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Abstract
Coronavirus disease 2019 (COVID-19) is a devastating viral infection caused by severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2). The incidence and mortality of COVID-19 patients have been increasing at an alarming rate. The 
mortality is much higher in older individuals, especially the ones suffering from respiratory distress, cardiac abnormalities, 
renal diseases, diabetes, and hypertension. Existing evidence demonstrated that SARS-CoV-2 makes its entry into human cells 
through angiotensin-converting enzyme 2 (ACE-2) followed by the uptake of virions through cathepsin L or transmembrane 
protease serine 2 (TMPRSS2). SARS-CoV-2-mediated abnormalities in particular cardiovascular and neurological ones and 
the damaged coagulation systems require extensive research to develop better therapeutic modalities. As SARS-CoV-2 uses 
its S-protein to enter into the host cells of several organs, the S-protein of the virus is considered as the ideal target to develop 
a potential vaccine. In this review, we have attempted to highlight the landmark discoveries that lead to the development of 
various vaccines that are currently under different stages of clinical progression. Besides, a brief account of various drug 
candidates that are being tested to mitigate the burden of COVID-19 was also covered. Further, in a dedicated section, the 
impact of SARS-CoV-2 infection on neuronal inflammation and neuronal disorders was discussed. In summary, it is expected 
that the content covered in this article help to understand the pathophysiology of COVID-19 and the impact on neuronal 
complications induced by SARS-CoV-2 infection while providing an update on the vaccine development.
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COVID-19	� Coronavirus disease
SARS-CoV	� Severe acute respiratory syndrome 

coronavirus
SARS-CoV-2	� Severe acute respiratory syndrome corona-

virus 2
CoV	� Coronavirus
MERS	� Middle East respiratory syndrome
hCoV	� Human coronavirus
ACEIs	� Angiotensin-converting enzyme inhibitors
ARBs	� Angiotensin II receptor blockers
NTD	� N-terminal domain

RBD	� Receptor-binding domain
RBM	� Receptor-binding motif
RNA	� Ribonucleic acid
ORF	� Open reading frame
Nsp	� Non-structural proteins
S-protein	� Spike protein
N-protein	� Nucleocapsid protein
M-protein	� Membrane protein
E-protein	� Envelope protein
DC-SIGN	� Dendritic cell-specific intercellular adhe-

sion molecule-3-grabbing non-integrin
L-SIGN	� Liver/lymph node-specific intercel-

lular adhesion molecules-3-grabbing 
non-integrin

DPP4	� Dipeptidyl peptidase 4
HCQ	� Hydroxychloroquine
IFNs	� Interferons
RAS	� Renin-angiotensin system
ACE	� Angiotensin-converting enzyme
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AT1R	� Angiotensin type 1 receptor
AT2R	� Angiotensin type 2 receptor
GPCRs	� G-protein-coupled receptors
TMPRSS2	� Transmembrane serine protease 2
PAMPs	� Pathogen-associated molecular patterns
US-FDA	� US Food and Drug Administration
IL	� Interleukins
BBB	� Blood–brain barrier
BAL	� Bronchoalveolar lavage
CNS	� Central nervous system
GFAp	� Glial fibrillary acidic protein
NfL	� Neurofilament light chain
MRI	� Magnetic resonance imaging
ICU	� Intensive care unit
ARDS	� Acute respiratory distress syndrome
PNS	� Peripheral nervous system
RT-PCR	� Real-time polymerase chain reaction
CSF	� Cerebrospinal fluid
BCSFB	� Blood-cerebrospinal fluid barrier
CP	� Choroid plexus
PD	� Parkinson’s disease
OE	� Olfactory epithelium
OECs	� Olfactory ensheathing cells
EV	� Extracellular vesicles
GCSF	� Granulocyte colony-stimulating factor
DDC	� DOPA decarboxylase
DMTs	� Disease-modifying therapies
MS	� Multiple sclerosis
Aβ	� Beta-amyloid
AD	� Alzheimer’s disease
AMP	� Antimicrobial peptide
hIPSCs	� human induced pluripotent stem cells
NPCs	� Neural progenitor cells
MHV	� Mouse hepatitis virus
NTD	� N-terminal domain
HR1	� Heptad repeat 1
HR2	� Heptad repeat 2
CP	� Cytoplasmic domain
TM	� Transmembrane domain
HT	� Hydroxytyrosol
OLE	� Oleuropein aglycone
OT	� Ozone therapy
GBS	� Guillain–Barré syndrome
ADEM	� Acute disseminated encephalomyelitis

Introduction

Coronaviruses (CoVs) are RNA viruses, which belong to the 
Coronaviridae family and Coronavirinae subfamily. They are 
widely distributed among animals and humans, causing respira-
tory, enteric, hepatic, and neurological disorders [1, 2]. SARS-
CoV, SARS-CoV-2, hCoV-229E, OC43, NL63, and HKU1 are 

currently circulating in the human population, causing mild 
and self-limiting upper respiratory tract infections [3]. Severe 
acute respiratory syndrome-coronavirus (SARS)-CoV and 
Middle East respiratory syndrome-coronavirus (MERS)-CoV 
have emerged as two highly pathogenic CoVs over the past two 
decades [4]. The outbreak of highly contagious SARS-CoV-2 
is a variant of coronavirus, which is currently causing a pan-
demic infection globally. Infection with SARS-CoV-2 causes a 
severe respiratory disease referred to as the COVID-19, which 
is accompanied by the symptoms of fever, cough, pneumonia, 
dysphonia, and occasional diarrhea, after 3–14 days of incuba-
tion [5, 6]. As of April 6th 2021, over 131.8 million confirmed 
cases and 2.8 million deaths were reported worldwide due to 
COVID-19 disease (https://​www.​who.​int.).

Key Insights in to the Structural Features 
of SARS‑CoV‑2

Structurally, SARS-CoV-2 is a 65–125 nm in diameter virus 
with club-shaped spikes on the enveloped surface. The virus 
contains a helical nucleocapsid, which is bound to a single 
positive-strand RNA of 27–32 kbp [7, 8]. Phylogenetic studies 
of the SARS-CoV-2 genome revealed its homology to other 
beta coronaviruses that were reported in bats. SARS-CoV-2 has 
a similarity of 79% to SARS-CoV and 50% to the MERS-CoV 
[9]. The genome of SARS-CoV-2 contains 14 open reading 
frames (ORFs) [10]. The ORF1a/ORF1ab is located at the 5′ 
end and encodes two polypeptides, PP1a and PP1ab. Polypep-
tides upon proteolytic cleavage encode nonstructural proteins 
(Nsp 1–16) that form a replicase and transcriptase complex, 
which is required for replication and transcription of the virus 
[11, 12]. The other 13 ORFs at 3′ encode four main structural 
proteins and nine putative accessory factors. Structural proteins 
include: spike (S) protein, nucleocapsid (N) protein, membrane 
(M), and envelope (E) proteins, which are essential for virus 
assembly and infection [13] (Fig. 1). “S” protein interacts effi-
ciently with various host receptors and facilitates the attach-
ment of the virus on the host cell surface and mediates the 
entry of the virus into the host cells. “M” protein maintains 
the virus in its intact shape [14]. “E” protein is the smallest 
structural protein that plays a significant role in the viral patho-
genesis, viral assembly, and viral release inside the host cells 
[15]. “N” protein interacts with RNA substrates, transcriptional 
regulatory sequences, and genomic packing signals and plays 
a critical role in the pathogenicity [16, 17]. The other essential 
structural and accessory proteins coded by the open reading 
frames are hemagglutinin esterase protein, 3a/b protein, and 
4a/b protein [8]. Recent research reports have identified many 
mutations in the genome of SARS-CoV-2, suggesting the abil-
ity of viruses to acquire adaptations to their new host. The 
enhanced infection abilities of the SARS-CoV-2 are believed 
to be imparted by mutations in NSP2 and NSP3 molecules [18].
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Mitigating SARS‑CoV‑2‑Induced COVID‑19 
Disease: Strategies That Are Under 
Evaluation

Several basic-, clinical-, and public health research findings 
have reported the efficacy of several molecules against the 
target proteins in SARS-CoV-2. Besides, several immu-
nomodulators and drug repurposing strategies have been 
described as effective against SARS-CoV-2; however, their 
usage was constrained by adverse drug reactions and sys-
temic toxicity. For instance, the administration of ACE-2 
inhibiting anti-malarial drug hydroxychloroquine (HCQ) 
was proven effective against SARS-CoV-2-induced dam-
age. However, monotherapeutic approaches using HCQ were 
reported unsuccessful, hence, strategies combining HCQ 
with other pharmacological agents for treating COVID-19 
cases are currently being explored [19]. Also, several novel 
small molecule inhibitors (NSMIs), antiviral agents such as 
umifenovir, remdesivir, nitazoxanide, favipiravir, ritonavir, 
lopinavir, interferons (IFNs), anti-cytokine drugs, antico-
agulants, and passive antibody therapies are currently being 
tested in different stages of clinical development (Table 1) 
[19].

Key Therapeutic Targets

SARS‑CoV‑2 Interactions with Host Cells

Angiotensin‑Converting Enzyme 2 (ACE‑2)

ACE-2 is a zinc-dependent metallocarboxypeptidase ectoen-
zyme, which is reported to be a key mediator of SARS-CoV-2 
entry into host cells [39]. ACE-2 is located on the apical mem-
brane of polarized cells of the testis, cardiovascular epithelium, 
cardiac myocytes, cardiac fibroblasts, epithelial cells of the 
kidney, liver, intestine, brain, and lungs [39–43]. ACE-2 is a 
type I integral membrane protein sharing 40% homology with 
ACE (angiotensin-converting enzyme). It is a key player in the 
renin-angiotensin system (RAS) [44]. ACE activates RAS by 
converting angiotensin I to angiotensin II. Angiotensin II activ-
ity is mediated through selective interactions with angiotensin 
II type 1 receptor (AT1R) and angiotensin II type 2 receptor 
(AT2R), a type of G-protein-coupled receptors (GPCRs). How-
ever, additional data is currently warranted to delineate the role 
of ACE in the entry of human CoVs [44].

ACE-2 acts as a functional cellular receptor for coro-
naviruses, namely, NL63 and SARS-CoV, by facilitating 
viral entry into the lungs [45, 46]. Studies using fluorescent 
probes have confirmed that SARS-CoV-2 could act on the 
same ACE-2 receptor for entering the host cell [47, 48]. 
ACE-2 consists of an N-terminal peptidase domain and a 

C-terminal collectrin-like domain joined together with a 
single transmembrane helix and an intracellular segment of 
about 40 amino acid residues [49, 50]. The peptidase domain 
of ACE-2 cleaves angiotensin II to angiotensin (1–7), which 
functions in association with a G-protein-coupled Mas-
receptor. The ACE-2-angiotensin-Mas receptor axis medi-
ates a regulatory effect, which antagonizes the effects of the 
ACE-angiotensin II axis and consequently protects the pul-
monary and cardiovascular system from the harmful impact 
of RAS activation [51–53].

In the lungs, ACE-2 is expressed in pulmonary endothe-
lium, type I and type II alveolar epithelial cells, and smooth 
muscle cells [41]. Several studies have reported that the 
downregulation of ACE-2 contributes to the development 
and progression of lung disease accompanied by the changes 
in vascular permeability, increased edema, neutrophil accu-
mulation in lungs leading to respiratory failure, and death 
[52]. SARS-CoV-2 spike (S) protein binds to ACE-2, induc-
ing ACE-2 shedding by activating disintegrin and metal-
loproteinase-17 [54] (Fig. 2). S1 subunit has the receptor-
binding domain, which upon binding to ACE-2, undergoes 
conformational changes facilitating viral attachment to the 
host [55]. S1 subunit in S-protein undergoes priming by 
the transmembrane serine protease 2 (TMPRSS2) or pH-
sensitive endosomal proteases cathepsin B and L at S1/S2 
and S2 sites. S-protein priming mediates the entry of SARS-
CoV-2 into the host, by the viral envelope and host cellular 
membrane fusion thereby triggers endocytosis [33, 56–58]. 
The enhanced binding affinity of SARS-CoV-2 to the ACE-2 
receptor is due to a single N501T mutation in the gene cod-
ing for S-protein in SARS-CoV-2, which makes this disease 
transmission more likely to other organs [59].

The acidic environment in the endosomes is capable of 
facilitating the fusion of SARS-CoV-2 viral and endoso-
mal membranes, releasing the viral genome to the cytosol 
[60]. The released positive-strand viral RNA is translated 
on host ribosomes into a replicase, which upon proteolytic 
cleavage yields proteins needed for genome replication. The 
full-length antisense negative-strand viral RNA template is 
generated by viral RNA-dependent RNA polymerase for rep-
licating positive strands of viral genomic RNA and shorter 
subgenomic negative-strand RNAs [61]. Negative-strand 
viral RNA serves as templates for the translation of mRNAs 
in the endoplasmic reticulum that code for the structural 
proteins of the virus. In the endoplasmic reticulum, viral 
proteins get encapsulated and bud into membranes. Upon 
viral assembly, virions form vesicles are released through 
exocytosis [61].

ACE-2 gene polymorphism plays a crucial role in induc-
ing severe lung damage, as it accounts for the differences 
in the ACE expression level in the general population [62]. 
ACE-2 polymorphism is identified by the insertion (I) or 
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deletion (D) of a 287 bp Alu repeat sequence in intron 16 
of the ACE gene [63]. Further studies are needed to assess 
ACE gene polymorphism in COVID-19 patients in the ongo-
ing clinical trials using ACE-2 inhibitors and angiotensin II 
receptor blockers therapy.

ACE-2 is expressed in many other organs, hence, SARS-
CoV-2 is likely to enter tissues and organs through ACE-2 
binding, causing multiple organ damage including kidney 
injury, cardiac injury, liver dysfunction, and cerebral dam-
age [41, 64–66] (Fig. 3). The current understanding of the 
pathogenic mechanisms of SARS-CoV-2 binding to ACE-2 
in the brain, liver, kidney, and heart are poorly described, 
hence, further studies are warranted.

Addressing this gap, recent studies have shown that in 
the brain, ACE-2 is expressed in glial cells and neurons, 

suggesting the neurotrophic potential of SARS-CoV-2, 
entering through circulation or an upper nasal transcribrial 
route causing cerebral damage [64]. More research studies 
are required to elucidate the specific mechanisms behind 
neuronal damage mediated by SARS-CoV-2 infection 
(Fig. 3).

In addition to the brain, ACE-2 is expressed in hepato-
cytes of the liver, and bile duct cells consequently invoke 
damage to the liver [67]. Moderate microvascular steatosis, 
mild lobular, and portal activity were observed in biopsies 
of COVID-19 individuals [65]. Nevertheless, a mechanism 
underlying the liver dysfunction needs to be explored fur-
ther, as the injuries could be caused by SARS-CoV-2 infec-
tion or antiviral drugs used during the treatment [65]. For 
example, several recent studies have shown that the antivi-
ral drugs lopinavir/ritonavir causes injury to the liver [68]. 
Addressing this aspect will help to develop better strategies 
for mitigating SARS-CoV-2-induced liver damage (Fig. 3).

The kidney is another organ with elevated ACE-2 expres-
sion. The renal tubular cells are known to express high lev-
els of ACE-2 [69]; however, no research evidence has been 
reported for the SARS-CoV-2 invoked kidney injury. In a 
statistical survey of 1099 COVID-19 patients, 0.5% reported 
acute kidney injury with a severity rate of 83.3%. In some 
COVID-19 patients, SARS-CoV-2 was detected in the urine 
[69]. Additional studies are immediately warranted to test 
whether SARS-CoV-2 infections cause kidney damage, if 
so, the mechanisms involved in such cellular damage. Fur-
ther, it is currently unknown whether urine collected from 

Fig. 1   Genome organization of coronaviruses and variations in their 
mode of entry into human cells: a Structural representation and 
genome organization of SARS-CoV, MERS-CoV, and SARS-CoV-2: 
SARS-CoV-2 genome encodes four major proteins viz., spike (S) pro-
tein, the nucleocapsid (N) protein, the membrane (M) protein, and the 
envelope (E) protein. Total six open reading frames (ORFs), ORF3a, 
ORF6, ORF7a, ORF7b, ORF8, ORF10, and the polyprotein ORF1ab 
encodes several enzymatic proteins for the effective viral invasion 
of the host cells. b Host cell receptors and replication mechanism 
of SARS-CoV, MERS-CoV, and SARS-COV-2: the spike protein of 
the CoVs interacts with receptors on the host cell to make its entry. 
ACE-2 serves as a receptor for SARS-CoV and SARS-CoV-2. DC-
SIGN and L-SIGN serve as co-receptors for SARS-CoV. DPP4 serves 
as a receptor for MERS-CoV. CoVs replicate in the host causing cel-
lular damage leading to further complications

◂

Table 1   Therapeutic strategies to target ACE-2 receptor and S-protein interaction in SARS-CoV-2 infection

Type Target Description

Synthetic compounds
  RS504393 ACE-2 and S-protein of SARS-CoV-2 Treated for lung injury and bronchial wall thickening [20]
  KT185 S-protein of SARS-CoV-2 Anti-inflammatory [21]
  TNP ACE-2 Tyrosine kinase inhibitor [22, 23]
  GNF-5 ACE-2 Kinase inhibitor [24]
  GR127935 hydrochloride hydrate ACE-2 Vasoconstriction monitoring [25]
  Eptifibatide acetate ACE-2 Protects lung injury and inflammation [26]

Monoclonal antibody
  47D11 Entry of SARS-CoV-2 Human antibody specific to SARS-CoV-2 [27]

Antiviral agents
  HrsACE-2 ACE-2 Recombinant protein [28]
  CR3022 S-protein Neutralizing antibody [29]
  Umifenovir (Arbidol) Endocytosis Membrane fusion inhibitor [30, 31]
  EK1C4 Endocytosis Pan-coronavirus fusion inhibitor [32]
  Camostat mesilate TMPRSS2 Serine protease inhibitor [33, 34]
  Nafamostat TMPRSS2 Serine protease inhibitor [30, 35]
  Bromhexine hydrochloride TMPRSS2 Mucolytic drug [36]
  PAI-1 TMPRSS2 Serine protease inhibitor [37]
  Chloroquine Cell fusion/virus Drug for autoimmune disease [38]

4539Molecular Neurobiology (2021) 58:4535–4563



1 3

4540 Molecular Neurobiology (2021) 58:4535–4563



1 3

COVID-19 patients could also be used to detect SARS-
CoV-2. Establishing methods to detect SARS-CoV-2 in 
urine will help in minimizing the distress caused due to 
nasal/throat sample collection (Fig. 3).

In the case of heart, SARS-CoV-2 follows the mecha-
nisms similar to SARS-CoV to trigger cardiovascular com-
plications [70]. ACE-2 expressed in cardiomyocytes is capa-
ble of interacting with SARS-CoV and fosters the extensive 
levels of Ang-II, consequently promoting cardiovascular 
abnormalities [70]. But it is currently unknown whether 
SARS-CoV-2 can also directly infect cardiomyocytes.

ACE-2 expression is also detected in exocrine glands and 
islets of the pancreas. ACE-2 expression in the pancreas is 
slightly higher compared to the lungs, indicating the possi-
bility of binding of SARS-CoV-2 to ACE-2 in the pancreas, 
causing severe pancreatic injury [71].

Studies have reported coagulation and fibrinolysis in 
COVID-19 patients, which is due to the activation of host 
defense mechanisms to limit the spread of the virus upon 
infection [72]. The initial phase of viral infection triggers 
a systemic inflammatory response characterized by an ele-
vated level of cytokine activity and generation of thrombin 
and fibrinogen [72]. This response induces the expression 
of tissue factors, which initiate the coagulation. The meas-
urement of coagulation and fibrinolysis factors in bron-
choalveolar lavage (BAL) fluid showed elevated thrombin 
levels and the suppression of fibrinolysis, indicating the 
pathogenesis of respiratory distress. Furthermore, mas-
sive endothelial cell apoptosis, which is caused by vascular 
endothelial damage upon SARS-CoV-2 infection contributes 
to procoagulant changes in COVID-19 [72]. Recent studies 
have shown thrombocytopenia in COVID-19 patients, but 
the mechanism of SARS-CoV-2 involvement is still unclear 
[73] (Fig. 3).

Cytokine Storm

Innate- and acquired-immunity mediated antiviral responses 
triggered by recognizing pathogen-associated molecular 
patterns (PAMPs) and induced antigen-specific adaptive 
immunity are the key defense systems that protect the host 
organisms from devastating effects of infections [74, 75]. 
The response to viral infections depends on the release of 
cytokines, chemokines, leukotrienes, proteases, reactive oxy-
gen species, and the rate of viral clearance [76]. The bal-
ance between the antagonistic signals and cellular reactions 

influences the immune response to pathogens by preventing 
damage to host tissues. As a result, the activated immune 
system returns to a resting state and prevents the damage, 
which is otherwise caused by continuously activated host 
immune reactions [76]. Excessive synthesis of cytokines in 
response to viral infections results in an acute and severe 
systemic inflammatory response known as “cytokine storm,” 
which causes multi-organ damage [76]. Studies have shown 
that IL-6 and IL-17 are predictive of disease severity and 
correlate with respiratory failure [77]. Potential therapeu-
tic strategies targeting IL-17 alone or in combination with 
IL-6 for COVID-19 are currently under investigation. Toci-
lizumab, which targets IL-6, is currently approved by the 
United States Food and Drug Administration (US-FDA) for 
treating COVID-19 patients [78].

SARS‑CoV‑2‑Induced Neurological 
Complications

The SARS-CoV-2 primarily affects pulmonary, cardio-, and 
renal functions [79]. However, recently it has been reported 
that SARS-CoV-2 can cause secondary complications on 
other systems as well [79]. Neurological complications are 
one such set of complications that require more attention 
to develop novel therapeutic modalities. Frequently, SARS-
CoV-2 infections-induced neurological disorders are com-
bined with either pre-existing metabolic abnormalities such 
as diabetes, other infections, or chronic- to acute inflam-
matory episodes of the nervous system [80]. However, it is 
currently not clear whether all COVID-19 patients develop 
neurological complications or only a portion is prone. There-
fore, it is important to know the signs and features of suscep-
tible individuals who are at risk for developing neurological 
infections.

Routes of SARS‑CoV‑2 Entry into the Nervous 
System

The SARS-CoV-2 virus, which enters the bloodstream can 
spread into the central and peripheral nervous systems (PNS) 
via retrograde axonal transport or by infecting the pericytes 
and astrocytes, which are the central part of the blood–brain 
barrier (BBB) [81]. Neuro-invasion of SARS-CoV-2 may also 
be mediated through the olfactory nerve or infection of vascu-
lar endothelium or by infected leukocyte migration across the 
BBB. Once the virus enters CNS through the conceded BBB, 
the SARS-CoV-2 can be distributed along the neurotransmis-
sion or hematogenous pathways that include serotonergic dor-
sal raphe system and Virchow-Robin spaces, respectively. The 
neuro-invasive potential of SARS-CoV-2 predominantly relies 
on the medullary structures interacting with the brain stem, 
accompanied by the respiratory system. This could be one of 

Fig. 2   Interaction of SARS-CoV-2 with ACE-2 receptors in lungs: 
the lysosomal proteases, such as elastase, and cell surface proteases 
TMPRSS2 could induce activation of SARS-CoV-2 S-protein for 
membrane fusion through ACE-2 receptors, which consequently 
causes lung tropism through endosome formation, multiple virion 
replication, and exocytosis

◂
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the conducive factors responsible for the high incidence of 
respiratory failures in COVID-19 patients [81].

The neurological effects of COVID-19 are due to either 
direct viral entry or indirect infection into the CNS [82, 
83]. Epidemiological studies have shown that the latency of 
1-week gap between the initial infection and severe infection 
for COVID-19 patients provides space sufficient for potential 
viral entry into the CNS [84]. Neurotropism activity is com-
monly detected in coronaviruses; neuro-invasive properties 
are well documented in SARS-CoV, MERS-CoV, HCoV-
229E, and HCoV-OC43 [85–87]. Further, the spike protein 
of SARS-CoV-2 alters the blood–brain barrier (BBB) func-
tion, which provides an additional mechanism of potential 
CNS entry [88]. The conserved viral structure and genetic 
similarity of SARS-CoV-2 with SARS-CoV provide further 
evidence that the virus can enter into the CNS [89, 90].

Kanberg et  al. reported CNS damage in COVID-19 
patients by measuring the variations in serological biomark-
ers. For instance, elevated plasma glial fibrillary acidic pro-
tein (GFAp) and neurofilament light chain (NfL), which are 
the markers of astrocytic and neuronal injury, were reported 
in 47 COVID-19 patients [91]. The authors of this study 
demonstrated a significant increase in GFAp and NfL in 18 
patients with severe COVID-19; however, GFAp levels were 
reported to decrease upon treatment follow-up. But a contin-
uous increase in NfL level was reported throughout the treat-
ment. Similar to severe COVID-19 cases, an increase in the 
levels of plasma GFAp was also reported even in 9 patients 
with moderate COVID-19 [91]. But no treatment follow-up 
status is reported in this study. This phenomenon is evident 

in astrocytes’ early involvement and delayed axonal injury 
in the CNS due to COVID-19 infection [91].

Coolen et al. have provided evidence of central nervous 
system involvement in COVID-19 patients [92]. Authors 
of this study have performed magnetic resonance imag-
ing (MRI) on COVID-19 patients within 24 h of death 
and showed parenchymal abnormalities, including white 
matter changes, posterior reversible encephalopathy syn-
drome, and hemorrhage in four individuals [92]. This 
could be due to the breakdown of the BBB and COVID-
19 based endothelial abnormalities, irrespective of SARS-
CoV-2 virus infection in endothelial cells. The study also 
showed an indication of olfactory bulb unevenness and 
anosmia in four other patients [92]. A study conducted 
in Strasbourg, France, on the neurological function of 58 
COVID-19 patients with acute respiratory distress syn-
drome (ARDS) admitted into the intensive care unit (ICU) 
was assessed and showed neurological abnormalities in 
the 8/58 patients (~ 14%) during admission to the ICU. 
However, 67% (39/58) patients exhibited profound neuro-
logical signs while 69% (40/58) of patients exhibited agita-
tion after the withdrawal of sedation or a neuromuscular 
blocker. Also, approximately 45% (26/58) of patients were 
characterized by a state of confusion, while 67% (39/58) 
of patients reported exhibiting corticospinal tract signs. 
Serendipitously 13 patients (22.41%) exhibited encepha-
lopathic features followed by leptomeningeal enhancement 
in (8/13) patients and bilateral frontotemporal hypoper-
fusion (11/13) in MRI scans. Follow-up clinical stud-
ies were performed on 45 patients in which 15 patients 

Fig. 3   Multiple organ dysfunctions induced by the interaction of 
SARS-CoV-2 with host cell ACE-2 receptors. The figure represents 
multi-organ dysfunction which is characterized by acute kidney 

injury, respiratory failure, liver failure, neurological complications, 
and cardiovascular disease upon SARS-CoV-2 infection
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typically exhibited dysexecutive syndrome followed by 
the presence of in-attention, disorientation, alterations 
in movements, and responses [93]. A research study on 
214 COVID-19 patients from Wuhan, China, delineated 
severe SARS-CoV-2 infection in 41.1% (88/214) patients. 
The remaining had non-severe infection (58.9%; 126/214); 
among them 36.4% (78/214) of patients had orchestrated 
distinct neurologic signs due to damage to sensory neurons 
that consequently foster defects in sensations of olfaction 
and gustation and invoke neuropathic pain, seizures, and 
strokes [83]. Furthermore, these defects were more evident 
in COVID-19 patients across the world [83].

Based on the symptoms, neurological manifestations 
underlying the COVID-19 were segregated into skeletal, 
muscular injury indexes, and CNS indexes [94]. Among 
these neurological manifestations, acute cerebrovascular dis-
ease, headache, dizziness, ataxia, defects in consciousness, 
and seizures were reported as critical ones. For instance, the 
SARS-CoV-2 infection invoked alterations in the peripheral 
nervous system (PNS) as indicated by nerve pain, impaired 
taste, smell, or vision [6]. Results of this study showed that 
78/214 patients exhibited neurological abnormalities exhib-
iting symptoms related to CNS dysfunction, skeletal muscle 
injury, and defects in PNS function [83]. All these neuro-
logical symptoms were predominantly reported in older 
patients [60 years or above], who had existing co-morbid 
conditions viz., hypertension, diabetes, chronic malignancy, 
and cerebrovascular diseases [95–98].

A plethora of recent research reports depicted that the 
ACE-2 receptor extensively plays a crucial role in SARS-
CoV-2 virus entry into the host body. This protein is also 
widely reported in CNS, predominantly in the brainstem 
and subfornical organ, paraventricular nucleus, nucleus of 
the tractus solitarius, and the rostral ventrolateral medulla 
regions [99]. These regions of the brain are known to con-
trol cardiovascular functions [99]. ACE-2 expression is also 
reported in neurons and astrocytes [99]. Li et al. deciphered 
that COVID-19 infection could induce changes in gut micro-
bial composition and invoke neuropathogenesis which con-
fers neuropsychiatric symptoms through the gut-brain axis 
[100].

Initial studies using RT-PCR depicted the extensive 
ACE-2 expression in the brain [101], but ACE-2 immuno-
reactivity was typically reported in the brain endothelial 
and smooth muscle cells [102]. The expression of ACE-2 
in glial cells [99, 103] concludes that brain tissue could be 
a potential target for SARS-CoV-2. SARS-CoV-2 RNA was 
evident during CNS infection indicating the possibility of 
direct infection of CNS by SARS-CoV-2.

The COVID-19 patients with meningitis exhibit seizures, 
hippocampal atrophy, and pan-paranasal sinusitis [104]. A 
recent case study showed the existence of SARS-CoV-2 
virus in the CNS of a 56-year-old encephalitis patient who 

had reported mitigation of consciousness. These findings 
in COVID-19 patients are in line with past reports with 
HCoV-OC43 infected patients [105]. Likewise, SARS-CoV 
was observed in CSF from SARS patients with persistent 
epilepsy [106]. A retrospective study of COVID-19 patients 
showed acute ischemic stroke, cerebral venous sinus throm-
bosis, and cerebral hemorrhage [83]. Hence, it was con-
cluded that the SARS-CoV-2 exhibits a capacity to bypass 
the respiratory tract and the capability to confer infection in 
other tissues, which could be a critical feature of the SARS-
CoV-2 virus.

SARS‑CoV‑2 and a Robust Mitochondrial System 
and Immune‑Competency Rely on Hormesis

Recent studies have shown the ability of SARS-CoV-2 to 
impair autophagy and block mitophagy [107]. This effect 
is similar to SARS-CoV, which is capable of mitochon-
drial fusion, impairs mitophagy, and induces cell death 
[108, 109]. Studies are currently investigating the SARS-
CoV-2-induced modulation of mitochondrial- and immune 
system changes by unraveling the modulation of the viral-
mediated inflammasome. Irisin, a muscle-derived hormone, 
is reported to protect mitochondria and ischemia/reperfusion 
injury in the lung during exercise [110]. But it is unknown 
whether SARS-CoV-2-induced mitochondrial dysfunctions 
are mediated by irisin modulation. Furthermore, studies 
have demonstrated that irisin could facilitate changes in the 
genes in adipocytes that are affected by SARS-CoV-2 and 
neutralize the ROS in macrophages thereby display anti-
oxidant and anti-inflammatory properties [111, 112]. Since 
mitochondria play an important role in immune response, 
and several viruses can modulate mitochondrial function, 
it is presumed that SARS-CoV-2-induced effects could also 
be mediated through the dysregulation of mitochondrial 
function [109]. The altered mitochondrial function might 
be a variant process, which occurs in SARS-CoV-2-medi-
ated pathophysiology [113]. Several immune cells possess 
mitochondria and are now embraced by the “immunome-
tabolism concept” [114, 115]. However, age and lifestyle are 
two crucial factors that determine susceptibility to the virus 
based on hormetic-like preconditioning [115]. Any “virus-
induced exogenous hormetic stimuli” could be mitigated by 
the recurrent physical activity consequently decreasing the 
viral-mediated mitochondrial stress [116–118]. Precondi-
tioning signal through hormone-like irisin by the physical 
activity is leading to cellular protection via hormesis, which 
is an important redox-dependent anti-inflammatory and 
anti-oxidant-associated mechanism [113]. Thus, mitochon-
drial hijacking and hormetic-like preconditioning through 
SARS-CoV-2 could be considered as a significant factor in 
the pathophysiology of neuroinflammation [113].
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SARS-CoV-2 is reported to enhance aerobic glycolysis (War-
burg shift) to promote replication, which is a strategic tactic used 
by many viruses (similar to cancer cells) via metabolic repro-
gramming [119]. For instance, melatonin can impair this meta-
bolic reprogramming mediated by SARS-CoV-2, hence, mela-
tonin could be considered as the powerful antioxidant which 
can protect mitochondria [120, 121]. This kind of divergent 
SARS-CoV-2 signaling should be unraveled in neuronal cells by 
studying the melatonin-induced mitochondrial antioxidant sys-
tem [121]. Several viruses including SARS-CoV-2 can modulate 
mitochondrial bioenergetics and redox function in both immune 
systems and acquire the capability of infecting other cells to 
enhance their replication, which consequently fosters viral-medi-
ated pathophysiology due to extensive oxidative stress [121]. 
Hormetic dose–response of novel anti-viral molecules may 
provide the central underpinning of neuroprotective responses 
against viral infections. The study of hormetic dose-responses 
is crucial to illustrate the cellular defense pathways including 
sirtuin and Nrf-2 related signaling cascades about SARS-CoV-
2-induced neuronal diseases [122]. Furthermore, it is crucial 
to unravel the underlying viral-mediated pathophysiology as 
SARS-CoV-2 may modulate the functions of neuronal mito-
chondria to generate oxidative stress. As mitochondria-mediated 
aging is associated with dysregulated metabolism and requires 
novel therapeutic modalities viz., mitochondrial anti-oxidants 
and anti-inflammatory molecules are likely to correct these 
dysregulated metabolic and physiological processes before the 
administration of vaccines against SARS-CoV-2-induced neuro-
pathology [123]. “Hydroxytyrosol (HT)-rich aqueous olive pulp 
extract (HIDROX®)” has been reported to mitigate SARS-CoV-
2-induced pathophysiology by inducing potent virucidal activity 
[124]. Hydroxytyrosol (HT) and oleuropein aglycone (OLE) are 
two potential molecules reported being beneficial to mitigate 
the pathophysiology of neurodegeneration [124]. Hormesis and 
anti-oxidant nature, which enhances the activity of proteasome 
and phase II detoxifying enzymes, are potential mechanisms of 
action by which these pharmacological molecules work against 
SARS-CoV-2-induced neuropathophysiology [125, 126]. 
In addition to the above therapies, the vaccinomics approach 
might be useful to mitigate the complications accelerated with 
immunosenescence factors against SARS-CoV-2 in the infected 
individuals over 65 years of age [123, 127]. Additional studies 
are warranted to prove the role of vaccinomics-based approaches 
for reducing the complications of SARS-CoV-2 infections.

Mechanism of Infection of Central Nervous System 
(CNS) and Peripheral Nervous System (PNS) 
by SARS‑CoV‑2

Extensive scientific evidence now proved that COVID-19 
can cause many neurological complications [128]. Also, 
neurological complications have attracted widespread 

attention among researchers to delineate the short- and 
long-term impact on population health during COVID-19 
infections [129]. Yet, in-depth studies are required to ascer-
tain the underlying mechanisms/pathways involved in the 
COVID-19 induced neuronal complications.

Indirect Entry

SARS-CoV-2 may enter the nervous tissue through ret-
rograde and anterograde transport along with peripheral 
nerves [130]. Existing data showed that SARS-CoV-2 can 
infect the olfactory bulb through TMPRSS2 and ACE-2 
receptors [131, 132]. Once infected, the transfer of virus 
may occur through extracellular vesicles (EVs) in the 
olfactory ensheathing cells (OECs), independent of the 
ACE-2 receptors. In addition to the olfactory nerve, the 
virus can migrate via the trigeminal and vagus nerves 
[130].

SARS-CoV-2 may invade the nervous tissue through the 
ACE-2 or TMPRSS2 receptors. Since, ACE-2 receptors 
are also expressed on the membrane of the spinal cord, 
the virus may invade the spinal cord through its binding 
to the ACE-2 receptors on the surface of peripheral neu-
rons. The virus can penetrate the cribriform plate located 
closely to the olfactory bulb and the olfactory epithelium 
(OE), thereby enters the CNS system indirectly. Anos-
mia or hyposmia are considered as novel complications 
of COVID-19 patients to confirm this route of infection 
[133].

COVID-19 induced neural infection is accompanied by 
the uptake of the virus into the ciliated dendrites/soma [134]. 
The virus could effectively enter via anterograde axonal 
machinery transport along the olfactory nerve [134]. Moreo-
ver, the virus can also infect and cross non-neuronal olfac-
tory epithelium cells and directly enter the CSF around the 
olfactory nerve bundles [135]. ACE-2 and TMPRSS2 recep-
tors of these cells could propagate the infection in elderly 
individuals, which may be considered as the higher risk of 
SARS-CoV-2 accumulation in OE cells [135] (Fig. 4).

Direct Pathway

Even though it is now confirmed that SARS-CoV-2 infec-
tion leads to neurological complications, the direct entry 
of the SARS-CoV-2 into the nervous system and its exact 
microinvasion are yet to be unraveled. For instance, the virus 
may directly confer invasion of brain tissues as indicated 
by the presence of nucleic acid materials in both CSF and 
brain tissue [130]. This kind of viremia occurred through a 
direct pathway likely to provoke virus transcytosis across 
the endothelial cells of the blood–brain barrier (BBB) of 
the brain or the virus infection across the epithelial cells of 
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the blood-cerebrospinal fluid barrier (BCSFB) in the cho-
roid plexus (CP) of brain ventricles. Besides, the leukocytes 
may also act as a vector to transport the virus across the 
BBB [136, 137]. The Braak hypothesis says that an invasive 
neuro-virus could enter the CNS through the nasal cavity 
and the gastrointestinal tract [138] (Fig. 4).

COVID‑19 Induced Neuroinflammation

One of the significant neuropathological mechanisms of 
SARS-CoV-2 infection is the induction of a hyperinflam-
matory state in infected individuals [66]. The over-exuber-
ance response of the immune system could foster the gen-
eration of cytokines and chemokines viz., interleukins 2, 
6, 7, and 10, TNF α, and granulocyte colony-stimulating 
factor (GCSF) [139]. These cytokines and chemokines pro-
voke extensive activation of neuroinflammatory cascades 
and drive neuronal hyperexcitability via glutamate receptor 
activation followed by induction of seizures [140, 141]. An 
inflammatory theory of SARS-CoV-2 infection was also sup-
ported by the steroid response of COVID-19 patients comor-
bid with severe encephalitis [142].

Over-exuberance response of the immune system in 
SARS-COV-2 infection may cause inflammatory injury 
and brain edema, which consequently induce defects in 
consciousness [143]. Inflammatory and immunologic 
responses further amplify the cytokine storm [144]. Intrac-
ranial cytokine storm potentially confers BBB breakdown 
and leading to the migration of leukocytes. During this con-
dition, the virus is failed to exhibit the potential of direct 
invasion or para-infectious demyelination [130].

It has been reported that COVID-19 patients experience 
defects in gustation (sense of taste) and olfaction due to direct 
damage to the olfactory bulb leading to inflammation in the 
nasal cavity. This inflammation blocks binding of odorants to the 
olfactory receptors thereby affect the olfactory responses [145]. 
Regeneration and repair of damaged neurons during COVID-
19 take a longer time within the olfactory bulb [145]. Similarly, 
COVID-19 led to the dysfunction of taste buds thereby cause 
ageusia (loss of taste function of the tongue) [146]. In acute 
phases of this infection, the loss of olfaction could be due to 
nasal inflammation and mucosal edema. These symptoms may 
persist for months to years due to extensive olfactory insult trig-
gered by the virus [145].

Fig. 4   Overview of SARS-CoV-2 entry in the nervous system. 
SARS-CoV-2 virus is reported to infect CNS and PNS by direct and 
indirect pathways. This results in the generation of cytokines and 

chemokines by elevating the immune response and causing severe 
neurological complications

4545Molecular Neurobiology (2021) 58:4535–4563



1 3

Impact of COVID‑19 on Neurological Disorders

COVID-19 pandemic exhibited numerous short-term and 
long-term adverse effects on a large group of elderly people 
with neurological disorders and neurodegenerative diseases 
[147]. For instance, Parkinson’s disease (PD) is one of the 
devastating neurological diseases, which occurs due to the 
defects in the mesolimbic system of basal ganglia [148]. PD 
patients infected with COVID-19 exhibit adverse effects that 
include motor symptoms, such as tremors, freezing of gait, 
or dyskinesias [149], and diminished dopaminergic medica-
tion efficacy [150–152]. Thus, the COVID-19 pathophysiol-
ogy and alteration in the dopamine synthesis pathway have 
been hypothesized. Recent reports have demonstrated the 
co-expression of dopa decarboxylase (DDC), a significant 
enzyme of both dopamine and synthetic serotonin path-
ways, and ACE-2 receptor [153]. SARS-CoV-2 binding 
with ACE-2 has been reported to invoke a downregulation 
of ACE-2 [154]. The possible functional connection between 
ACE-2 and DDC indicates the alterations in dopamine syn-
thesis, which further confer PD-related complications [153]. 
An imbalance in dopamine levels can worsen the severity of 
PD. In addition to the impact of COVID-19 on PD patients, 
the virus may invoke sporadic PD during infection. For 
instance, ACE-2 is reported to be involved in co-regulating 
the dopa decarboxylase (DDC) during dopamine synthe-
sis; any SARS-CoV-2-induced downregulation of ACE-2 
expression would invoke alterations in both serotonin and 
dopamine pathways, which are significant pathways involved 
in PD pathophysiology [53, 153]. Hence, it is hypothesized 
that the SARS-CoV-2 can effectively induce alterations in 
dopamine during defective expression of ACE-2 and DDC 
[153].

Multiple sclerosis (MS) is another neurological com-
plication reported to be worsened by SARS-CoV-2 infec-
tion. The mortality/morbidity risk was reported to be 
relatively low with disease-modifying therapies (DMTs) 
in the MS patients suffering from COVID-19 infection. 
Furthermore, the intake of immunomodulatory drugs in 
these patients could invoke low pulmonary capacity, which 
further enhances the risk of COVID-19 related pneumonia 
[155]. Hence, the decision to avoid the intake of DMTs in 
COVID-19 patients comorbid with MS relies upon several 
miscellaneous factors viz., immunomodulation, and disease 
severity. Complications of COVID-19 infection are much 
higher due to the over-reaction of the immune system to 
the SARS-CoV-2. However, further studies are warranted 
to decipher the molecular pathways to be targeted to miti-
gate the complications. Furthermore, the establishment of 
appropriate preclinical animal models would help in devel-
oping better therapeutic agents for combating COVID-19 
induced complications in individuals suffering from MS 
[156–158].

SARS-CoV-2 infection may also invoke a severe neu-
rodegeneration process, which could reduce the overall 
survival of COVID-19 patients with Alzheimer’s disease 
(AD) [130]. But, currently, no evidence suggests a cor-
relation between COVID-19 and AD development [159]. 
One of the key factors responsible for AD induction is the 
accumulation of amyloid-beta plaques (Aβ plaques) in the 
brain [160, 161]. Aβ is produced from the enzymatic pro-
cessing of amyloid precursor protein (APP). An intriguing 
relation between viral infections and Aβ has been deline-
ated by several researchers and the data supports that Aβ 
is an antimicrobial peptide (AMP) [162]. The whole-brain 
homogenates obtained from AD patients compared to the 
age-matched non-AD samples suggested a strong correla-
tion between AMP action and Aβ levels [162]. However, the 
extensive anti-microbial activity of Aβ was ablated in the 
models of immune depletion of AD brain homogenates, who 
were subjected to treatment with anti-Aβ antibodies. Tran-
sient infection with SARS-CoV-2 virus could either initiate 
or accelerate Aβ accumulation inside the brain and cause 
AD [159] Further, a positive inflammatory response was 
stimulated through transient viral infection inside the CNS, 
which may foster the abnormal self-perpetuating innate 
immune responses due to the severe cerebral Aβ stagna-
tion [159]. Neuroinflammation is another early character-
istic of AD. CNS tropism of the virus across brain tissues 
expressing ACE-2 can induce ACE-2 expression, which may 
enhance the risk of virus invasion and activate molecular 
processes that invoke neurodegeneration [159]. However, 
these molecular mechanisms in SARS-CoV-2 infection are 
yet to be unraveled to delineate the viral-induced alterations 
in neurodegeneration.

SARS‑CoV‑2‑Associated Neurological Diseases

Guillain–Barré Syndrome (GBS) and SARS‑CoV‑2

Guillain–Barré syndrome (GBS) is an inflammatory poly-
radiculo-neuropathy and it is associated with several viral 
infections [163]. The incidence of GBS is considered to be 
the most significant aspect in the SARS-CoV-2 infected 
patients as GBS could confer respiratory failure, which is the 
most devastating complication observed with SARS-CoV-2 
infection [164]. The other disease complications of GBS 
are flaccid paralysis, sensory abnormalities, and autonomic 
dysfunction due to autoimmune-mediated pathophysiology 
[165].

GBS in a COVID-19 patient was first reported in 
Wuhan, China, where demyelination of motor and sen-
sory nerves was detected with a prolonged distal latency 
[166]. It is caused due to the cross-reaction of antibodies 
produced by the host against the viral infection, binding 
to peripheral nerves causing neuronal dysfunction [167]. 
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Reports suggested symptoms like facial and limb paresis 
(a muscular weakness caused due to nerve damage), pares-
thesia, and immune-inflammatory responses were evident 
in SARS-CoV-2-mediated neuronal pathophysiology in 
GBS patients [168]. For instance, a variant of GBS Miller 
Fisher syndrome and polycranial neuritis was reported by 
Gutiérrez-Ortiz et al. [169]. Albumin cytologic dissocia-
tion was observed in the CSF after few days of COVID-19 
infection in the individuals with Miller Fisher syndrome 
and polycranial neuritis [169]. Few reports suggested that 
the demyelination of multiple peripheral nerves might be 
another reason associated with SARS-CoV-2 that may 
induce deteriorating conditions of the patients with GBS 
[170]; however, extensive research studies are required to 
elucidate this pathophysiology vividly to develop counter-
acting therapeutic modalities [171].

Encephalomyelitis and SARS‑CoV‑2

Acute disseminated encephalomyelitis (ADEM) is one of the 
reported diseases generated through the central infiltration 
of SARS-CoV-2 components in the olfactory and trigemi-
nal nerve endings [172]. Patients diagnosed with ADEM 
associated with SARS-CoV-2 infection suffer from weak-
ness and numbness in the limbs and few urinary disorders; 
however, to date, the complete pathophysiology is not inves-
tigated. The complete CSF analysis in these patients has 
been reported with xanthochromia with high protein and 
glucose [172].

Myalgia and Neuromuscular Junction Damage

Myalgia, referred to as the general muscle pain accompa-
nied by the presence of fatigue, is worsened in SARS-CoV-2 

infected individuals due to chronic muscle injury [173]. 
Myalgic symptoms are due to respiratory complications 
invoked via acute respiratory distress syndrome (ARDS) 
and inflammatory-cytokine storm-induced via SARS-CoV-2 
pathophysiology through muscle cell ACE-2 receptors [173]. 
Another evident chronic effect is the immune-mediated mus-
cle damage due to inflammatory cytokine responses in these 
patients [174, 175] (Table 2).

SARS‑CoV‑2 and Animal Models of Neuronal 
Damage

Animal studies on SARS-CoV-2 can deliver key informa-
tion on the pathophysiology of CNS [159]. For instance, 
mice, hamsters, ferret, and non-human primate models were 
already in use to examine the effects of virulence in vivo 
[176]. Transgenic models of mice expressing the human 
ACE-2 (hACE-2) gene, which is the receptor for SARS-
CoV-2 in humans, are one such animal model to study the 
role of viral infection on neuronal damage.

Potential treatment strategies include pre-treatment 
with pan-coronavirus fusion inhibitors like EK1 peptide 
(an amino acid modified OC43-HR2P) and TMPRSS2 
inhibitors like Camostat mesylate, Nafamostat mesylate 
should be tested for the efficacy in these animal models 
before considering for further assessment. The neural 
tissues of animal models are beneficial to examine the 
SARS-CoV-2-induced modulation in ACE-2 [33, 177, 
178]. Dysregulation of RAS systems in COVID-19 
infection contributes to ischemic brain injury through 
small-vessel hypoperfusion and arterial atherothrombosis 
[179]. Molecular mechanisms regulating these processes 
can be deciphered using mice models of SARS-CoV-2 
infection.

Table 2   List of neurological disorders due to SARS-CoV-2 infection

Neurological diseases Disease—clinical manifestations SARS-CoV-2-induced clinical manifestations References

Parkinson’s disease (PD) Tremors, dyskinesia Chronic defects in the mesolimbic system of 
basal ganglia mainly in the dopaminergic 
neurons; enhanced neurodegeneration

[148, 149]

Alzheimer’s disease (AD) Cognitive decline and memory loss Enhanced accumulation of amyloid-beta 
plaques in the brain; enhanced neurodegen-
eration

[130]

Multiple sclerosis Severe lymphopenia, optic neuritis Extensive demyelination [155]
Guillain–Barré syndrome (GBS) Progressive flaccid paralysis, dyssynergia, 

areflexia
Severe autonomic dysfunction, respiratory 

failure, demyelination through immune 
response in the peripheral nervous system 
(PNS)

[163, 165, 166]

Miller Fisher syndrome Diplopia, balance disturbances, and areflexia Chronic demyelination of cranial and facial 
nerves

[169]

Acute disseminated encephalo-
myelitis (ADEM)

Encephalopathy, transverse myelitis, weak-
ness, numbness of the limbs, and urinary 
disorders

Immune-mediated inflammatory demyelina-
tion affecting the white matter of brain and 
spinal cord

[172]
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SARS‑CoV and Models for CNS Research

Accumulating evidence has demonstrated the presence of 
coronaviruses in the autopsies isolated from CNS of patients 
suffering from MS, PD, and AD. Experimental studies have 
shown that human CoVs can easily infect neurons, glial cells 
viz., astrocytes, and microglia in primary cultures as well as 
immortalized human microglial cells [180]. This suggests 
that SARS-CoV-2 may use the brain as a reservoir, which 
potentially favors the development of neurodegenerative dis-
eases [181]. Therefore, there is a need to analyze the effect 
of SARS-CoV-2 infection on CNS.

SARS‑CoV and CNS Cell Lines

The existing data, which is available from research on 
SARS-CoV, showed approximately 78% nucleotide homol-
ogy with SARS-CoV-2. However, there are no specific 
neural cell lines developed to study the models of SARS-
CoV-2 [182]. Currently neural progenitor cells, neurons, and 
microglia cells (obtained from human induced pluripotent 
stem cells (hIPSCs)) are being used to ascertain the in vitro 
studies of SARS-CoV-2 viral infections and the impact of 
infection on cellular metabolism and various signaling cas-
cades involved in cellular survival [182–184]. However, few 
other studies have used neurotropic human coronaviruses 
and neural cell lines such as human oligodendroglioma cell 
line HOG and rat glial tumor cell line C6. These cell lines 
are sensitive to SARS-CoV-2 infection and help to decipher 
the underlying virulence mechanisms through which the 
virus attacks the human CNS [185–187]. Even though both 
cell lines are reported to be sensitive to SARS-CoV infec-
tion, it was mentioned that viral replication is very low in 
cell lines such as Vero E6 and Caco-2 [188]. Miscellaneous 
neural cell lines viz., “human H4 brain neuroglioma cells, 
LA–N-5 human neuroblastoma cells, CHME-5 human fetal 
microglia cells, and U-373 MG and U-87 MG astrocytic 
cells” were also used for studying the infection ability of 
the HCoV-229E and HCoV-OC43 in the CNS [189–193]. 
Cultures of human primary neurons, glial cells such as astro-
cytes, oligodendrocytes, and microglia could also be used to 
study the virulence of the above viruses. Further studies are 
warranted to test the suitability of these neural cell lines to 
conduct experiments using SARS-CoV-2.

SARS‑CoV‑2 and Models of Brain Organoids

Organoids are the miniaturized, simplified, three-dimen-
sional versions of an organ developed in  vitro [194]. 
Organoids represent the cellular structure and functioning 
of a particular organ [195, 196]. The implementation of 

organoids could foster researchers to develop and ascertain 
the complex physiological or pathological processes in an 
in vivo system. SARS-CoV-2 infection, tropism, and poten-
tial treatments were examined in human organoids of the 
lung, liver, intestine, blood vessels, and kidney [196–198]. 
Currently, human brain organoids are being developed to 
study the pathophysiological aspects associated with SARS-
CoV-2-induced alterations in the brain [198, 199]. These 
organoids are useful to study the early stages of neuronal 
development during COVID-19 infection.

SARS-CoV-2 infect mature cortical neurons that are pre-
sent in brain organoids [182]. Besides, the neurodegenera-
tive effects observed in SARS- CoV-2 infected cells are due 
to cellular death and hyperphosphorylation, followed by the 
mislocation of Tau protein. These changes were more evi-
dent in tauopathies or AD [182]. However, there is no pro-
ductive viral replication observed in these cells during the 
initial phase of infection, which would support the hypoth-
esis that the CNS can be considered as a long-term reser-
voir for the virus [181]. In contrast, Bullen et al. delineated 
overaccumulation of viral particles across neurons in brain 
organoid models between 6 and 72 h after SARS-CoV-2 
infection [200]. This is indicating that an active replication 
was more evident during the initial phase of viral infection. 
Furthermore, the viral particles were noticed significantly 
across the neuronal soma as well as in neurites. Mesci et al. 
[201] have successfully implemented the brain organoid 
model to assess whether the SARS-CoV-2 could be able to 
infect neurons, NPCs, and other cortical neurons to foster 
the cell death accompanied by the failure of excitatory syn-
apses. Also, the above work was examined for Sofosbuvir’s 
efficiency, which is an FDA-approved brain-penetrant anti-
viral drug for ( +) ss RNA viruses, as a part of therapeutic 
modality during SARS-CoV-2 infection [202]. This study 
has concluded that Sofosbuvir could reinstate the altered 
synaptogenesis and mitigate neural cell death induced by 
viral accumulation in these brain organoids. Another study 
reported that SARS-CoV-2 exhibits neuro-invasive property 
in human brain organoids, typically in NPCs and mature 
cortical neurons [183]. These cells are exemplified by the 
hypermetabolic state where the viral particles undergo accu-
mulation across the endoplasmic reticulum-like structures. 
From these evidences, it is now confirmed that SARS-CoV-2 
has the capability to utilize neural cell machinery to repli-
cate in the cells. Furthermore, hypoxia, as well as extensive 
neuronal death, was more evident across the infected brain 
tissues with high-density SARS-CoV-2, suggesting that 
SARS-CoV-2 could foster bystander cell death [203]. This 
study also concluded that IgG antibodies generated against 
SARS-CoV-2 in the CSF of COVID-19 patients could con-
fer blockade of SARS-CoV-2 infection in brain organoids 
[183]. Thus, these studies reported that SARS-CoV-2 could 
infect neural cells and invoke neurological complications 
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with devastating adverse effects. In conclusion results of 
these studies depicted the immense potential of the usage 
of human brain organoids for the study of the SARS-CoV-2 
effects in the CNS.

MHV‑CoV Infection in Mice and Neural 
Complications

Mouse hepatitis virus (MHV) is a βCoV, which has no risk 
to humans but typically presents a similarity with other 
viruses from the same family viz., SARS-CoV, MERS-CoV, 
and SARS-CoV-2. Furthermore, this virus can cross CNS 
and invoke white matter lesions; hence this model could be 
proposed as a viral model of demyelinating disease [204, 
205]. MHV can undergo replication in white matter, hence, 
is a useful model for the study of coronavirus-induced CNS 
infection. Neurotropic strains of MHV-CoV were previously 
reported to be implicated to cause acute and chronic demy-
elinating disease mediated by neuroinflammation [206, 207]. 
Based on the inoculation route and the MHV-CoV strain, 
it is now feasible to predict and identify the CNS region 
that was significantly affected. Inoculation with experimen-
tal MHV-A59 neurotropic strains could invoke an acute 
meningoencephalitis followed by the occurrence of suba-
cute, chronic inflammatory demyelination in both brain and 
spinal cord [208]. Virus translocation from the initial site of 
inoculation in the brain to the spinal cord is caused by the 
transit of virus particles in neural and glial cells and mecha-
nisms that involve the fusion of lipid membranes, probably 
during the virus internalization step [209]. Intranasal and 
intracranial inoculation of JHM-CoV induces similar symp-
toms in BALB/c mice to those caused by MHV-A59. After 
intranasal inoculation of mice, MHV-CoV accesses the CNS 
through the olfactory nerve and propagates from the olfac-
tory system to limbic system structures and their connec-
tions with the brainstem [210].

In order to study the immune system role in demy-
elination induction caused by MHV infection, Wang 
et al. [211] treated infected animals with gamma radia-
tion to cause immunosuppression and, subsequently, 
reconstituted immunity by transferring cells from other 

immunocompetent animals. The results concluded that 
demyelination was prevented by radiation and was rein-
stated again when the immunity was restored, indicat-
ing that immunity is directly involved in the demyelina-
tion process. Moreover, CD4 and CD8 T cells have been 
observed to play a critical role in developing the demy-
elinating process, with T cells being the most important 
for this process [212, 213]; MHV offers a unique model 
for studying host defense-mediated demyelination dur-
ing chronic viral infection and acute phase of viral infec-
tion (for instance, SARS-CoV-2) [214].

COVID‑19 and Impact on Neurodevelopment

The global COVID-19 pandemic raised concern for pregnant 
women regarding the outcomes of SARS-CoV-2 infections, 
as this viral infection may invoke potential fetal defects viz., 
long-term neurodevelopmental impacts [215].There are three 
primary considerations for a developing fetus:

Vertical transmission of the disease from the mother
The prenatal effects of maternal systemic infection on 
the fetus
The possible effects on placental functioning and conse-
quent pregnancy outcomes [179]

The presence of ACE-2 receptors in the placenta suggests 
the potential risk of getting SARS-CoV-2 transmission. In 
addition to vertical transmission, the maternal infection may 
invoke neurodevelopmental alterations during fetal devel-
opment. However, the SARS-CoV-2-induced neurodevelop-
mental alterations should be unraveled fully to understand 
the infection-induced pathophysiology in early pregnancy 
[216]. For instance, this infection could foster the incidence 
of cytokine storm accompanied by the modulation of mater-
nal immune systems and generate a cascade of cytokines and 
chemokines (TNF-α, IL-6) and other immune alterations that 
may be transmitted to the fetus. Subsequently, the critically 
ill pregnant women with viral infection could be at a higher 
risk of placental hypoxia, compromising fetal oxygen supply 

Fig. 5   Structural motifs of S-protein: the S-protein of SARS-CoV-2 
is composed of S1 and S2 subunits. Whereas the S1 domain is com-
posed of N-terminal domain (NTD), receptor-binding domain (RBD), 

receptor-binding motif (RBM), the S2 domain is composed of fusion 
peptide, heptad repeat 1 (HR1), heptad repeat 2 (HR2), transmem-
brane domain (TM), and a cytoplasmic domain (CP)
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consequently invoke defects in regional growth and brain 
development [217–219]. Thus, the impact of COVID-19 on 
pregnancy remains undetermined in terms of neurological 
complications in both mother and newborn. Even though 
reports suggested critical illness and maternal death in few 
cases, to date, no evidences are reported indicating preg-
nancy as one of the risk factors for acquiring COVID-19.

Proteins of Virus‑ and Host‑Origin Involved 
in the Pathogenesis

S‑Protein

S-protein is one of the viral proteins, which consists of a 
large ectodomain, a single-pass transmembrane anchor, and 
a short intracellular tail (Fig. 5) [220]. Ectodomain consists 
of two subunits: viz., S1 (receptor-binding subunit) and 
S2 (membrane fusion subunit), serving as primary targets 
for human inventions. S1 and S2 subunits are highly con-
served with 70% and 99% similarity with bat SARS-CoV 
and human SARS-CoV, respectively [1, 221]. S1 functional 
domains include the N-terminal domain (NTD), receptor-
binding domain (RBD), and receptor-binding motif (RBM) 
(Fig. 5). S2 has a fusion peptide, heptad repeat 1 (HR1), 

heptad repeat 2 (HR2), transmembrane domain (TM), and 
a cytoplasmic domain (CP) (Fig. 5) [2, 59, 220]. Electron 
microscopy studies revealed that the spike appears as a 
clove-shaped trimer with three S1 heads and a trimeric S2 
stalk [222–225]. The receptor-binding subunit interacts effi-
ciently with various host receptors and facilitates the virus 
attachment on the host cell surface. The membrane fusion 
subunit fuses the host and viral membrane, mediating the 
entry of the virus into the host cells [226].

ACE-2 receptor is the binding partner of SARS-CoV-
2′s S-protein [2, 59]. Studies have reported and confirmed 
the existence of cross-reaction, by amino-acid sequence 
analysis of S1 subunit revealing 77% similarity of SARS-
CoV-2 to SARS-CoV [29, 227, 228], while S2 subunit 
of SARS-CoV-2 was highly conserved and shared 99% 
homology with human SARS-CoV [1].

The difference in RBD of SARS-CoV and SARS-CoV-2 
was that SARS-CoV specific ACE-2 binding neutralizing 
antibodies (m96, CR3014) failed to bind with the S-protein 
of SARS-CoV-2 [29]. Analysis of RBD of SARS-CoV and 
SARS-CoV-2 showed the presence of arginine (R426) in 
SARS-CoV RBD compared to asparagine (N439) in SARS-
CoV-2, which leads to a significant decrease in the strong 
polar interactions [229]. Similarly, a replacement of valine 
(V404 in SARS-CoV) by lysine (K417 in SARS-CoV-2) on 

Table 3   List of US-FDA approved vaccines under clinical trials

Vaccine name Type of vaccine Current stage of 
the clinical trial

Efficacy Dosing regimen Type of administra-
tion

Manufacturer of the 
vaccine

Comirnaty/tozinam-
eran/BNT162b2

mRNA vaccine Phases 2, 3 95% 2 doses, 3 weeks 
apart

Muscle injection Pfizer and BioNTech

mRNA-1273 mRNA vaccine Phase 3 94.5% 2 doses, 4 weeks 
apart

Muscle injection Moderna

Sputnik V/Gam-
Covid-Vac

Viral vector (Ad26, 
Ad5)

Phase 3 91.6% 2 doses, 3 weeks 
apart

Muscle injection Gamaleya Research 
Institute

AZD1222/Cov-
ishield

Viral vector 
(ChAd0 × 1)

Phases 2, 3 82.4% 2 doses Muscle injection University of Oxford 
and AstraZeneca

Convidecia/Ad5-
nCoV

Viral vector (Ad5) Phase 3 Unknown Single dose Muscle injection CanSino Biologics

EpiVacCorona Protein subunit Phase 3 Unknown 2 doses, 3 weeks 
apart

Muscle injection Vector Institute

BBIBP-CorV Inactivated Phase 3 79.34% 2 doses, 3 weeks 
apart

Muscle injection Sinopharm and Beijing 
Institute of Biologi-
cal Products

CoronaVac Inactivated Phase 3 50.38% 2 doses, 2 weeks 
apart

Muscle injection Sinovac Biotech

Covaxin Inactivated Phase 3 Unknown 2 doses, 4 weeks 
apart

Unknown Indian Council of 
Medical Research, 
National Institute of 
Virology and Bharat 
Biotech

Name not announced Inactivated Phase 3 Unknown Unknown Unknown Sinopharm and Wuhan 
Institute of Biologi-
cal Products
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β6 formed an extra salt bridge with D30 on ACE-2 [228]. 
The structural changes in the RBM modulate the hACE-
2-binding ridge into a more compact one, which facilitates 
better interaction with N-terminal hACE-2, making SARS-
CoV-2 a more favorable binding partner [230] (Fig. 5).

TMPRSS2

TMPRSS2 is a cellular serine protease, which [57, 231, 232] 
plays a significant role in the entry of coronaviruses such 
as SARS-CoV and MERS-CoV into host cells [233, 234]. 
Several investigators have confirmed that TMPRSS2 causes 
S-protein priming for SARS-CoV-2 entry into primary target 
cells and enables the spreading of the virus in the infected 
host [33, 56, 235, 236]. Thus, TMPRSS2 is an attractive drug 
target for blocking the initial step of SARS-CoV-2 infection 
to avoid multiorgan dysfunction. However, the above intricate 
structure of S-protein interaction with TMPRSS2 is a chal-
lenging aspect for virologists to develop suitable therapeutic 
interventions against SARS-CoV-2.

Targeting COVID‑19 Using Vaccines

As of 3 April 2021, 83 vaccine candidates are currently 
in clinical trials on humans and 77 vaccine candidates are 
under investigation in animals. Among which 48 are in phase 
I, 33 in phase II, and 23 in phase III evaluation (Table 3, 
Fig. 6). Some of the vaccine candidates are currently in 
phase III clinical trials and the clinical data is supportive of 
large-scale manufacturing in several industrial production 
units worldwide with complete FDA approval [237].

The current COVID-19 vaccine candidates are antibody 
and/or T cell immune response promoting agents [237]. For 
instance, the protein-based vaccines are safe and induce immune 
responses through the adjuvants used along with the vaccine. 
Mainly, the S-protein, which is composed of S1 RBD, RBD-
Fc, and N-terminal regions, could exert immune protection in 
several in vivo and nonhuman primate models [238–242]. Fur-
thermore, the subunit vaccines could invoke immune responses 
in the host through one or more antigens in the presence of a 
suitable adjuvant. However, the immunization through subunit 
vaccine in animal models is capable of inducing fusion of S1 
RBD with IgG1 FC portion consequently actuate generation of 
highly potent antibodies to foster neutralization of SARS-CoV 
[243, 244]. The clinical models of SARS-CoV-2 are yet to be 
examined for subunit vaccine as there is a very minimal success 
with clinical efficacy in animal models.

Ozonation of Vaccine

Systemic ozone therapy (OT) could be referred to as the 
potential approach useful in SARS-CoV-2 [245]. OT can be 

beneficial for the effective clinical management of compli-
cations secondary to SARS-CoV-2 [245]. OT improves oxy-
genation and exerts protection against lung fibrosis [246] 
and renal failure [247]. Furthermore, this therapy can sta-
bilize the plasma levels in viral-infected patients by improv-
ing hepatic protein synthesis [248]. It could also exert a 
cytoprotective effect by preventing oxidative damage to the 
heart [249, 250], liver [251, 252], and renal tissues [253]. 
Systemic OT has the capacity to modulate the expression 
of the NF-κB/Nrf2 pathway and IL-6/IL-1β pathway con-
sequently foster cytoprotection by blocking viral replication 
[245]. Previously, hormetic responses and oxidative precon-
ditioning have been examined experimentally to the chronic 
oxidative stress during OT [254]. However, the hormetic 
responses of ozone were delineated vividly. For instance, a 
high dose of ozone can modulate gene transcription of pro-
inflammatory cytokines and inflammatory cytokines while 
inducing a negative regulation of type 1 IFN in response to 
viral infection pathways [255]. Despite OT has no signifi-
cant effect to kill the virus but it has the ability to modu-
late oxidative stress and inflammatory cytokines; hence OT 
could be considered as a complementary proposed treat-
ment in COVID-19 patients. Exemplarily, the global vac-
cine preparation against HIV involves the prolonged and 
controlled exposure of plasma to a “precise dose of ozone” 
[245]. Similarly, therapeutic human albumin and ozonated 
ethyl oleate are predominantly mixed to enhance the absorp-
tion and boost the immune function through the vaccine 
[248, 256, 257]. This kind of ozonation of the vaccine 
approach towards the preparation of the COVID-19 vac-
cine can enhance the “oxidation of free viral components” 
thereby improves the efficacy.

Viral Vector‑Based Vaccines.

These vaccines could promote the delivery of one or more 
antigens coded through a modified viral vector [258]. This 
technology promotes the delivery of antigens into the host 
cells and fosters the generation of both humoral and cell-
based immune responses against viral pathogen [244, 259, 
260]. The efficacy of viral vectors is yet to be examined 
against SARS-CoV and SARS- CoV-2. Previous reports 
delineated the efficacy of the modified vaccinia Ankara 
(MVA) vector, a live attenuated vector-based vaccine that 
encodes S-protein [261]. It induces a potent neutralizing 
antibody in mice, rabbits, and monkeys [262]. Immuni-
zation of mice models using recombinant adenovirus has 
been shown to induce neutralizing antibodies in serum and 
CD8 + T cells of lungs [263–266].

DNA vaccines consist of plasmid DNA molecules, which 
encode for immunogens and proven to be more effective 
than mRNA vaccines for stability and easy delivery [267]. 
However, their implications are constrained by the risk of 
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getting mutations by integrating with the host genome [267, 
268]. The passive transfer of sera from immunized mice 
with DNA that encodes the S-domain of MERS-CoV has 
been shown to protect naïve mice infected with MERS-CoV 
[269]. Another study showed that DNA encoding S1 and 
S-proteins invoke the generation of cross-neutralizing anti-
bodies towards multiple MERS-CoV strains originated from 

humans and camels [270]. Furthermore, the immunization of 
mice with S-protein encoding DNA has been conducive to 
the generation of CD4 + and CD8 + T cells specific peptides, 
which consequently enhanced the extensive cytokine expres-
sion [271]. In the case of pseudotyped lentiviral vector-based 
DNA, the vaccine-induced potent neutralizing antibodies 
in SARS-CoV consequently invoked S-protein-specific 

Fig. 6   List of vaccines in 
various stages of clinical trials: 
current SARS-CoV-2 vaccine 
candidates targeting various 
biomolecules of the virus. Viral 
biomolecules targeting vaccine 
candidates include DNA-based 
vaccines, inactivated virus, live 
attenuated virus, non-replicating 
viral vector, protein subunit, 
replicating viral vector, RNA-
based, and virus-like particle-
based vaccines
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CD4 + and CD8 + T cell immune responses in immunized 
volunteers [272]. A summary of the ongoing DNA/subunit/
protein-based vaccine trials are provided in Table 2. How-
ever, the implications of these vaccine models in SARS-
CoV-2 are constrained by the antibody-dependent enhance-
ment (ADEs) and Th2-immunopathology.

Successful Phase II COVAXIN (Bharat Biotech)

BBV152 (COVAXIN) is a whole-virion β-propiolactone-
inactivated SARS-CoV-2 vaccine investigated and formu-
lated along with a toll-like receptor 7/8 agonist (imida-
zoquinoline molecule) to foster Th-1 immune responses 
through the intramuscular route of administration [273, 
274]. A double-blind, multicenter, and randomized con-
trolled phase I trial was conducted across 11 hospitals in 
India by Bharat Biotech. Further, this study assessed the 
safety and immunogenicity of BBV152 (Clinical Trials.gov 
NCT04471519) assessment of safety and immunogenicity 
of BBV152 [275]. However, additional studies are required 
to ascertain the cell-mediated responses.

Covishield is another vaccine developed by Serum Insti-
tute of India (SII) in collaboration with Oxford-AstraZen-
eca, UK, and Bharat Biotech. This vaccine was approved 
by the Drugs Controller General of India (DCGI) recently 
for emergency usage through the intramuscular route of 
administration in SARS-CoV-2 infected patients in India 
(DCGI, India).

Vaccine‑Induced Neurological Complications

To date, 665 million vaccine doses have been administered 
worldwide. Several recent reports suggest that the COVID-
19 vaccination has no- or minimal risk to the neurological 
system [171, 276]. However, mild side effects such as dizzi-
ness, headache, pain, muscle spasms, myalgia, and paresthe-
sias were reported in the clinical trials of the vaccines dur-
ing phase III study [276]. For instance, AZD1222 adenoviral 
vector vaccine administration during phase III trial in two 
patients was reported with neurological complications. Upon 
detailed investigation, it was concluded that one patient exhib-
ited multiple sclerosis, which was undiagnosed at the time 
of vaccination, and the later reports concluded that the other 
factors might be contributing to this side effect [277–279]. 
Subsequently, these reports delineated that this vaccine had 
no neurological side effects and the study was resumed, with 
approvals in India, Argentina, and the UK [277]. In an mRNA 
vaccine trial, 7 out of 37,000 participants developed Bell’s 
palsy (a temporary weakness or paralysis of the muscles in 
the face); US-FDA concluded that the rate of the disease was 
not higher than expected in the population [280]. A vaccine 
candidate developed by Johnson & Johnson has been reported 
with GBS in two patients in the phase III trial. Among them, 

one participant was vaccinated and the other was a placebo, 
suggesting that there was no association between GBS and 
COVID-19 infection [281]. A case study by Waheed et al. 
reported the first case of GBS after 2 weeks of the first dose 
of Pfizer COVID-19 vaccine (mRNA vaccine) [171]. In rare 
case, the vaccine administration that was associated with 
tremor, diplopia (simultaneous perception of two images of a 
single object), tinnitus (experience of ringing or other noises 
in one or both the ears), dysphonia (abnormal voice), seizures, 
and reactivation of herpes zoster has been reported [276]. To 
date, 17 cases of stroke, 32 cases of GBS, 190 cases of Bell’s 
palsy, and 6 cases of encephalomyelitis have been reported 
in the “Vaccine Adverse Event Reporting System database” 
[276]. However, there is no significant report that suggests 
a higher rate of neurological complications with COVID-19 
vaccination [276].

Conclusions

Infection with SARS-CoV-2, the culprit for the COVID-19 
pandemic, has caused several health complications, including 
the disturbances associated with the neurological system and 
cognition-related behavioral changes. Fundamental molecular 
mechanisms that triggered these alterations are reported to be 
inflammation, induction of cell death, and poor cell-to-cell com-
munications. However, further studies are warranted to address 
and further confirm (a) whether SARS-CoV-2 can directly enter 
the neuronal cells? If so, what is the route of entry? (b) The 
pathogenic responses triggered in infected cells? (c) Why only 
certain COVID-19 patients develop neurological complications? 
Moreover, (d) is there any association between age group and 
susceptibility to COVID-19 induced neurological damage? 
Further, it is also unknown whether the vaccines that the FDA 
approves could also extend protection to prevent the entry of 
SARS-CoV-2 into neuronal cells. Addressing these queries 
would likely provide clues and mechanisms that can be con-
sidered for developing better treatment agents and protection 
strategies from SARS-CoV-2 infections.
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