adaptations within simulated complex systems. This
provides TES with a structured methodology to visualise and reflect upon both Safety-I and Safety-II perspectives to
enhance patient safety and patient outcomes.
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Introduction
For over 20 years now, technology enhanced simulation
(TES) has been a lightning-rod to promote reflection [1],
and discussions of how to improve care, aiming to both
enhance patient safety and patient outcomes, within in-
creasingly complex healthcare settings [2, 3]. Up to the
last decade, the standard response to managing this has
been to try to eliminate the complexity and reduce hu-
man variability through standardisation of procedures
protocolisation and training uniformity [4]. More recent
approaches have focused upon embracing the complex-
ity and developing tools to cope and manage it success-
fully [5]. As complexity in healthcare has increased, so
have concepts of safety management and an understand-
ing of the impact of human variability on this. The pre-
vailing starting point that patient safety was considered
as an absence of incidents, accidents or a state with the
minimal acceptable level of risk, has led to concepts of
Safety-I and Safety-II [6]. Safety-I has been defined as a
state where “as few things as possible go wrong” in a sys-
tem. The Safety-II perspective focuses on ensuring “ as
many things as possible go well” in the system [6]. The
divergence of these two perceptions is arguably the core
focus of attention of TES practitioners aiming to en-
hance patient safety. That is how humans and their vari-
able actions amidst a complex socio-technical system are
observed, how their actions are considered, understood
and acted upon. Central to Safety-II thinking is that
humans and their adjustments, as they work, are vital to
maintain safety [6]. Translated to healthcare, this means
that things do not go well because individuals behave
exactly as they are supposed to, in terms of following
protocols, but that safety and positive outcomes are
achieved by individuals adjusting their actions and
adapting to match the complex scenarios in which they
find themselves [6]. As the complexity increases, the hu-
man adaptions become more important for system resili-
ence to maintain the desired outcomes. The Safety-II
perspective is that of developing an “understanding how
things usually go right, since this is the basis for explain-
ing how things occasionally go wrong” [6]. This ap-
proach poses significant challenges for TES.
Historically, TES and debriefing strategies have transi-

tioned from exploring individual knowledge, skill or be-
haviour deficits, to embrace complexity and provide
opportunities for improvement with a systems focused
approach [7, 8]. Conceptual frameworks, including the
Systems Engineering Initiative for Patient Safety 2.0
model [9], that explore work systems, processes and out-
comes have shaped system focused simulations to ex-
plore gaps in different components of healthcare
systems [7]. One example of this is in situ simulations
(ISS) that alert teams in the workplace to respond as per
their normal practice to simulations, using real

equipment and fully implementing care processes [10–
12]. These system focused simulations, combined with
system focused debriefing frameworks, identify gaps in
the healthcare systems that predispose to medical errors
[8]. TES has been successful with its clear goals to identify
errors, or safety threats within the system explored, that
threaten the quality of care and patient safety [7, 12, 13].
The TES approach to identifying gaps, or deficits, that in

turn stimulate the implementation of mitigation strategies,
and the improvement of patient safety, can be interpreted
as ensuring a state of safety where “as few things as possible
go wrong”. From this perspective TES as a pedagogy, can
be viewed as aligned to aspects of Safety-I thinking [6];
however, debriefing strategies in TES traditionally promote
reflection on what went well in addition to what went
wrong [14]. If one accepts there is value in exploring both
Safety-I & Safety-II concepts with TES, the question then
arises of how to utilise TES to understand more about how
things go right, in addition to how things go wrong?
In addition to identifying gaps, TES groups have also

approached the challenges of understanding and pro-
moting deeper reflection on things that go right [15].
One TES example, the Learning From Success (LFS) ap-
proach, provides a framework to explore how teams
adapted, what triggered adaptations and why the adapta-
tions made sense [15]. Such a combined approach with
TES hinges on analysing human performance adjust-
ments and performance variability, as from a Safety-II
perspective, “these are considered normal, necessary and
the reason for both acceptable and unacceptable out-
comes” [6]. From a Safety-II perspective, a distinction is
made between work-as-imagined (WAI), a task is per-
formed matching a pre-set design or protocol, and
work-as-done (WAD) how the task is actually managed
in the workplace [16]. The Safety-II approach empha-
sises that the system is made reliable and safety is en-
hanced by the everyday normal human performance
adjustments and performance variability that forms
WAD [17]. The LFS approach emphasises the need to
simulate to capture and reflect upon these normal
“mundane” adaptations of WAD [15]. With LFS, there is
the focus on when things go right, not necessarily
wrong, as the normal variation of adaptations to unfold-
ing events in simulations are based upon the previous
experiences of those participating in the simulations to
ensure things go right [15]. Then, by reflecting on these
normal adaptations, deeper insights on the rationale be-
hind the normal practice, which is often learnt without
reflecting upon it, can be triggered [15]. The challenge
for TES to embrace Safety-II perspectives, is to actually
see and analyse normal mundane human adaptations
that improve care on a daily basis, as they do not pro-
voke the same level of cognition and mental processing
as when things go wrong [15]. Without an understanding
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of why these normal adaptations occurred and import-
antly the downstream consequences, or repercussions of
the actions, it is difficult to reflect upon and relate them to
real-life situations [4, 15].
There is a need for a methodology that supports TES

practitioners, safety scientists and human factors practi-
tioners to bridge the current gap of how to see and ana-
lyse events systematically, when events go right and
when they go wrong, taking into account the complex-
ities of the real world. This would then afford the oppor-
tunity to embed variations in human practice into future
real-life designs, should the adaptations prove beneficial.
An approach developed outside of healthcare to analyse

how a system or activity is affected by human variability is
the functional resonance analysis method (FRAM) [18].
Although it is possible to produce linear engineering draw-
ings for extremely complicated systems (such as the Large
Hadron Collider), contemplating similar representation of
complex sociotechnical systems, such as healthcare activ-
ities, is clearly not possible. This is particularly true as most
of the systems are, additionally, complex adaptive systems,
which can adapt in response to changing demands and con-
ditions. For similar (but actually much simpler) applications,
such as software programs and computer control systems, a
useful approach has been to model these systems as a col-
lection of interacting functions. Hollnagel has extended this
approach to visualise complex systems as a cloud of FRAM
functions with specified interacting and interdependent “As-
pects”, as shown in the following diagram (Fig. 1) [18].
Using this approach, it is possible to compare and con-

trast how a system actually operates with different hu-
man adaptations of practice (WAD) against how it
might have been designed to operate (WAI) and observe
the impact of variabilities in the different interactions on

the outcomes. This is achieved by detailing the WAD
and reflecting this against WAI [17]. The FRAM output
provides visual models of WAD as set of coupled/ inter-
linked functions/human actions in a system that indi-
cates key interactions [18].
In this paper, we introduce a novel application of the

FRAM and describe how the methodology can now work
in conjunction with TES to explore in-depth the human ad-
aptations evident in healthcare simulations. The study has
taken advantage of a recent enhancement of the FRAM
methodology, termed the FRAM model interpreter (FMI)
[19], which systematically “parses” the FRAM models (as
essentially computer programs) to check for completeness
and validity. The resulting FRAM model is thus seen as an
ordered set of production rules. The basic principle is that
each function “looks” for the conditions that may activate
or “trigger” it. These conditions include the inputs, of
course, but also the status of the aspects that have been de-
fined for a function. If these aspects are present, the func-
tion is activated, and the output is generated. This output
will then be detected by other (downstream) functions,
which then may become activated, and so on. In this way,
the activity is propagated through the model according to
how the relations between functions have been specified,
i.e., according to the potential couplings defined by the as-
pects. This option allows the analyst to step through each
model rigorously, one function at a time. This allows the
analyst to run through a series of variabilities (human ad-
justments, adaptations) and to observe the propagation of
the variabilities right throughout the visualisation.
This application of FRAM thus systematically interro-

gates the effects of variability in the interactions of crit-
ical functions. This provides a structured analysis of the
downstream effects of the “what if” phenomena of

Fig. 1 An example of a FRAM function
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human variability. As such, we have termed this “Struc-
tured What If–FRAM”, SWI-FRAM. The aim of this
paper is to guide the reader through the SWI-FRAM ap-
proach and describe the added value of exploring the
consequences of human variability from a Safety-II per-
spective to TES.

Methods
Study design
In order to demonstrate the structured applicability of
SWI-FRAM to in situ simulation (ISS), we present a case
series exploration of empirical data from the ISS man-
agement of paediatric time critical head injuries (TCHI),
using the SWI-FRAM approach. Paediatric trauma sys-
tems are recognised as complex systems and globally
many ISS programs aim to improve the patient safety
and outcomes of paediatric TCHI [20].

Study setting
Data collection took place in the emergency department
of ten UK hospitals. Ethics approval was sought but not
deemed necessary, in accordance with UK Health Re-
search Authority guidelines. Informed consent was ob-
tained from all participants in this study. All data
sources were de-identified and stored in accordance with
UK research guidelines. This study utilised the Reporting
Guidelines for Health Care Simulation Research [21].

Development of the SWI-FRAM models
The process for development of SWI-FRAM models
from ISSs (Fig. 2) is described below.
The process had three steps:

1. Structured observation of key timings of ISSs
2. Construction of FRAM models of WAI and WAD
3. Verification of the models then visualisation of the

observed variability propagation through the FRAM
models of WAD.

Structured observation of key timings of ISSs
Twenty standardised ISSs were performed in 10 UK
emergency departments following an established proto-
col [22]. Each simulation was performed on a date and

time agreed by the clinical directors of Emergency Medi-
cine, Surgery, Anaesthesia and Nursing at each site. For
the simulations, each hospital was free to organise extra
staff to cover the participating trauma teams. Each hos-
pital provided the normal representative membership of
the trauma team (the real trauma team for that date). In
order to avoid compromising care or actual patients,
there was prior agreement to not start, or to immedi-
ately terminate, any simulation if there was a clinical
need for the emergency bay or the resuscitation team.
Each simulation and debrief lasted 30 min in total. The
fully immersive simulation for the management of a 7-
year-old child with a TCHI was created by a consensus
panel of the INSPIRE Trauma Group (see online supple-
mentary file 1). This study used was a Gaumard Hal pa-
tient simulator (Gaumard Scientific, FL, USA).
Video recordings of each simulation were independ-

ently reviewed by two researchers (RM, CK). Each video
was observed for standardised key timing events deemed
likely to impact patient outcomes agreed by a consensus
panel of experts (INSPIRE Trauma group) [23].
The observed key events and timings in the 20

simulations are shown in Table 1, timings are dis-
played in minutes and seconds, ‘X’ denotes when a
key event did not occur. In this series, a neurological
examination (assessment of GCS and pupil check)
occurred in 18 cases. A problem declaration to the
trauma team of a head injury occurred in 16 cases.
Only in one case was the time critical nature de-
clared. The time (minutes:seconds) to head injury
declaration, ranged from 3:56 to 20:16. Intubation
occurred in 18 cases and other neuroprotective mea-
sures occurred in 9 cases.

Construction of FRAM models of WAI and WAD
A full description of FRAM is outside the remit of
this paper, the reader is directed to a short introduc-
tion to the ideas and steps in FRAM modelling (sup-
plementary file 2) and a complete online resource
[24]. FRAM modelling is a sequence of logical steps
of collecting data on a complex system and develop-
ing an understanding of the relationships between
functions across the system. Using a software tool,

Fig. 2 The development of SWI-FRAM models from in-situ simulations
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the FRAM Model Visualiser, (FMV) [25], the func-
tions are set out in an interacting, interdependent
picture, as a “cloud” visualisation (Fig. 3). Each func-
tion is defined by the FRAM aspects described above
(Fig. 1). In a sequence of tasks in a particular “snap-
shot” of the system’s operations, those functions
which have to deliver before others can begin are
called “upstream functions” and the subsequent func-
tions are obviously “downstream functions” (Fig. 3).
FRAM models are validated externally by expert opin-
ion to ensure they accurately reflect WAI or WAD.

Construction of the FRAM model of WAI for the
management of TCHI
Two researchers familiar with FRAM (RM, DS) created the
FRAM model of WAI, using the same evidence based
guidelines for the management of paediatric TCHI, as used
in the construction of the standardised ISS scenario.

Initially, a FRAM model of WAI of all the functions in-
volved in the TCHI management was constructed (see on-
line supplementary file 3). Then, a simplified FRAM
model of WAI was constructed that focused on a specific
area of interest, the functions (steps in the care process),
linked to the observed key timings. In this manuscript, the
focus of attention is on the identification of a TCHI dur-
ing the initial primary survey assessment of the child, the
declaration of this problem to the team and the com-
mencement of management to prevent secondary brain
injury and transportation for neurosurgical input. Focus of
attention may be placed upon any area in the system of
choice and FRAM models can be created to explore the
variations and adaptations accordingly.

Construction of FRAM models of WAD
The two above researchers reviewed the 20 video re-
cordings and created FRAM models of WAD for each of

Table 1 Observed key events and timings in in situ simulations

No. Trauma Team
Leader Review

Pupil check time
(min: seconds)

Dilated pupil
declared time

Head Injury
declared time

Intubation
time

Phone major
trauma centre

Neuroprotection
time and event

1 On arrival 6:30 6:45 6:47 16:45 18:06 17:39
Ventilate to
normocapnia

2 On arrival X X 3:56 19:08 X X

3 On arrival 8:35 8:40 12:31 15:06 9:15 06:34
Raise head 30°

4 On arrival 3:56 4:00 5:44 21:40 X X

5 On arrival 3:59 4:22 5:18 30:06 18:02 X

6 01:53 9:58 10:11 X 22:20 14:40 X

7 On arrival X X X X 11:03 X

8 On arrival 3:50 4:15 4:30 18:30 6:00 11:50
Mannitol

9 On arrival 4:50 4:59 5:20 17:33 6:30 12:50 Mannitol

10 On arrival 4:00 4:20 8:45 19:01 9:30 X

11 On arrival 6:11 7:49 X X 18:22 X

12 On arrival 3:59 4:50 6:23 16:05 X 10:35
Raise head 30°

13 On arrival 9:15 9:19 9:45 15:58 9:15 13:15
Mannitol

14 On arrival 5:07 5:25 15:40 20:31 11:00 09:30
Raise head 30°

15 On arrival 4:18 4:58 5:23:
(6:33 time critical declared and
repeated at 11:20)

13:47 8:30 14:00
Raise head 30°

16 On arrival 4:40 4:44 20:16 23:56 6:55 X

17 On arrival 5:50 6:30 7:55 16:15 8:40 X

18 On arrival 4:53 5:10 5.57 18:00 8:05 X

19 On arrival 2:10 9:20 9:20 18:20 11:25 14:30
Reduce venous
pressure

20 On arrival 8:45 09:05 9:20 18:35 X X
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the ISSs, focusing upon the chosen area of interest de-
scribed above.

Structural verification of the FRAM models
Expert validation and internal checking of the FRAM models
The models generated were independently checked by
two other authors (KPH, CK) both subject matter ex-
perts in simulation and management of paediatric TCHI.
During these sessions, the research team members who
did not create the FRAM models had opportunity to ver-
ify that the FRAMs captured the critical elements of the
management of TCHI that was of interest (examination
of neurological status and subsequent actions).
The FMI software [19] was used to internally check

the structural integrity of the FRAM models (WAI and
WAD) for consistency and completeness and that the
endpoints could be reached as intended.

Visualisation of variability propagation through FRAM
models
The FMI software [19] was then used to explore what ef-
fects the variabilities in the outputs of each function in
turn have on the downstream functions’ operation.
Based on the ISSs, the variability of each function was
coded in terms of time (early, on time, too late, not at
all) or precision (precise, acceptable or imprecise) allow-
ing the “what if” analysis of the impact of the variabilities
on the functions leading to the model output.
The observed variability of management of TCHI in

the ISS recordings are presented as a case series of
FRAM models of WAD. The FRAM models of WAD se-
lected in the case series each depict a different

adaptation from the FRAM model of WAI, evident by
observing the ISS recordings.

Results
In this section, we present the FRAM model of WAI
and the simplified version. We also present the ob-
served variability of management of TCHI in the ISS
recordings, as a case series of FRAM models of
WAD. The FRAM models of WAD selected in the
case series each depict a different adaptation from the
FRAM model of WAI, evident by observing the ISS
recordings. We then show how the SWI-FRAM ap-
proach provides the opportunity to visualise the con-
sequences of variability around key functions, as the
effects propagate through the system. In order to do
so, the reader is directed to the videos provided in
supplementary online files 4, 5 and 6.

The FRAM model of WAI
The focused FRAM model of WAI for the ISS manage-
ment of a standardised scenario of a 7-year-old child
presenting with evolving signs of raised intracranial pres-
sure, a unilateral fixed dilated pupil and a depressed
level of consciousness, following a road traffic accident
(RTA) is shown in Fig. 4.
In this FRAM model, the functions performed by key

team members are identified by different colouration;
orange is the trauma team leader (TTL), red is the emer-
gency department specialist trainee doctor, and blue is
the anaesthetic doctor.
In this model, all the functions in this simplified ver-

sion of the WAI management of a paediatric TCHI and
how they are coupled can be observed. The inter-

Fig. 3 A FRAM model depicting the interacting functions involved in constructing a FRAM model. This is a relatively simple FRAM model where
all functions can be easily checked in an external peer review process, then by the FMI software
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relationship of the components of the primary survey,
namely the airway, breathing, cardiovascular, disability /
neurological assessment and exposure (ABCDE) assess-
ment can be visualised. The entire FRAM model of WAI
is available online (supplementary file 3).

The case series of FRAM models of WAD
Case one
In this case (ISS number 15), the TTL (orange func-
tions) performs the primary survey as per WAI to de-
termine the injury pattern and necessary immediate
actions and declares to the team the presence of a
head injury (Fig. 5). The TTL then goes further and
declares to the team (70 seconds later) that this is a
time critical head injury. No other TTL in the series
of 20 ISSs problem declares a time critical head in-
jury. The TTL then repeats this declaration 4 minutes
later; this expediates the intubation process and en-
sures the patient’s bed head is elevated to enhance
neuro-protection.

Case two
In this case (ISS number 5), the TTL coordinates the
primary survey but decides to assess the neurological
status of the child herself. This function is normally per-
formed by a specialist trainee, with the TTL standing
back. The primary survey is completed, the injury pat-
tern determined and the TTL declares to the team the

presence of a head injury (Fig. 6), the care is expediated
and the end points are successfully met.

Case three
In this case (ISS number 12), the TTL coordinates the
primary survey and leads a team huddle with the team
and states aloud the ABCDE findings. The TTL then de-
clares to the team the presence of a blown pupil, decides
to intubate and declares the need to manage intracranial
pressure issues (Fig. 7). This adaptation also expediated
the care process.

Case four
In this ISS (number 11), the primary survey com-
mences and the there is no initial D (disability) as-
sessment (Fig. 8). This is observed by a nurse who
articulates this to the anaesthetic doctor at the head
of the bed. The nurse and doctor examine the pupil
and consider this as normal (the child had a unilat-
eral fixed dilated pupil). This information is not
relayed to the TTL. There is no problem declaration
by the TTL, who instead requests a further ABCDE
assessment. During this cycle of the primary survey,
the emergency department specialist trainee examines
the pupils and determines them to be abnormal and
relays this to the TTL. The TTL requests a further
primary survey, the GCS is determined to be low and
the TTL declares that the child needs to go for

Fig. 4 The FRAM model of WAI
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neurosurgical intervention at the major trauma
centre.

The SWI-FRAM approach
The verification of FRAM models
The structural integrity of all of the FRAM models was
verified. To demonstrate this, the reader is directed to
the online supplementary video of the FRAM models of

WAI in this paper (supplementary files 4 and 5). All the
functions and interconnections can be visualised in turn
as the model cycles through each action.

Visualisation of variability propagating through a FRAM
model of WAD
In this section, a SWI-FRAM model is presented for the
third case (ISS number 12) shown in Fig. 9. A SWI-

Fig. 6 TTL adaptation of assessing the neurological status of the child then declaring head injury to the team

Fig. 5 TTL adaptation of declaration of time-critical head injury to the team
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Fig. 7 TTL adaptation of leading a brief team huddle then declaring findings and actions required to the team.

Fig. 8 TTL adaptation of continual reassessment to determine injury pattern
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FRAM log sheet is also provided for the case. As this is
a visual process, the reader is also directed the online re-
source (supplementary file 6).
By observing SWI-FRAM models, the variability of

functions in terms of precision and timing observed in
the ISS cases (Table 1) can be seen to propagate across
the system. The key functions that ensure the propaga-
tion are visible, as are the sequelae of the adaptations, as
shown in Fig. 9.
The SWI-FRAM reveals the flow of the functions

that occurs leading to the determining the pattern of

injury, the problem declaration and the subsequent
actions (see also the online supplementary file 6). The
SWI-FRAM approach systematically allows one to
visualise how the ABCDE assessments cycle to the
TTL are not linear and the how the huddle facilitates
a check on all of the ABCDE leading to the desired
end-points of problem declaration and also the subse-
quent instructions to team members to neuro-protect
the child. The SWI-FRAM log sheet highlights critical
variabilities, consequences and provides the option for
recommendations (Table 2).

Fig. 9 The SWI-FRAM analysis of the case three (ISS 12). In this figure, the SWI-FRAM analysis is shown cycling through the system (see online
video supplementary file 6 also), as the disability / neurological assessment (checking pupils and GCS) is completed, the analysis will continue
through to the huddle, then the declaration and on-going care plans

Table 2 The SWI-FRAM log sheet for case 3 ISS number 12

SWI-FRAM LOG SHEET

Case: ISS number 12
Entry functions: Alert to hospital of trauma case and paramedic hand-over
Exit functions: Transfer to MTC

Function Critical variability
identified

Visualised consequence Recommendations Priority

To understand injury pattern Precise Rapid declaration of the problem identified
to the team.

Share and adopt this practice High

To organise a team huddle Precise Articulation systematically of the key findings
of the primary survey

Share and adopt this practice High

To declare the need to manage
raised intracranial pressure

Precise Acceleration of team actions to neuro-protect
child and facilitate onward transfer

Share and adopt this practice High
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Discussion
This study uses a series of structured case simulations to
determine variability in performance during the manage-
ment of a paediatric TCHI. FRAM models are con-
structed of the dependencies and actions looking at
information flow and task distribution. Using independ-
ently determined metrics of the performance and timing
of key actions during the scenarios from video analysis,
the ideal and suboptimal performances of 20 teams were
assessed and FRAM models were constructed. The hu-
man variability evident in the different simulations, in
terms of different adaptations used to achieve the goals
of managing the TCHI scenario, were explored using the
SWI-FRAM approach.
Technology enhanced simulation has been used to ex-

plore the complexities of the interactions between
humans, teams and organisations for over two decades
[2]. The SWI-FRAM approach as described in this paper
is a first step to illuminating how to systematically ana-
lyse variations in practice and observe the consequences
of these human adaptations (both positive and negative)
within simulated complex systems. The use of ISS data
to create FRAM models is novel. Previous data collec-
tion in healthcare FRAMs have used interviews, focus
groups and document analyses including accident inves-
tigations [26].
With investment be that time, effort and resources,

there is the expectation of a return. So, what is the
added value of the SWI-FRAM technique on top of
current system focused simulations and system focused
debriefing? The answer lies within the visual depiction
of the simulated system of choice provided by the SWI-
FRAM models, which can develop an understanding of
how adaptations and changes can resonate through the
system and lead to changes in safety or performance.
The models provide (1) an holistic overview, (2) a depth
of understanding of critical functions within the system,
(3) a visualisation of non-linear interrelationships be-
tween functions, (4) the ability to observe the down-
stream effects of the variability of upstream functions
inherent in different simulations, (5) the opportunity to
discuss and develop interventions that embrace the com-
plexity to enhance the safety and performance of the sys-
tem explored. In addition to the visual models, the log
report output provided by the software also provides in-
formation in a format that speaks to organisational
learning goals.
The holistic overview provided by SWI-FRAM models

includes the ability to systematically step through every
part of a complex system visually, for example the
FRAM model of WAI, (online supplementary file 4) and
the ability to observe downstream consequences of up-
stream variations in practice, as described in the case
series. This overview can be utilised to create an

awareness of the complexity at the individual, team and
organisational level, this includes enhancing an appreci-
ation of the differing roles of individuals and how they
interact. This may be a strategy to enhance current defi-
cits in the sharing of mental models across team mem-
bers, for example that particularly evident in managing
paediatric TCHI [27]. The critical functions within the
system can be analysed in depth, in this study a focus
was placed upon the neurological assessment to identify
a low GCS score and a fixed and dilated pupil, then the
problem declaration by the trauma team leader. The
SWI-FRAM approach makes it possible to distil down
processes and focus upon key interactions in the system
as shown in the case series of FRAM models of WAD
(Figs. 5, 6, 7, 8, and 9). The human adaptations
highlighted in the case series, in terms of problem de-
claring the time critical nature of the injury, the decision
as TTL to perform the neurological assessment, the
team huddle and the continual rechecking can be clearly
visualised. In addition to verifying the internal
consistency of each model the SWI-FRAM approach
then allows the effects of the variable adaptations to be
seen propagating through the models to their end points
(Fig. 9 and online supplementary file 6). This can then
be used to develop interventions or strategies to cope
with the complexity and then embed them into systems
[28]. One example from the case series presented could
be the development of the scribe role to directly support
a TTL. In ISS case 11 (Fig. 8), the nurse observes the ab-
sence of the neurological assessment in the primary sur-
vey and approaches the anaesthetic doctor to perform
the assessment together, without bringing the TTL into
this loop of functions. The addition of an additional
function “to ensure all assessments are reported to the
TTL” by an experienced person in the role of the scribe
may enhance safety and the performance in this system.
The SWI-FRAM approach facilitates the direct visual-

isation of the normal mundane adaptations that occur in
everyday practice to enhance patient safety. In doing so,
it has the potential to focus reflection on action in the
real world of everyday clinical practice to deeply analyse
what goes well most of the time and why, what trade-
offs occur and what are the consequences. There is the
ability with SWI-FRAM to observe what happens when
an expert or a novice in a given context with multiple
options, chooses one and how resultant changes
resonate across the system. There is the ability to ob-
serve adaptations to different contexts, in terms of indi-
vidual’s competencies, process standards/guidelines and
differing material environments that occur in real life or
can be created in different simulations [15]. As such the
SWI-FRAM approach may influence scenario designs. By
providing insights on what works in given contexts, the
SWI-FRAM approach may also be useful to debriefing
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frameworks that aim to promote second order learning
that focuses upon how to generalise and learn to adapt to
new situations [15].
One more return on investment for performing the

SWI-FRAM approach may be to enhance further the in-
fluence that TES may have on the senior hospital man-
agement to invoke changes to improve patient
outcomes. The visual output, including potential videos
of propagating effects of simulated changes in systems
and the report log may provide another readily compre-
hensible stimulus, in a format that can link with know-
ledge management frameworks [29] and facilitates
organisational learning [30].

Limitations
This SWI-FRAM approach presented is anchored in ISSs
that are considered “as close” to real-life as possible. As
such the system based simulations described remain
proxy considerations to real-life clinical care. In this
study, a number of steps were taken to minimise bias
and enhance transparency, including standardised simu-
lations and independent rating of the simulations, the
use of a clinical expert and a non-clinical patient safety
expert as the initial FRAM analysts and then a second
team of trauma care subject matter experts to independ-
ently iteratively validate each model. Reflexivity was
maintained by continual dialogue between the inter-
national group of researchers. Expertise is required to
develop and analyse the FRAM models as described in
this manuscript; this expertise is becoming increasingly
available within organisations that already perform ISSs.

Conclusions
TES as a tool that can safely replicate almost any
patient—healthcare professional/team—system inter-
action, is well placed to explore human performance
adjustments and performance variability. As such,
there is the opportunity to consider both Safety-I
and Safety-II perspectives to enhance patient safety
and patient outcomes. By focusing upon and visually
depicting the consequences of human variability, the
SWI-FRAM approach provides a holistic overview of
the extent of complexity, a visualisation of non-
linear interrelationships between critical functions
and an exploration of what goes right, in addition to
what goes wrong in a system. The novel and effect-
ive basis of this approach is that it concentrates on
the functions essential to ensure successful out-
comes, without necessarily being constrained by
identifying individual agents, human or organisa-
tional. This focus on functions thus clarifies and
simplifies the analysis and is not distracted by the
inevitable difficulty of discerning exactly what roles
or agents are performing the functions in the

crowded intensive work-spaces encountered in real
life. In doing so, this approach enhances the oppor-
tunity to discuss and develop more effective inter-
ventions to enhance the safety and performance of
the simulated system explored, that can proactively
impact future real-life situations.
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