
BI
O

PH
YS

IC
S

A
N

D
CO

M
PU

TA
TI

O
N

A
L

BI
O

LO
G

Y

Detection of differentially abundant cell
subpopulations in scRNA-seq data
Jun Zhaoa,1 , Ariel Jaffeb,1 , Henry Lib, Ofir Lindenbaumb, Esen Sefikc, Ruaidhrı́ Jacksond, Xiuyuan Chenge,
Richard A. Flavellc,f,2, and Yuval Klugera,b

aDepartment of Pathology, Yale University, New Haven, CT 06511; bProgram in Applied Mathematics, Yale University, New Haven, CT 06511; cDepartment
of Immunobiology, Yale University, New Haven, CT 06511; dDepartment of Immunology, Blavatnik Institute, Harvard Medical School, Boston, MA 02115;
eDepartment of Mathematics, Duke University, Durham, NC 27708; and fHHMI, Yale University, New Haven, CT 06520

Contributed by Richard A. Flavell, April 6, 2021 (sent for review January 18, 2021; reviewed by Constantin F. Aliferis and Meromit Singer)

Comprehensive and accurate comparisons of transcriptomic distri-
butions of cells from samples taken from two different biological
states, such as healthy versus diseased individuals, are an emerg-
ing challenge in single-cell RNA sequencing (scRNA-seq) analysis.
Current methods for detecting differentially abundant (DA) sub-
populations between samples rely heavily on initial clustering
of all cells in both samples. Often, this clustering step is inade-
quate since the DA subpopulations may not align with a clear
cluster structure, and important differences between the two
biological states can be missed. Here, we introduce DA-seq,
a targeted approach for identifying DA subpopulations not
restricted to clusters. DA-seq is a multiscale method that quan-
tifies a local DA measure for each cell, which is computed
from its k nearest neighboring cells across a range of k val-
ues. Based on this measure, DA-seq delineates contiguous sig-
nificant DA subpopulations in the transcriptomic space. We
apply DA-seq to several scRNA-seq datasets and highlight its
improved ability to detect differences between distinct pheno-
types in severe versus mildly ill COVID-19 patients, melanomas
subjected to immune checkpoint therapy comparing respon-
ders to nonresponders, embryonic development at two time
points, and young versus aging brain tissue. DA-seq enabled us
to detect differences between these phenotypes. Importantly,
we find that DA-seq not only recovers the DA cell types as
discovered in the original studies but also reveals additional
DA subpopulations that were not described before. Analysis
of these subpopulations yields biological insights that would
otherwise be undetected using conventional computational
approaches.

single cell | RNA-seq | local differential abundance

Profiling biological systems with single-cell RNA sequencing
(scRNA-seq) is an invaluable tool, as it enables experi-

mentalists to measure the expression levels of all genes over
thousands to millions of individual cells (1, 2). A prevalent chal-
lenge in scRNA-seq analysis is comparing the transcriptomic
profiles of cells from two biological states (3, 4). The two bio-
logical states may correspond to wild-type (WT) and knockout
(KO) mice, healthy and diseased samples, two time points in
a developmental process, and biological systems before and
after treatment/stimulus, etc. Often, such comparison reveals cell
subpopulations that are differentially abundant (DA). In DA
subpopulations, the ratio between the number of cells from the
two biological states differs significantly from the respective ratio
in the overall data. In mathematical terms the problem is to find
local differences in density between two high-dimensional dis-
tributions of points (multiple single cells in the transcriptomic
space). Developing methods to accurately capture these differ-
ences is important to gain insights from scRNA-seq datasets such
as COVID-19 and cancer immunotherapy.

A standard approach to detect DA subpopulations is by clus-
tering the union of cells from both states. This step is typically
done in a completely unsupervised manner. For each cluster, the

proportion of cells from the two biological states is measured.
A cluster in which these proportions significantly differ from
the overall proportion in the data is considered differentially
abundant. This approach was applied in the analysis of various
biological systems, for example, to investigate immune response
and mechanisms in patients with various disease severities after
viral infection (5, 6), to compare responders and nonrespon-
ders to cancer treatment (7), and to study cell remodeling in
inflammatory bowel disease (8). A similar cluster-based method
is ClusterMap (9), where the clustering step is applied sepa-
rately to cells from the two states. Subsequently, the datasets
are merged by matching similar clusters. Skinnider et al. (10)
developed Augur, which employs machine learning to quan-
tify separability of cells from two states within clusters. Com-
paring biological states through clustering is also related to
differential compositional analysis, where biological states are
compared via the proportion of predetermined cell types (11).
Once DA clusters are identified, marker genes characteristic
of each cluster can be determined by differential expression
(DE) analysis.

Clustering-based methods might be suboptimal, however, in
cases where the subpopulations most responsive to the biolog-
ical state do not fall into well-defined separate clusters. For
example, DA subpopulations may be distributed among several
adjacent clusters or, alternatively, encompass only a part of a
cluster. Additionally, the clustering approach may fail for con-
tinuous processes where no clear cluster structure exists, such
as cell cycles or certain developmental programs. For the above
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scenarios, differential abundance at a cluster level may miss
the important molecular mechanisms that differentiate between
the states. One approach to partially mitigate these problems is
based on topic modeling, where the representation of each bio-
logical state is assessed within each topic (12). However, this
approach is not designed to directly detect DA subpopulations.

Therefore, a targeted approach for identifying cell subpopula-
tions with significant differential abundance is needed to advance
comparative analysis between the cell distributions from both
biological states.

An earlier work for identifying DA subpopulations that does
not rely on initial clustering was derived by Lun et al. (13)
for mass cytometry data. Their algorithm performs multiple
local two-sample tests for hyperspheres centered at randomly
selected cells. The caveat of this approach is that the selected
hyperspheres may only partially overlap with the DA subpop-
ulations or fail to form localized regions. Accurate delineation
of a DA subpopulation is essential for identifying the mark-
ers that differentiate it from its immediate neighboring cells as
well as markers that separate it from the rest of the cells in the
dataset.

Here, we develop DA-seq, a multiscale approach for detect-
ing DA subpopulations (https://github.com/KlugerLab/DAseq).
In contrast to clustering-based methods, DA-seq detects salient
DA subpopulations in a targeted manner. For each cell, we com-
pute a multiscale differential abundance score measure. These
scores are based on the k nearest neighbors in the transcriptome
space across a range of k values. The motivation of multiscale
analysis is that by employing a single scale, one may miss some
of the DA subpopulations if the scale is too large or detect spu-
rious DA subpopulations if the scale is too small. We applied
DA-seq to various scRNA-seq datasets from published works as
well as simulated datasets. We show that DA-seq successfully
recovers findings presented in the original works. More impor-
tantly, DA-seq reveals DA cell subpopulations that were not
reported before. Characterization of these subpopulations pro-
vides insights crucial to understanding the biological processes
and mechanisms.

Results
The DA-seq Algorithm. Here, we briefly outline the main four
steps of the DA-seq algorithm (Fig. 1A). As a first step, DA-seq
computes for each cell a score vector based on the relative preva-
lence of cells from both biological states in the cell’s neighbor-
hood. Importantly, this measure is computed for neighborhoods
of different size, thus providing a multiscale measure of differen-
tial abundance for each cell. The multiscale measure is referred
to as the score vector of each cell. In the second step, the mul-
tiscale measure is merged into a single DA measure as quantity
of differential abundance. This step is done by training a mul-
tivariate logistic regression classifier to predict for each cell its
biological state (state 1 or state 2) given its score vector entries.
The associated prediction probability is then transformed to a
DA measure of how much a cell’s neighborhood is dominated by
cells from one of the biological states. In the third step, DA-seq
clusters the cells whose DA measure is above or below a cer-
tain threshold into localized regions based on gene expression
profiles. The cells in each region represent cell subpopulations
with a significant difference in abundance between biological
states. Each DA subpopulation is associated with a DA score (SI
Appendix, Note 1). It is also accompanied by a P value to assess
reproducibility if there are adequate biological replicates in both
biological states. In the final step, DA-seq selects genes that dis-
tinguish a DA subpopulation from the rest of the cells in the data
or cells from its immediate neighborhood. For example, if the
DA subpopulation is a subset of CD8 T cells, DA-seq outputs
differentially expressed genes between this subset of CD8 T cells
and the rest of the cells in the dataset. Additionally, DA-seq has

another option to output differentially expressed genes between
this subset of CD8 T cells and other CD8 T cells not included in
the DA subpopulation. As detailed in Materials and Methods, for
this task we employ our recently developed `0 feature selection
method based on stochastic gates (STG) (14) which identifies
approximately the minimum number of genes that distinguish
a DA subpopulation, as well as standard differential expression
methods (15). The four steps of DA-seq are illustrated in Fig. 1A.
All steps are described in detail in Materials and Methods.

Conventional DA analysis employs a clustering procedure on
cells from both biological states. This step is based on their tran-
scriptomic profiles, but ignores the biological state of each cell.
In contrast, DA-seq is a supervised approach that utilizes the
biological state of each cell to identify and delineate the cell
subpopulations most representative of the differences between
the two biological states. Fig. 1B illustrates several cases where
DA-seq has an advantage over standard clustering analysis. DA
clusters found by clustering analysis often contain DA subpop-
ulations detected by DA-seq where the latter have stronger
differential abundance, such as, DA1 within Cluster1, 2 and
DA4 within Cluster4. Moreover, unsupervised clustering may
miss scenarios where its output clusters contain two or more
subsets that we refer to as DA subpopulations. Some subpop-
ulations may be enriched with cells from state 1, while others
may be enriched with cells from state 2. For example, DA2
and DA3 have an opposite DA score and are entirely unseen
when analyzed as a single cluster, Cluster3, resulting in valu-
able biological data being completely lost in traditional clustering
analysis pipelines.

We applied DA-seq to publicly available scRNA-seq datasets
from diverse biological systems (5, 7, 16, 17). In the follow-
ing sections, we present the output of steps 2, 3, and 4 of
DA-seq for datasets from refs. 5, 7, and 16. We then com-
pare the results to the findings in the original works and
validate our findings. Importantly, we show that DA-seq pro-
vides invaluable biological insights through the characteriza-
tion of DA subpopulations that are not revealed by standard
clustering-based approaches. Additional results on a dataset
from Ximerakis et al. (17) and simulated datasets can be found in
SI Appendix.

Abundance of Immune Cell Subsets in Responsive vs. Nonrespon-
sive Melanoma Patients. One of the goals of the Sade-Feldman
et al. (7) study was to identify factors related to the suc-
cess or failure of immune checkpoint therapy. To that end,
16,291 immune cells from 48 samples of melanoma patients
treated with checkpoint inhibitors were profiled and analyzed.
The tumor samples were classified as responders or nonrespon-
ders based on radiologic assessments. The cells originating from
responding tumors and nonresponding tumors are labeled in
the t-distributed stochastic neighbor embedding (t-SNE) plot of
Fig. 2A. Comparisons between responders and nonresponders
yielded important biological insights.

Sade-Feldman et al. (7) clustered the 16,291 immune cells
into 11 distinct clusters (Fig. 2B). Subsequently, they computed
the percentage of cells in each of the predefined clusters from
responder and nonresponder samples and compared the relative
abundance between these two groups. Two clusters (G1,G10)
were enriched in cells from the responder samples, and four
clusters (G3,G4,G6,G11) were enriched in cells from nonre-
sponder samples. Finally, they composed a list of genes with high
expression within the six differentially abundant clusters.

Fig. 2C shows the intensity of the DA measure of each cell
as computed in step 2 of the algorithm, where higher values
indicate an abundance of cells from nonresponder samples rela-
tive to responder samples. Five DA cell subpopulations denoted
DA1 to DA5 (Fig. 2 D and E and SI Appendix, Fig. S1A) were
identified. In contrast to the method applied in ref. 7, the DA
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Fig. 1. Schematic demonstration of DA-seq. (A) Illustration of the DA-seq algorithm. DA-seq detects DA subpopulations by analyzing cells from two
biological states. The input of the algorithm is the union of data from two states after initial dimension reduction. Step 1: Computing a multiscale score
vector, based on the k-nearest neighbors (kNN) of each cell, for several values of k (e.g., k = 4, 8, 12). Step 2: Training a logistic classifier to predict the
biological state of each cell based on the multiscale score to obtain a single DA measure. The algorithm retains only cells for which the DA measure is above
a threshold τh or below τl and hence may reside in DA subpopulations. Step 3: Clustering the cells retained in step 2 to obtain contiguous DA subpopulations
above a predefined size. These subpopulations are denoted DA1, DA2, and DA3. The degree of their differential abundance is quantified by a DA score (SI
Appendix, Note 1). Step 4: Detect subsets of genes that characterize each of the DA subpopulations. For example, the genes G7 and G8 characterize DA3.
(B) Standard clustering analysis vs. DA-seq. (Left) Cluster information obtained through standard clustering analysis. (Center) DA subpopulations identified
through DA-seq. (Right) Normalized differential abundance of DA subpopulations and clusters, represented by DA score.

subpopulations obtained by our approach are not constrained
to any predefined clusters. Thus, there are some important
differences between our findings and those of ref. 7 in addi-
tion to the following partial similarities. Five of the six DA
clusters described in ref. 7 have partial overlaps with our DA
subpopulations:

G1−DA3, G3−DA2, G6−DA1, G10−DA5, G11−DA1.

In ref. 7, the clusters G11 and G6 are reported as two dis-
tinct DA clusters. In contrast, our DA cell subpopulation
DA1 overlaps with both G6 and G11, as well as another
cluster G9. We argue that identification of G6 and G11 as
two separate DA clusters and the exclusion of G9 as poten-
tially relevant for DA are artificial. Unifying the clusters of
exhausted lymphocytes allows us to detect and transcription-
ally characterize cell subpopulations within this union that are
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Fig. 2. Immune cells from responding and nonresponding melanoma patients treated with checkpoint therapy. (A–D) t-SNE embedding of 16,291 cells from
ref. 7. (A) Cells colored by status of response to immune therapy. (B) Cells colored by cluster labels from ref. 7. (C) Cells colored by DA measure. Large (small)
values indicate a high abundance of cells from the pool of nonresponder (responder) samples. (D) Five distinct DA subpopulations obtained by clustering
cells with |DA measure| > 0.8. (E) DA score of DA subpopulations and predefined clusters. (F) Dot plot for markers characterizing the five selected DA
subpopulations. The color intensity of each dot corresponds to the average gene expression across all cells in the DA subpopulation excluding the cells with
zero expression values. The lowest row in the plot corresponds to the non-DA cells (cells not included in any DA subpopulations). (G) Dot plot for markers
that distinguish DA4 and the complementary cells within G5.

more specific to differences between responders and nonre-
sponders. We observe that DA subpopulations DA3,DA2, and
DA5 partially overlap with G1,G3, and G10, respectively, but
they are not identical; furthermore, subpopulation DA4 par-
tially overlaps with cluster G5 which was not identified as a
DA cluster.

The cluster G4 (dendritic cells), which was reported in ref. 7
as a DA cluster, was not detected by DA-seq as a DA subpop-
ulation. We note, however, that this subpopulation is detected
with a slight relaxation of the upper threshold τh in step 2 (SI
Appendix, Fig. S2A).

Finally, we identified markers that characterize the DA
subpopulations by both the standard differential expression
approach implemented in Seurat (15, 18) and our feature
selection approach via STG (Materials and Methods). A sub-
set of the identified markers is shown in Fig. 2F. For
the subpopulations DA2 to DA5, DA-seq detected similar
lists of characteristic markers to their corresponding clusters
in Fig. 2B.

Interestingly, the characteristic markers LAG3 and CD27 for
subpopulation DA1 define an exhausted lymphocyte popula-
tion (19, 20) covering three clusters associated with lymphocyte
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exhaustion. Notably, VCAM1 was the most significant gene in
DA1 (SI Appendix, Fig. S2B), which covers parts of clusters
G6,G9, and G11. Although VCAM1 was reported in ref. 7, it
was not among the salient markers of their analysis. Analyzing
these clusters separately diminished the significance of VCAM1
relative to other genes. VCAM1 expression on a class of cells
discovered by the DA approach is intriguing, as it is a critically
important cell adhesion and costimulatory ligand in the immune
system (21). In addition, VCAM1 has been implicated as having
an important role in immune escape as has been studied in refs.
22–26.

To distinguish subpopulation DA4 and its immediate neigh-
borhood, we performed differential expression analysis compar-
ing DA4 and cells in cluster G5 that are not within DA4. This
uncovered the distinct transcriptional profile of DA4 (Fig. 2G).
Intriguingly, the CTLA4 gene is highly expressed in DA4, which
is enriched in posttreatment responders (SI Appendix, Fig. S2C).
Incidentally, this gene was reported as a marker for nonrespon-
ders in other cell types from ref. 7. Clustering-based DA analysis
failed to detect this DA subpopulation and thus missed this
important insight.

Compared with standard differential expression approaches
that simply output individual genes in a univariate manner, STG
provides a prediction score (Materials and Methods) as a linear
combination of its selected genes that best separate each DA
subpopulation from the rest of the cells. The improved discrim-
ination by STG compared to a univariate approach is demon-
strated in SI Appendix, Fig. S2 D and E for DA subpopulations
DA4 and DA5.

To assess the stability of DA-seq results, the following cross-
validation procedure was performed. We split the data randomly
into two sets s1 and s2, each with half nonresponder and half
responder samples, such that all cells of each individual sample
are either in s1 or in s2. To compare the two sets, the same t-
SNE embedding as in Fig. 2 is used to show the response status
(SI Appendix, Fig. S3 A and E) and cluster label (SI Appendix,
Fig. S3 B and F) for each cell. Next, we applied DA-seq sepa-
rately to each set. The DA measure for both sets is shown in SI
Appendix, Fig. S3 C and G. Seven DA subpopulations denoted as
s1DA1 to s1DA7 and s2DA1 to s2DA7 were detected from s1
and s2, respectively (SI Appendix, Fig. S3 D and H). The char-
acteristic genes of DA subpopulations in s1 and s2 are shown
in SI Appendix, Fig. S3 I and J. We observe that most of the
DA subpopulations detected in s1 share common characteris-
tic genes with their counterparts in s2, as well as in the full
dataset. The exact match between DA subpopulations in s1, s2,
and the full dataset is shown in SI Appendix, Fig. S3K. We note
that subpopulations s1DA4, s2DA3, and s2DA7 do not over-
lap with subpopulations from the other split or the full dataset
when we apply the same threshold parameters. However, with
relaxed τh on the full dataset, s1DA4 (SI Appendix, Fig. S3D)
overlaps with DA3 in SI Appendix, Fig. S2A. The subpopula-
tions s2DA3 and s2DA7 (SI Appendix, Fig. S3H) are enriched
by cells from single patients. Further, subpopulation DA5 in the
full dataset overlaps with s1DA7 in s1, but does not overlap
with any subpopulations in s2. This may indicate that this DA
subpopulation exists only in a subset of patients, as reflected by
the P values computed for each subpopulation (SI Appendix,
Fig. S1A).

Differentiation Patterns of Early Mouse Dermal Cells. We applied
DA-seq to scRNA-seq data from a study on developing
embryonic mouse skin (16). Cells from dorsolateral skin were
sequenced for two time points of embryonic development (days
E13.5 and E14.5), each with two biological replicates (Fig.
3A). Dermal cells were selected for analysis by using the
marker Col1a1 to study hair follicle dermal condensate (DC)
differentiation.

Gupta et al. (16) studied the transcriptional states of the cells
by embedding them via diffusion map coordinates to capture
the manifold structure of the scRNA-seq data. They then used
the early DC marker Sox2 to identify differentiated DC cells as
well as the diffusion map dimension that corresponds to DC cell
differentiation, which they called the DC-specific trajectory. By
observing this trajectory, they found that although it contained
cells from both E13.5 and E14.5, there were notably more E14.5
cells at the terminus representing differentiated DC cells.

In ref. 16, the authors had prior knowledge that differenti-
ated DC cells express Sox2. In contrast, DA-seq does not require
prior knowledge. We obtained an unbiased comparison of der-
mal cells (Fig. 3A) between E13.5 and E14.5, which resulted in
five DA subpopulations (Fig. 3 B and C), revealing the differ-
entiated DC cell population discussed in ref. 16. Due to lack
of replicated samples in this dataset (two replicates for both
E13.5 and E14.5), we did not compute a P value. Instead, we
computed the DA score for these DA subpopulations for every
possible pairwise comparison of these samples and observed
reproducible results for all DA subpopulations (SI Appendix,
Fig. S1B).

Among the identified DA subpopulations, DA1 and DA2 are
more abundant in E14.5. Subpopulation DA2 corresponds to the
Sox2+ differentiated DC cells (Fig. 3D). Markers of DA2 (Fig.
3E) include other genes (Cdkn1a, Bmp4, Ptch1) known to be
expressed in differentiated DC cells. Subpopulation DA1, char-
acterized by the gene Dkk1, corresponds to a subpopulation that
spatially surrounds the DC population. Although this subpopula-
tion was acknowledged briefly in ref. 16, the localization of DA1
in our analysis provides a method to interrogate the molecular
mechanisms that regulate DC maturation and hair follicle devel-
opment. Other characteristic markers of DA1 provide insights
on more detailed biological functions of this peri-DC subpopu-
lation. DA subpopulations DA3,DA4, and DA5 are more abun-
dant in E13.5. Marker genes of these subpopulations (Fig. 3E)
are associated with various developmental processes, potentially
representing cell development or relocalization during early
embryonic days.

To validate findings obtained by analyzing the data with DA-
seq, we examined scRNA-seq data from another closely related
study (27). In ref. 27, single cells isolated from the dorsal skin at
embryonic days E13 and E15 were profiled. We defined gene sig-
natures (Materials and Methods) that are enriched in each of the
five DA subpopulations detected in the data from Gupta et al.
(16) shown in Fig. 3C. Gene module scores (Materials and Meth-
ods) for these signatures are computed and compared between
E13 and E15 in dermal cells from Fan et al. (27). The differences
between the module score distributions of E15 versus E13 (Fig.
3F) are consistent with the enrichment of these signatures within
the DA subpopulations in Fig. 3C.

Patients with Severe and Moderate COVID-19 Have Distinct Immuno-
logical Profiles. COVID-19 is a current global pandemic of
a novel virus. It is crucial to understand the immunologi-
cal mechanisms related to disease severity. In ref. 5, Chua et
al. applied scRNA-seq on nasopharyngeal (nasopharyngeal or
pooled nasopharyngeal/pharyngeal swabs [NSs]) samples from
19 patients that were clinically well characterized, with mod-
erate or critical disease, as well as 5 healthy controls. They
identified 9 epithelial and 13 immune cell types and performed
comprehensive comparisons between patients with critical and
moderate COVID-19 and healthy controls. In differential abun-
dance analysis of the cellular landscape, they observed depletion
in basal cells and enrichment in neutrophils in critical cases
compared with both healthy controls and moderate cases. Addi-
tionally, they applied differential expression analysis compar-
ing cells from patients with different disease severity for each
cell type and identified transcriptional profiles characterizing
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Fig. 3. Comparing embryonic mouse dermal cells in embryonic days E13.5 and E14.5. (A–E) Data from Gupta et al. (16). (A–D) t-SNE embedding of 15,325
cells. (A) Embryonic day of each cell. (B) Cells colored by DA measure. Large (small) values indicate a high abundance of cells from E14.5 (E13.5). (C)
Distinct DA subpopulations obtained by clustering cells with |DA measure| > 0.8. (D) Normalized Sox2 gene expression. (E) Dot plot of several markers that
characterize DA subpopulations. Details are as in Fig. 2F. (F) Validation on data from Fan et al. (27). Violin plots compare gene module scores between E15
and E13 samples in dermal cells of data from ref. 27. Gene modules are defined from DA subpopulations in C. Wilcoxon test is used to calculate P values.
∗∗∗P < 0.001.

patients with critical or moderate disease in these cell types.
Specifically, they observed higher expression of some inflamma-
tory mediators in nonresident macrophages (nrMa) and lower
levels of some typical antiviral markers in cytotoxic T cells (CTL)
in severe cases compared to moderate cases.

As the results derived in ref. 5 are based on initial cluster-
ing into cell types, variable behavior within cell types could
be overlooked. To better interpret the differences in immuno-
logical responses between patients with critical and moderate
disease, we focused on immune cells from samples from these
patients (Fig. 4 A and B) and applied DA-seq. Five DA cell
subpopulations were identified: DA1 and DA2 are more abun-
dant in critical cases; DA3, DA4, and DA5 are more abun-
dant in moderate cases (Fig. 4 C and D and SI Appendix,
Fig. S1C). Subpopulation DA3 largely overlaps the monocyte-

derived dendritic cell (moDC) cluster. The depletion of moDC
in critical cases was also reported in ref. 5. Other DA subpopula-
tions are subclusters within the 13 well-separated immune cell
types, which have been overlooked in the original clustering-
based analysis. To identify the distinct transcriptional profile of
these subpopulations, we compared each DA subpopulation to
its immediate neighborhood, i.e., complementary cells to the
DA subpopulation within the corresponding cluster of known
immune cell type. Characterization of these DA subpopula-
tions by gene markers (Fig. 4E) provides important insights on
mechanisms associated with COVID-19 disease severity. These
DA subpopulations show distinct profiles that separate them
from the complementary cells within their corresponding clus-
ters (Fig. 4F), which clustering-based analysis performed in
ref. 5 failed to report.
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Fig. 4. Comparing immune cells from patients with severe and moderate COVID-19. (A–F) Data from Chua et al. (5). (A–D) t-SNE embedding of 80,109
cells. (A) Cells colored by disease severity of COVID-19, critical or moderate. (B) Cells colored by cluster labels from ref. 5. CTL, cytotoxic T cell; MC, mast
cell; moDC, monocyte-derived dendritic cell; MoD-Ma, monocyte-derived macrophage; Neu, neutrophil; NK, natural killer cell; NKT, natural killer T cell;
NKT-p, proliferating NKT cell; nrMa, nonresident macrophage; pDC, plasmacytoid dendritic cell; rMa, resident macrophage; Treg, regulatory T cell. (C) Cells
colored by DA measure. Large (small) values indicate a high abundance of cells from the pool of critical (moderate) cases. (D) Five distinct DA subpopulations
obtained by clustering cells with |DA measure| > 0.8. (E) Dot plot for markers characterizing the selected DA subpopulations. Details are as in Fig. 2F. (F)
Dot plots for markers of DA subpopulations, comparing each DA subpopulation to the complementary part in the corresponding cluster. (G) Validation on
data from Liao et al. (6). Violin plots compare gene module scores between critical and moderate cases in matching cell types of data from ref. 6. Specifically,
module scores of DA1, DA2, DA4, and DA5 are compared in neutrophils, macrophages, CD8 T cells, and neutrophils from Liao et al. (6), respectively. Of note,
of the 7,101 immune cells analyzed for the moderate cases, only 4 were neutrophils. Gene modules are defined from DA subpopulations in D. Wilcoxon test
is used to calculate P values. ∗P < 0.05, ∗∗∗P < 0.001.

Both cell subpopulations DA1 and DA5 are within the neu-
trophil cluster. However, they represent two distinct subsets
of neutrophils (Fig. 4 E and F and SI Appendix, Fig. S4 A
and B). Subpopulation DA1 is more abundant in critical cases
and shows elevated expression of activation markers CD48,
CD63 (28, 29). Further, expression of another DA1 marker
CXCR4 has been reported to be associated with acute res-

piratory distress syndrome (ARDS) (30) and allergic airway
inflammation (31). On the contrary, subpopulation DA5 is
more abundant in moderate cases and is characterized by the
expression of the inhibitory and anti-inflammatory gene IL1RN
(32), as well as SOCS3, an important regulator in restraining
inflammation with previously characterized functions in regu-
lating cytokine signaling and the subsequent response (33–35).
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Another marker enriched in DA5 is PTGS2 (COX2) which
has a controversial role and can both promote and constrain
inflammation. Enrichment of PTGS2 expressing neutrophils in
moderate patients may suggest its inhibitory role in COVID-19.
This provides invaluable insights on the use of nonsteroidal anti-
inflammatory drugs (NSAIDs), which is under debate (36). We
note that, while abundances of neutrophils might be affected
due to sensitivity to isolation techniques, our differential abun-
dance analysis of neutrophils could still reflect real biological
processes.

Subpopulation DA2 is a subset of nrMa and is more abun-
dant in critical cases. Markers of DA2 include RGL1, MAFB,
and SIGLEC1 (Fig. 4 E and F and SI Appendix, Fig. S4C).
RGL1 and MAFB are associated with M2 state or alterna-
tively activated macrophages (37, 38). Interestingly, MAFB and
SIGLEC1 have also been reported as maturation markers of
alveolar macrophages (39) and may have implications in medi-
ation of pathology by tissue resident macrophages in COVID-19
lung pathology (6).

Subpopulation DA4 is a subset of CTLs and is more abundant
in moderate cases. This subpopulation is characterized by high
expression of IFNG (Fig. 4 E and F and SI Appendix, Fig. S4D).
This observation is consistent with the descriptions in ref. 5,
where CTLs expressing antiviral markers were found in patients
with moderate COVID-19.

Immunological profiles identified through DA-seq as dis-
cussed above should be predictive if they reflect real biological
mechanisms in COVID-19 patients. To inspect whether these
differential abundance trends are shared in another cohort of
COVID-19 patients, we examined a second COVID-19 dataset
from ref. 6. In ref. 6, bronchoalveolar lavage fluid immune
cells from COVID-19 patients with different disease severity
were sequenced and characterized. To facilitate the analysis,
we defined gene signatures (Materials and Methods) that are
enriched in our detected DA subpopulations DA1,DA2,DA4,
and DA5 shown in Fig. 4D. Gene module scores (Materials
and Methods) for these gene signatures were computed and
compared between COVID-19 patients with moderate and crit-
ical disease in matching cell types from the second COVID-19
dataset (6). The differences between the module score dis-
tributions of the critical versus moderate cases (Fig. 4G) are
consistent with the enrichment of these signatures within the DA
subpopulations in Fig. 4D.

Additional Datasets. In Ximerakis et al. (17), transcriptomes of
brain cells from young and old mice are profiled (SI Appendix,
Fig. S5 A and B and Note 2). We applied DA-seq and detected
cell subpopulations more abundant in brains from young mice
with respect to old mice and vice versa (SI Appendix, Fig. S5
C and D). To demonstrate the specificity of DA-seq, we com-
pared cell distributions between samples extracted from different
young mice (SI Appendix, Fig. S5E). We verify that DA-seq
did not detect any sizable DA subpopulations, as expected (SI
Appendix, Fig. S5 F and G).

In addition, we applied DA-seq to two simulated datasets,
in which we formed several artificial DA subpopulations (SI
Appendix, Note 3). The first simulated dataset is based on the
scRNA-seq data from ref. 7, in which we assessed the ability
of DA-seq and Cydar (13) to determine for each cell whether
it belongs to any of the artificial DA subpopulations or not (SI
Appendix, Fig. S6). We observe that DA-seq captures the simu-
lated DA subpopulations with area under the curve (AUC) of
0.97, while Cydar has a maximum AUC of 0.81 using different
hyperparameters. The second simulated dataset is a perturbed
Gaussian mixture model in which DA-seq successfully retrieved
the artificial DA subpopulations and the characteristic features
as can be verified by visual inspection (SI Appendix, Fig. S7).

Discussion
In this work we present DA-seq, a multiscale approach for
detecting subpopulations of cells that have differential abun-
dance (DA) between scRNA-seq datasets from two biological
states. This approach enables us to robustly delineate regions
with substantial differential abundance between these two sam-
ples. In contrast to existing methods, the subpopulations of cells
we discover are not confined to any predefined clusters or cell
subtypes. We applied DA-seq to several scRNA-seq datasets
and compared its output to results obtained through conven-
tional methods. DA-seq not only recovered results obtained by
standard approaches but also revealed striking unreported DA
subpopulations, which informs on cellular function, identifies
known and additional genes in DA subpopulations, and greatly
increases the resolution of cell type identity in different clinical
states of disease.

Due to high dimensionality of the genetic data, it is important
to avoid overfitting in statistical learning. In various steps of our
algorithm, we prevent overfitting via dimensionality reduction,
model regularization, and cross-validation. However, the current
approach relies on large sample size and model validation to jus-
tify the results, but overfitting could remain a concern at regions
where data density is low. Further developments of model regu-
larization will benefit the method, and analysis of generalization
error will be theoretically interesting.

Another potential improvement to DA-seq can be achieved
by applying a neural network classifier directly on the input fea-
tures (gene expression profiles or principal component analysis
[PCA] coordinates) without computing the score vector in step
1. A network architecture for classification of two classes often
contains a logistic regression as its last layer. The layers pre-
ceding the last layer can then be viewed as feature extractors
trained in a supervised way. These features may substitute our
hand-crafted, multiscale score-vector features. We conducted
preliminary experiments using the full-neural-network approach.
The results were comparable to those of DA-seq for the sim-
ulated datasets but inferior for the real-world datasets. We
conjecture that, for our DA problem, the hand-crafted features
allow for a better identification of DA cells because these cells
are concentrated in two regions in the score-vector space. On
the other hand, the landscape of DA cells in the original gene or
PCA space is much more complex. However, it is possible that
more sophisticated neural network approaches may outperform
DA-seq—especially when a larger number of cell measurements
is available.

In step 4 of DA-seq, we characterize each DA subpopula-
tion by markers that differentiate it from the remaining cells
by either our neural network embedded-feature selection (l0-
based regularization) method or standard differential expression
approaches. However, the genes we identified for each DA sub-
population are not inferred by a causal inference technique.
Thus, augmenting step 4 by a causal inference module (40) may
reveal potential causal relationships within pathways and other
mechanisms. Other aspects of this characterization can be exam-
ined by biclustering (41) or biorganization (42) techniques that
allow for exploration of biological mechanisms associated with
the DA subpopulations.

Proper cell preparations as well as preprocessing of scRNA-
seq data are required to obtain reasonable DA results. It is
important to recognize that batch effect removal is a typical pre-
processing step for DA-seq in cases where there are noticeable
batch effects between samples. Without proper calibration, the
DA subpopulations detected by DA-seq may reflect both bio-
logical and technical differences between samples. To address
this open problem in the context of scRNA-seq, multiple-batch
effect removal methods have been developed (15, 18, 43, 44).
Furthermore, imputation or denoising for scRNA-seq datasets
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may also improve downstream analysis and lead to a more accu-
rate differential abundance assessment, as cells are positioned
more accurately after imputation (45–48).

In addition to the comparison between two states discussed
above, potential applications of DA-seq could be extended to
studies comparing multiple biological states, such as time series
studies or subjecting a biological system to multiple perturba-
tions. DA-seq can be applied to such multistate comparisons by
considering all pairwise differences in abundance. Alternatively,
one can propose a multistate score vector and replace the binary
logistic regression classifier with a multiclass classifier, such as
the softmax classifier.

Practitioners often try to detect intracluster differentially
expressed genes between two states separately for each cluster (7,
17, 18). If such intracluster differentially expressed genes exist,
it means that the distributions of cells from these two states are
shifted with respect to each other and, hence, represent two adja-
cent DA subpopulations: one enriched by cells from the first state
and the other enriched by cells from the latter one. One example
is in the comparison between old and young mice shown in SI
Appendix, Fig. S5. Cluster 21-MG (SI Appendix, Fig. S5B) con-
sists of two DA subpopulations, one enriched with cells from old
mouse brains and the other one enriched with cells from young
mouse brains. In this case, differentially expressed genes from
intracluster analysis will be similar to genes that characterize the
DA subpopulations with respect to its immediate neighborhood.
However, the intracluster analysis neither informs us about dif-
ferential abundance between the states nor is applicable to data
with no cluster-like structure.

In many biological systems, cell populations could be hetero-
geneous in terms of the expression status of certain markers. For
instance, breast cancer cells from an estrogen receptor (ER)-
positive patient do not express ER in all her cancer cells. This
status can be measured at the transcriptional or translational
level. An application of DA-seq to data generated in a sin-
gle scRNA-seq experiment to compare her ER(+) or ER(−)
cancer cells will enable identification of subpopulations of can-
cer cells enriched by ER(+) or ER(−) cells and, thus, allow
exploration of the biological differences between these two pop-
ulations (beyond their difference in ER status). Essentially, this
approach allows us to use cells generated in a single scRNA-
seq experiment and compare cells conditioned on the expression
status of a single marker.

Taken together, DA-seq represents a major advance in the
comparative analysis of two distinct biological states. DA-seq
has the ability to uncover important, significant, and hypothesis-
driving data which would normally be completely lost within a
cloud of transcriptomic data restrained by strict and arbitrary
clustering definitions. We envisage that DA-seq will be easily inte-
grated into conventional scRNA-seq analysis pipelines and will
facilitate major findings in all areas of biological investigation.

Materials and Methods
Overview. Let X = {x1, . . . , xn}∈Rm×n, where n is the number of cells, and
xi is the m-dimensional profile of cell i. In scRNA-seq, the number of genes
is ∼ 30, 000, while the number of cells ranges between 103 to 106. The high
dimensionality of the gene space is reduced to m∼ 102 (in our experiments,
m ranges between 10 and 90) via standard techniques such as PCA. Every
cell is assigned a binary label yi ∈{0, 1} that represents the biological state
of the sample from which the cell was extracted. In other words, the label of
each cell indicates its membership in one of the two experimental samples
(e.g., healthy and diseased samples) and it does not represent specific cell
types. We assume that the data are generated according to the following
probabilistic model: First, each label yi is sampled according to a Bernoulli
distribution with parameter ρ, 0<ρ< 1. Next, conditioned on yi , the gene
expression profile xi is sampled according to two regular probability density
functions f0, f1 defined over Rm, such that

(xi|yi = 0)∼ f0, (xi|yi = 1)∼ f1.

The objective of DA-seq is to identify regions in Rm where f0 is significantly
larger than f1 and vice versa, by analyzing the set of samples {xi , yi}n

i=1.
One approach to find DA regions is based on local two-sample tests (49–

52). A global two-sample test determines whether two sets of samples were
generated by the same distribution. In contrast, local sample tests also detect
the locations of any discrepancies between them. Such methods often com-
pute a test statistic in local neighborhoods around selected cells. The statistics
therein are associated with the difference f1(xi)− f0(xi) and provide a local P
value for each xi . In refs. 13 and 50, the Benjamini–Hochberg procedure (53)
was applied to correct for multiple testing.

Different approaches for obtaining DA regions were derived by Landa et
al. (52) and Cazáis and Lhéritier (51), where a measure of local discrepancy
is computed for all of the points in the dataset instead of a random subset.
In ref. 52, the local measure of discrepancy is computed around each cell
using a random walk. In ref. 51, the points with the highest measure of
discrepancy are then aggregated into localized clusters in the feature space.
Thus, the output of this approach is a small number of DA regions, rather
than a list of cells.

In our work, we derive DA-seq, a multiscale approach for detecting DA
regions in scRNA-seq datasets comprising distinct biological states. DA-seq
is based on a multiscale measure of differential abundance computed for
each cell. This measure enables us to robustly and efficiently detect localized
differentially abundant cell populations of different sizes and scales in the
gene space.

To derive a measure of discrepancy between two states, we introduce the
normalized and bounded pointwise statistic

d(x) =
f1(x)− f0(x)

f1(x) + f0(x)
. [1]

The statistic d(x) ranges between −1 and 1. For regions where f1/f0� 1,
d(x) approaches −1, while for regions where f0/f1� 1, d(x) approaches 1.
Applying Bayes’ rule to f0(x) and f1(x), we rewrite Eq. 1 as

d(x) =
Pr(y = 1|x)/ρ− Pr(y = 0|x)/(1− ρ)

Pr(y = 1|x)/ρ+ Pr(y = 0|x)/(1− ρ)
, [2]

where Pr(y = 0|x), Pr(y = 1|x) are the posterior probabilities around a point
x. This representation allows us to estimate the statistic d(xi) in the neigh-
borhood of each cell i in terms of estimates of these posterior probabilities
and the Bernoulli parameter ρ. For each cell, the posterior probabilities are
estimated based on its k nearest-neighbor cells at multiple scales (spanning
a range of k values). DA-seq detects localized subpopulations of cells for
which the estimated local normalized differential abundances between two
states are statistically significant. It further screens in an exploratory fash-
ion of DA discrepancies whose magnitudes (effect size) are greater than
user-specified thresholds.

In the following subsections, we describe the steps of our approach in
detail.

Step 1: Computing a Multiscale Score Vector. In the first step of DA-seq, we
compute a multiscale score vector at each point xi based on its k nearest
neighbors (kNN), which reflects differential abundance between f1 and f0

and is motivated by Eq. 1. We use the standard Euclidean distance in Rm

to compute cell measurement dissimilarities and identify kNN for each cell.
Let N1(xi ; k) and N0(xi ; k) be the number of cells from states 1 and 0 among
the kNN of xi , respectively. The expression N1(xi ; k)/k is a crude estimate of
the posterior Pr[yi = 1|xi], assuming that k is properly scaled with respect to
n and that n→∞. We then estimate the two terms in the numerator (or
denominator) of Eq. 2 by

g1(xi ; k) =
N1(xi ; k)/k

n1/n
, g0(xi ; k) =

N0(xi ; k)/k

1− n1/n
, [3]

where n1 denotes the total number of cells from state 1, and n1/n is an esti-
mate of ρ. Inserting these estimates into Eq. 2 yields our kNN-based score,
for each cell xi at length scale k,

s(xi ; k) =
g1(xi ; k)− g0(xi ; k)

g1(xi ; k) + g0(xi ; k)
. [4]

The score s(x; k) in Eq. 4 depends on the number of neighbors k. An esti-
mator based on a single global value for k, however, may be appropriate
only for certain regions in the data while being completely suboptimal in
other regions. We therefore compute N1(x; k) and N0(x; k) with a k vector at
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l different nearest-neighborhood scales k = [k1, . . . , kl] and define the score
vector

s(xi ; k) = [s(xi ; k1), . . . , s(xi ; kl)]. [5]

Fig. 1 A, Step 1 illustrates the qualitative behavior of the score vector s(x, k)
for three cells located in different regions of the data. The vector S1 at the
top contains positive entries and corresponds to a cell xi in a DA region
where f1 > f0. Thus, the score is high for small values of k. As k increases,
the score typically decreases since at this scale the neighbors may contain a
more balanced proportion of cells from the two biological states and even
include neighbors positioned outside of the DA region.

While the kNN score s(x; k) provides an estimate of the DA measure d
at each k, the estimation is not efficient due to the following reasons: 1)
The finite-sample effect may substantially degrade the accuracy of such an
estimator, and regularization of the estimator is needed to reduce variance
error; 2) using multiple values of k as proposed in Eq. 5 potentially resolves
the difficulty of choosing optimal k which is usually unknown; however,
then it is unclear how to merge the ensemble of measurements within the
kNN framework. We overcome these challenges by a classification approach
presented in step 2.

Step 2: Computing a DA Measure for Each Cell. The output of step 1 consists of
multiscale score vectors. Cells in DA subpopulations whose neighborhoods
are enriched with cells from one biological state tend to be closer to each
other in the l-dimensional score space than cells whose neighborhoods are
enriched with the other biological state or not enriched by any of the states.

Our task in step 2 is to map the l-dimensional score vector s(x; k), defined
in Eq. 4, into a single DA measure for each cell. To that end, we use a
logistic regression classifier. The classifier is trained to predict the class label
yi of each cell given its l-dimensional score vector s(xi ; k). Specifically, we
compute a vector w∗ that minimizes the following loss,

w∗
= arg min

w

n∑
i=1

log
(1−σ(s(xi ; k)T w))(1−yi )

σ(s(xi ; k)T w)yi
+λR(w), [6]

where σ is the sigmoid function and λR(w) is the regularization term. The
classifier is trained to increase σ(s(xi ; k)T w∗) if yi = 1 and decrease its value if
yi = 0 and thus assigns a numerical value between 0 and 1, which estimates
the posterior Pr[y=1|xi], as

p̂i =σ(s(xi ; k)T w∗)∈ [0, 1].

We employ a regularized logistic classifier with ridge penalty by default.
The importance of the regularization term is to induce smoothness of the
logistic output, such that the cells chosen as DA are localized. In comparison,
applying the logistic classifier without regularization produces results with
more outliers.

The data are split into F folds. For each fold, the model is trained on the
remainder F− 1 folds. The model is then applied to the (fold) test set and
provides predicted probabilities. The penalty parameter λ for each model is
selected by cross-validation. These steps are repeated in several runs and the
average predicted probability is used for each cell. Notably, the properties
of the logistic classifier imply that a high value of pi is a strong indication
that the cell is located in a (score-vector space) region enriched with positive
labels, and vice versa.

The logistic regression output p̂i estimates the posterior Pr[yi = 1|xi]. Sub-
stitution of the posteriors in Eq. 2 with these estimated values gives an
estimator of d(xi):

di =
p̂i/ρ− (1− p̂i)/(1− ρ)

p̂i/ρ+ (1− p̂i)/(1− ρ)
, [7]

which we refer to as the DA measure.
Fig. 1 A, Step 2 illustrates the output of this step. It shows a heatmap,

where each cell is colored by the prediction probability of the logistic classi-
fier after transformation, i.e., its DA measure. The cells that reside in DA
regions are determined by thresholding the DA measure from above or
below τh and τl, respectively. A cell xi belongs to a positive DA region
if di >τh and to a negative DA region if di <τl (see Choice of thresholds
below).

Step 3: Clustering the DA Cells into Localized Regions. This step involves clus-
tering the subset of cells (DA cells) whose DA measure values are above τh or
below τl into localized regions. These DA regions represent cell subpopula-
tions with difference in abundances between biological states. Importantly,
the clustering is performed in the original dimensionality reduced gene
space.

We first calculate a shared nearest neighbor (SSN) graph based on
the Euclidean distance between all cells. This computation is done with
Seurat (15, 18), using default parameters. Next, a subgraph compris-
ing DA cells only is extracted from the full SNN graph. A modularity
optimization-based clustering algorithm implemented in Seurat is applied
on this subgraph. For robustness, singletons and small clusters (contain-
ing number of cells fewer than a user-defined parameter) are removed as
outliers.

A graph-based clustering approach is used here because of its widespread
use in scRNA-seq analysis. We note, however, that other clustering methods
can be used for this step. The output of this step is a list of DA subpopu-
lations where each subpopulation is assigned a subset of cells. In our next
section, we describe a feature selection approach to identify characteristic
genes for each DA subpopulation.

Step 4: Differential Expression Analysis as a Feature Selection Problem. Dif-
ferential expression analysis (DEA) and feature selection are related tasks.
In DEA, one applies univariate statistical tests to discover biological mark-
ers that are typical of a certain state or disease. This approach is typically
used for its simplicity and interpretability. Univariate approaches treat each
gene individually; however, they ignore multivariate correlations. Feature
selection, on the other hand, seeks an interpretable, simplified, and often
superior classification model that uses a small number of genes. Here, we
use our recently proposed embedded-feature selection (14) method to dis-
cover for each DA subpopulation a subset of genes that collectively have
a profile characteristic for that subpopulation which thus separates it from
the rest of the data.

Given observations {xn, yn}N
n=1, the problem of feature selection could

be formulated as an empirical risk minimization

min
θ

1

N

N∑
n=1

L(θT xn, yn) s.t.‖θ‖0≤ r, [8]

where r is the number of selected features, L is the loss function, and θ

are the parameters of a linear model or more complex neural net model.
Due to the `0 constraint, the problem above is intractable. In practice, the
`0 norm is typically replaced with the `1 norm, which yields a convex opti-
mization problem as implemented in the popular least absolute shrinkage
and selection operator (LASSO) optimization approach (54). Nonetheless, we
recently surmounted this obstacle by introducing a STG approach to neu-
ral networks, which provides a nonconvex relaxation of the optimization in
Eq. 8. Each STG is a relaxed Bernoulli variable zd , where P(zd = 1) =πd , d =

1, . . . , D, and D is the number of genes after an initial screening to remove
genes with low expression. The risk minimization in Eq. 8 could be reformu-
lated by gating the variables in x and minimizing the number of expected
active gates. This yields the following objective:

min
θ,π

EZ

[
1

N

N∑
n=1

L(θT xn� z, yn) +λ‖z‖0

]
. [9]

Objective Eq. 9 could be solved via gradient descent over the parameters
of the model θ and the gates π. To identify characteristic genes of a DA
subpopulation, we train a model that minimizes Eq. 9 by sampling multiple
balanced batches from the DA subpopulation vs. the backgrounds. Then we
explore the distribution of genes that were selected by the model: all ds
such that πd ≥ 0. Note that λ is a regularization parameter that controls
the number of selected genes; it could be tuned manually for extracting a
certain number of genes or, alternatively, using a validation set by finding λ
which maximizes the generalization accuracy.

An important consideration for tuning λ is the potential colinearity
between features. Embedded feature selection methods, such as LASSO or
STG, can capture all correlated features if the regularization parameter is
appropriately tuned (14, 55). In ref. 55, the authors study how correlated
variables influence the prediction of LASSO. The authors recommend to
decrease the regularization parameter if the correlation between variables
is high. A similar behavior was observed for the l0-based STG (14).

In this study, STG is used for binary classification (DA subpopulation vs.
background cells). We use a standard cross-entropy loss in Eq. 9 defined by

LCE =−
1

N
[yn · ŷn + (1− yn)(1− ŷn)],

where the predictions ŷn and 1− ŷn represent the predicted probabili-
ties that the nth cell belongs to the DA subpopulation and background,
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respectively. To obtain a probabilistic interpretation for ŷn, we use the
common sigmoid function

σ(u) =
1

1 + exp (−u)
,

which is in the range of [0, 1]. Using the sigmoid, the predicted DA
probability is computed as ŷn =σ(θT

+xn� z). Furthermore, the predicted
background probability is computed by 1− ŷn =σ(θT

−xn� z), where θ+
and θ− are coefficients for predicting DA and background cells, respec-
tively. We then define the STG score for the experimental section by
applying a sigmoid to the difference between the linear predictions of
DA and background; that is, STGscore =σ(θT

+xn� z− θT
−xn� z). Training of

STG is performed using gradient decent with a learning rate of 0.1 using
3,000 epochs. These values were observed to perform well across all our
experiments.

Practical Considerations. In this section we elaborate on choice of param-
eters and computational properties of DA-seq. Additional information is
provided in SI Appendix, Table S1, in which we list the parameters used in
all datasets presented in the article.
Multiscale range. The choice of range [k1, . . . , kl] in the k vectors should be
guided by the data at hand; typically, the lower limit k1 is the smallest num-
ber of cells that a user will consider a meaningful region. The upper limit
kl can be adjusted to the minimal value for which the score, for most cells,
converges to the same value. In our experiments, l is typically about 10. We
explored the use of different k vectors in the simulated data described in SI
Appendix, Note 3 and SI Appendix, Figs. S6 and S9A show the DA measure
for each cell computed in step 2, with different k vectors. These results indi-
cate that DA-seq is more sensitive to the value of k1 (lower limit of the k
vector) than the upper limit kl, where increasing k1 leads to a smoother DA
measure.
Choice of thresholds. We apply a permutation test to determine which of
the DA measures computed for each cell in step 2 is statistically significant.
To obtain the null distribution, we apply the first two steps of DA-seq on ran-
domly permuted cell labels (biological state of each cell). The maximum and
minimum values of the DA measure of the data with the scrambled labels,
denoted dmax and dmin, are set as the upper and lower thresholds. Thus,
only cells whose DA measures are greater than dmax or smaller than dmin are
retained. For example, in the simulated data described in SI Appendix, Note
3 and Fig. S6, we show that using τl = dmin, τh = dmax successfully recovers
cells from our artificial DA sites (true positive DA cells) and introduces only
very few false positive cells (SI Appendix, Fig. S9B). Another illustration of
the permutation test is shown in SI Appendix, Fig. S5 for the aging brain
dataset. For some datasets, applying the permutation test results in a sub-
stantial fraction of cells with significant DA measures. This may arise due
to large biological deviations between states, inability to remove all batch
effects, or a combination of both. For instance, in the melanoma dataset (7),
we detect roughly 70% of cells with a significant DA measure (SI Appendix,
Fig. S9C). DA-seq not only is designed to detect cells in neighborhoods with
significant differential abundance but also is an exploratory tool. It allows
users to adjust threshold parameters for retaining cells whose DA measures
both are significant and exceed a desired magnitude of the normalized dif-
ferential abundance d. This exploratory option allows the users to focus on
the most salient cell subpopulations for which the d-statistic effect size is
strong (d>τh or d<τl). This option is analogous to the choice of a desired
differential expression fold ratio in differential expression analysis tools.
Imbalanced samples. In many experiments that compare the cell distribu-
tions of two states there exists an imbalance between the total number of
cells in the corresponding samples; i.e., ρ− 1/2 is nonnegligible. DA-seq is
based on the normalized statistics d defined in Eq. 1, which is independent
of ρ and thus invariant to the possible imbalance between the two sam-
ples. Further, d ranges between−1 and 1, which helps users to interpret the
results and naturally set symmetrical thresholds (with a symmetry axis at 0)
for detecting cell neighborhoods whose differential abundance magnitudes
(effect size) are larger than the absolute values of these thresholds. Refs. 49

and 52 considered the normalized statistics
f1(x)−f0(x)

ρf1(x)+(1−ρ)f0(x) , whose denomi-

nator is equal to the marginal density at x. We note that this latter form of
normalized statistics is noninvariant to imbalances.
Initial dimension reduction and choice of metric. Due to the high dropout
rate in scRNA-seq, reduction to lower dimensionality is needed before step
1. For PCA, the number of retained principal components is typically deter-
mined by methods such as JackStraw and parallel analysis (1, 56, 57). Other
dimension reduction methods or metrics other than the standard Euclidean
distance may be adopted here. For the choice of metric, we also explored

the use of diffusion distance (58) in the PCA feature space when calculat-
ing the kNN estimator in the first simulation data (described in SI Appendix,
Note 3 and Fig. S6). Significant DA cells identified with diffusion distance (SI
Appendix, Fig. S8) have less overlap with true DA subpopulations.
Computational complexity. The computation of kNN for all cells may be
a computational bottleneck for very large datasets. A standard method to
compute kNN is via the application of kd trees (59). The complexity of con-
structing a kd tree is O(n log(n)), and the average complexity for finding k
nearest neighbors is bounded by O(kn log(n)). For datasets on the order of
millions of cells, fast approximate approaches, such as in refs. 60 and 61, can
be applied to increase the scalability of this step.

Preprocessing of scRNA-seq Datasets. The R package Seurat was used for
most preprocessing steps for the scRNA-seq datasets discussed in this paper.
Details are described below. In datasets from refs. 5, 7, and 17, the pre-
processing steps were exactly the same as in the original papers. In the
dataset from ref. 16, data integration with Seurat (15) was used to remove
batch effect, instead of regressing out batch during data scaling. t-SNE
for data visualization was calculated with fast interpolation-based t-SNE
(FIt-SNE) (62).
Melanoma dataset. Transcripts per million (TPM) scRNA-seq data were
obtained from ref. 7. We then performed data scaling and PCA with Seu-
rat. Following the steps implemented in ref. 7, we calculated the variance
for each gene and kept only genes with variance larger than 6 as an input
for PCA; the top 10 PCs were retained for the calculation of t-SNE and DA
analysis.
Mouse embryonic dataset. Raw count matrices of scRNA-seq data from two
time points E13.5 and E14.5 (two replicates each) were obtained from ref.
16. For each sample, we used Seurat to perform data normalization, scal-
ing, variable gene selection, PCA, clustering, and t-SNE calculation. As in ref.
16, markers Col1a1, Krt10, and Krt14 were used to select dermal clusters:
Only cells in clusters with expression of Col1a1 and no expression of Krt10,
Krt14 were retained for further analysis. After selecting dermal cells, we
used Seurat data integration to merge data and remove batch effects. PCA
was performed on the integrated data, and the top 40 PCs (the same as in
ref. 16) were used to calculate the t-SNE and for DA-seq analysis.

For the five detected DA subpopulations, marker genes were identified
using the FindMarkers() Seurat function with the “negbinom” method, com-
paring each DA subpopulation to the rest of the cells. The top 100 genes
enriched in the DA subpopulation (or all genes if the number of marker
genes is fewer than 100) were selected as a gene signature/module for each
DA subpopulation.

For validation, raw count matrices of scRNA-seq data from time points
E13 and E15 were downloaded from ref. 27. For each sample, Seurat was
used to process the data and generate clusters. Marker gene Col1a1 was
used to select dermal cells. Only dermal cells from both samples were
retained and merged for further analysis. The Seurat function AddMod-
uleScore() was used to calculate module scores for gene modules of DA
subpopulations described above.
COVID-19 datasets. The Seurat object of integrated data from ref. 5 was
downloaded. PCA was performed on the integrated data with 2,000 vari-
able features. The top 90 PCs were retained for DA-seq analysis and as input
for t-SNE. Immune cells were selected based on cell type labels obtained
from the “meta.data” slot of the downloaded object. For detected DA sub-
populations DA1, DA2, DA4, and DA5, marker genes were identified using
the FindMarkers() Seurat function with the negbinom method, comparing
the DA subpopulation to remaining cells in clusters 6-Neu, 10-nrMa, 2-CTL,
and 6-Neu, respectively. The top 100 genes enriched in the DA subpopula-
tion (or all genes if the number of marker genes is fewer than 100) were
selected as a gene signature/module for each DA subpopulation.

For validation, the Seurat object of data from ref. 6 was downloaded. Cell
type information was obtained from the meta.data slot of the downloaded
object. The Seurat function AddModuleScore() was used to calculate module
scores for gene modules of DA subpopulations described above.
Aging brain dataset. The normalized expression matrix of scRNA-seq data
from young and old mice was downloaded from Ximerakis et al. (17). Cell
metadata—including cell type and cell sample labels (from young and old
mice)—were also obtained from the original paper. As described in ref.
17, PCA was carried out after the identification of variable genes by the
“mean variance plot” method from Seurat. The top 20 PCs were retained
to calculate two-dimensional embedding with t-SNE and as the input for
DA-seq.

Data Availability. An R package implementation of DA-seq is freely avail-
able at GitHub, https://github.com/KlugerLab/DAseq. Scripts to reproduce
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the analysis and figures presented in this paper are available at GitHub,
https://github.com/KlugerLab/DAseq-paper.

Previously published data were used for this work. [All scRNA-seq
datasets used in this manuscript are publicly available. Details are as follows.
Sade-Feldman et al. (7), GSE120575; Gupta et al.(16), GSE122043; Fan et
al. (27), GSE102086; Chua et al. (5), https://ndownloader.figshare.com/files/
22927382; Liao et al. (6), cells.ucsc.edu/covid19-balf/nCoV.rds; and

Ximerakis et al. (17), https://singlecell.broadinstitute.org/single cell/study/
SCP263/aging-mouse-brain#/.]
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