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Nervous systems sense, communicate, compute, and actuate
movement using distributed components with severe trade-offs
in speed, accuracy, sparsity, noise, and saturation. Nevertheless,
brains achieve remarkably fast, accurate, and robust control per-
formance due to a highly effective layered control architecture.
Here, we introduce a driving task to study how a mountain biker
mitigates the immediate disturbance of trail bumps and responds
to changes in trail direction. We manipulated the time delays
and accuracy of the control input from the wheel as a surro-
gate for manipulating the characteristics of neurons in the control
loop. The observed speed–accuracy trade-offs motivated a the-
oretical framework consisting of two layers of control loops—a
fast, but inaccurate, reflexive layer that corrects for bumps and
a slow, but accurate, planning layer that computes the trajec-
tory to follow—each with components having diverse speeds and
accuracies within each physical level, such as nerve bundles con-
taining axons with a wide range of sizes. Our model explains
why the errors from two control loops are additive and shows
how the errors in each control loop can be decomposed into the
errors caused by the limited speeds and accuracies of the compo-
nents. These results demonstrate that an appropriate diversity in
the properties of neurons across layers helps to create “diversity-
enabled sweet spots,” so that both fast and accurate control is
achieved using slow or inaccurate components.

speed–accuracy trade-off | vestibulo-ocular reflex | distributed control |
layered architecture | sensorimotor control

When riding a mountain bike down a twisting and bumpy
trail, skilled riders can descend safely without crashing,

despite limitations imposed by imperfect components in the
brain and trade-offs between traveling fast and staying on the
trail. What enables such remarkably robust performance in com-
plex and uncertain environments? Although this question is of
great importance in both science and engineering, it has received
little attention in the prior work in neuroscience and control. The
remarkable robustness of sensorimotor control has fostered the
widespread illusion that system performance is unconstrained
by the limitations of its components (1). Consequently, little
attention has been paid to understanding the design principles
that deconstrain the limitations of its components. However,
in both biological and engineered systems, ignoring the hard
limits results in fragility and may even lead to catastrophic
failure.

A clue to this puzzle lies in the striking contrast of speed–
accuracy trade-offs (SATs) at the component level and SATs at
the system level. The constraints on sensory and motor nerves
that implement sensorimotor control are often stringent. For
example, the spatial and metabolic costs to build, operate, and
maintain signaling in nerves constrain the fiber sizes and num-
bers of axons in a nerve. This limits the speed and the amount
of information that these axons can transmit (2, 3). Large nerves
with axons that are both large in size and number are rare (Fig.
1), which suggests that achieving both speed and accuracy may
be prohibitively expensive.

Such component limits could constrain the sensorimotor con-
trol to be slow and/or inaccurate in a naive design. However, in
practice, our cognitive decision making and sensorimotor con-
trol are remarkably robust, fast, and accurate as if the component
limits were deconstrained (4–9). Examples can be observed in the
extraordinary performance of athletes, mountain biking among
others, and power laws in reaching, such as Fitts’ Law (7, 10).

This striking contrast between system and component SATs
in sensorimotor control suggests that there are highly efficient
mechanisms that successfully deconstrain component limitations
in the sensorimotor system, so that component constraints are
not apparent. Strictly speaking, it is not possible for the aggre-
gate information rate of all components to exceed the sum of
the information rates of each component. Although the com-
ponent constraints cannot be deconstrained at the component
level, these constraints can be deconstrained at the system level.
We show here that this can be achieved with effective layered
control architectures, reminiscent of how virtualization is used
in network engineering to improve the performance limits of the
Internet, and we show here that similar principles are found in
brains as well.

There are two major challenges in understanding the design
principles found in nature that deconstrain the component lim-
its in sensorimotor control. The first is to bridge the SATs at
the level of neurophysiology and the SATs at the level of sys-
tem and behavior. The second is to understand the integration

Significance

Nervous systems use highly effective layered architectures
in the sensorimotor control system to minimize the harm-
ful effects of delay and inaccuracy in biological components.
To study what makes effective architectures, we develop a
theoretical framework that connects the component speed–
accuracy trade-offs (SATs) with system SATs and characterizes
the system performance of a layered control system. We show
that diversity in layers (e.g., planning and reflex) allows fast
and accurate sensorimotor control, even when each layer
uses slow or inaccurate components. We term such phenom-
ena “diversity-enabled sweet spots (DESSs).” DESSs explain
and link the extreme heterogeneities in axon sizes and num-
bers and the resulting robust performance in sensorimotor
control.

Author contributions: Y.N., Q.L., T.J.S., and J.C.D. designed research; Y.N. and Q.L. per-
formed research; Y.N. and Q.L. analyzed data; and Y.N., Q.L., T.J.S., and J.C.D. wrote the
paper.y

Reviewers: T.S., University of Southern California; and R.S., University of Cambridge. y

The authors declare no competing interest.y

Published under the PNAS license.y
1 To whom correspondence may be addressed. Email: terry@salk.edu or doyle@
caltech.edu.y

This article contains supporting information online at https://www.pnas.org/lookup/suppl/
doi:10.1073/pnas.1916367118/-/DCSupplemental.y

Published May 28, 2021.

PNAS 2021 Vol. 118 No. 22 e1916367118 https://doi.org/10.1073/pnas.1916367118 | 1 of 11

http://orcid.org/0000-0003-3324-4602
http://orcid.org/0000-0002-2501-7656
http://orcid.org/0000-0002-0622-7391
http://orcid.org/0000-0002-1828-2486
https://www.pnas.org/site/aboutpnas/licenses.xhtml
mailto:terry@salk.edu
mailto:doyle@caltech.edu
mailto:doyle@caltech.edu
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916367118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916367118/-/DCSupplemental
https://doi.org/10.1073/pnas.1916367118
https://doi.org/10.1073/pnas.1916367118
http://crossmark.crossref.org/dialog/?doi=10.1073/pnas.1916367118&domain=pdf


!

10 510 6

1

10

.1

Olfactory

Optic

Vestibular

Auditory

Sciatic

A
vg. A

xon diam
. (m

)

No. of axons per nerve

10 7 10 4

Large 
nerves

Small 
nerves

Large 
axons

Small 
axons

ptic
Equal 
area

Accurate 

Fast

Fig. 1. Sizes and numbers of axons for selected nerves and the resulting
SATs. The blue line represents nerves with an equal cross-sectional area,
which is proportional to λ in Eqs. 2 and 3. The nerves shown have simi-
lar cross-sectional areas, but wildly different compositions of axon size and
number, resulting in different speed and accuracy in nerve signaling (2, 3).
A myelin sheath around an axon can also increase its speed of propaga-
tion. Many nerves, such as the sciatic nerve, contain a mixture of axons with
different sizes and degrees of myelination. Avg., average; diam., diameter.

and coordination of layers with distinct roles with heteroge-
neous components and limitations. Despite extensive research
focused on individual levels and layers, there are few theoretical
insights or experimental tools available to integrate the compo-
nent constraints of individual layers with fundamental limits on
the performance of the entire system. On the theory side, we do
not yet know enough about neural coding and control mecha-
nisms to establish a complete model for control pathways from
sensory to motor units or to pinpoint performance bottlenecks.
On the experimental side, it is difficult to noninvasively manip-
ulate the properties of the components, including time delays
and information rates, to observe how they influence the system
SATs.

In this study, we investigate the influence across component lev-
els and integration across control layers in a psychophysical task
related to mountain biking. Our study of sensorimotor integration
is a first step toward bridging the persistent gap between the hard-
ware limitations and systems performance. Our results suggest the
importance of layering and diversity: The diversity between layers
can be exploited to achieve both fast and accurate performance,
despite imperfect hardware that is slow or inaccurate.

Control Systems Involved in Mountain Biking. Successfully riding
a mountain bike down a bumpy, curved trail requires remark-
able sensorimotor performance through the effective integration
of many subsystems, including oculomotor control for planning,
lateral control for trail following, and balancing in rough terrain.

The oculomotor control system uses a layered control archi-
tecture to maintain fixation on a visual target while bouncing
down a trail. The vestibulo-ocular reflex (VOR) compensates
head jostling with fast feedforward circuits in the brainstem, and
a slower feedback loop from the visual cortex pursues moving
targets (Fig. 2A) (11, 12). In addition, the cerebellum monitors
proprioceptive inputs from muscles and efference copies from
motor commands. This predictive feedback modulates the gain
of the VOR in the context of the current state of the body and
intended actions (13).

The lateral position control for trail following can be mod-
eled using an architecture with one layer that plans the trajectory
and another layer that stabilizes against bumps and rocks on the
ground (Fig. 2B). Trajectory planning takes place in the cerebral
cortex and basal ganglia using visual information of approach-
ing obstacles, such as trees and winding trails. The delay in visual

processing between the retina and the eye muscles during smooth
visual pursuit is around 100 ms (14). This higher layer of process-
ing interacts with a lower layer having faster feedback loops in
the spinal cord that control deviations from the desired trajectory
generated by a bumpy road.

Results
Experiments. We developed experimental tasks and correspond-
ing sensorimotor control models that mimicked three aspects of
mountain biking: compensation by the spinal cord for the ran-
dom shaking coming down the trail, the anticipation of turns
in the trail by the visual system, and the stabilization of images
on the retina by the oculomotor system to compensate bounc-
ing. We experimented with the first two aspects using driving
experiments and the last aspect using a few simple tasks that
can be easily performed. Many other aspects of biking are
left out, but by focusing only on these aspects, we are able
to make testable predictions for mechanisms underlying robust
sensorimotor control.

We performed two driving experiments: The first was to test
the interactions between layers, and the second was to test the
errors caused by delays and rate limits in control within a layer.

B

A

Fig. 2. System diagrams of sensorimotor controls used for biking in a
mountain trail: oculomotor control for visual tracking and lateral control
in trail following. (A) Diagram of two major feedback loops involved in
the eye movement: visual loop and VOR loop. Objects are tracked by using
the slow visual loop, while head motion is compensated for by the much
faster VOR loop. (B) Diagram of the basic sensorimotor control model for
our experiment that simulates lateral control in trail following. Each box is
designated by its function: sensing and communication (e.g., vision, muscle
spindle sensor, and VOR), actuation (muscle), and computation (higher-layer
planning and tracking and lower-layer reflexes and reactions). Depending
on the hardware details, they may be quantized (discrete valued), have time
delays, experience saturation, and be subject to noise. The trail ahead can be
seen in advance, but the bumps and other disturbances are unanticipated.
The line thickness indicates the relative speed of the pathway (thicker lines
for faster pathways).
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In the two experiments, subjects followed the trail on a computer
screen and controlled a cursor with a wheel to stay on the trail.
The goal of the subjects was to minimize the errors between the
desired and actual trajectories shown in a computer monitor by
moving the steering wheel (Fig. 3; see Materials and Methods for
details).

In the first experiment, the higher layer and the lower layer
were coordinated. We compared how subjects’ control behav-
iors and the resulting errors differed in three settings: 1) when
there are random force disturbances to the steering wheel due
to bumps on the ground (denoted as “Bump”), 2) when the trail
trajectory is curved and changes direction (denoted as “Trail”),
and 3) when both exist (denoted as “Both”). Rejection of bump
disturbance in the first and last settings is likely to be performed
at the lower-layer reflex, while trajectory following in the sec-
ond and last settings is likely to be performed at the higher-layer
planning.

The experimental results are shown in Fig. 4. The observed
error in setting 3 (with both bumps and trail curvature) posi-
tively correlated with the sum of the errors from the first two
settings with either bumps or trail curvature (Pearson correla-
tion coefficient =0.57), suggesting that the two signals tended to
have consistent sign and amplitude. Moreover, the two signals
showed no significant difference in the two-side t-test analysis.
The results suggest that the two layers could be analyzed sepa-
rately. This separability motivates modeling each layer separately
and decomposing the errors into those caused by neural signaling
delays or rate limits in the control loop.

The impact of neurophysiological limits was studied in the sec-
ond experiment. We observed changes in lateral control error in

Fig. 3. Video monitor interface for the biking task. (A) Players see a wind-
ing trail scrolling down the screen at a fixed speed and with a fixed
advanced warning (the visible trail ahead), both of which can be var-
ied widely. The player aims to minimize the error between the desired
trajectory and their actual position using a gaming steering wheel. (B)
Bumps are added by using a motor torque in the wheel. Experiments
can be done with bumps or trails, or both together, and with varying
trail speed and/or advanced warning and with additional quantization
and/or time delay in the map from wheel position to players’ actual
position.

Fig. 4. Total error and its decomposition into the error due to bumps
and the error in tracking the trail. (A) Error dynamics from a task with
added bump, a task with trail changes, and a task with both. (B) The
size of errors from the first two tasks and the error from the last task.
(C) Worst-case errors for the three cases and the sum of errors from the
first two cases. Each dot denotes the worst-case error in 2 s. n.s.: not
significant.

three settings: when external delays were added in the display,
when external quantizers were added in the actuation effect of
the steering wheel, and when both were added. These manipu-
lations served as noninvasive probes for how component SATs
constrain the system SATs. The lateral errors in the three set-
tings are shown in Fig. 5B, and their corresponding theoretical
prediction is shown in Fig. 5A (see the modeling details in the
next section). The bridge between the SATs at the two levels
highlights the benefits of the heterogeneity observed in nerves
(Fig. 1) and the advantages of layering in sensorimotor control
(e.g., Fig. 2).

Our experiment primarily focused on the layers involved in
lateral control. In both experiments, the head was relatively sta-
ble, and the errors of image stabilization on the retina by VOR,
though essential in mountain biking, were negligible. Another
important layer that was not included in the biking game was
bike balance and turning, skills that must be learned before trail
following.

Connecting Component and System SATs. To connect the SATs
between the two levels, we developed a robust control model that
characterizes the system-level SATs imposed by component-level
SATs and used the model to explain the experimental observa-
tions. We modeled the error dynamics between the actual lateral
position of the subjects and the center of the trail as follows:
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Fig. 5. System SATs in the biking task. (A) Theoretical SATs. The delay error max(0, T) (blue), rate error (2R− 1)−1 (red), and total error max(0, T) + (2R− 1)−1

(black) in Eq. 4 are shown with varying component signaling delay T and rate R subject to the component SAT T = (R− 5)/5. (B) Empirical SATs. The error
under an added delay (blue), the error under added quantization (red), and the error under added delayed plus quantization (black) are shown. In the last
case, the added delay T and quantization rate R subject to the component SAT T = (R− 5)/5. The dot shows the averaged error of four subjects, and the
shadowed area indicates the SEM for these subjects.

x (t +1)= x (t)+w(t)+ u(t), [1]

where x (t) is the lateral error, and Eq. 1 relates the future
error x (t +1) with the previous error x (t), the uncertainty
w(t) (bumps and trail changes), and the control action u(t).
In the brain, the control action u(t) is generated from many
sources: 1) sensory information arising from visual inputs, pro-
prioception from stretch receptors in muscles, and acceleration
from vestibular organs in the inner ear; 2) communication path-
ways through sensory and motor nerves; 3) computation in the
central nervous system, including the spinal cord, cerebellum,
and cerebral cortex; and 4) actuation by muscles in the eyes
and arms.

This simple model captures the bicycle dynamics and con-
troller structures in the process and constraints that generate
u(t). This is not an all-encompassing model of all of the biome-
chanics (e.g., muscle mechanical properties and vesticulo-ocular
reflex gain adjustment) and control loops (e.g., physiological
reflex loops) that are involved in mountain bike riding. Rather,
it abstracts out the component delay and data rate, which
are explained below, and considers the fundamental trade-offs
induced by these constraints in system performance. In the
experiments, these are programmed by the software and can
be made arbitrarily hard. This abstraction allows us to focus
on the mechanism to exploit diversity, which we believe is uni-
versal, but has heretofore been ignored. Our approach, which
is commonly used to tease apart the complexity of biological
systems, does not deny the existence of the underlying com-
plexity, but will isolate each component from the complexity in
order to nail down the scientific hypothesis worthy of further
investigation.

The feedback loop from sensor measurement x (t) to con-
trol action u(t) has a latency of Tu :=Ts +Ti with a signaling
rate R, where Ts models the nerve signaling delay, Ti mod-
els other internal delays in the feedback control loop (including
both sensory and motor delays), and R is the maximum rate
at which axons can transmit information. The feedforward loop
from disturbance w(t) to the control action u(t) has an advanced
warning of Ta . Advanced warning occurs when bikers view the
future trail trajectory Ta steps ahead, before it influences the
error dynamics, which allows predictions to be made and mus-
cle tone changes to occur ahead of time (15, 16). The value of
Ta depends on the speed of the biker and the features on the
trail. The time required for control action to respond after the
disturbance impacts the dynamics is the latency minus warning—

i.e., T :=Tu −Ta =Ts +Ti −Ta . The list of notations is shown
in Table 1.
Component SATs. Next, we characterize the trade-off between
nerve-signaling delay and rate limit arising from the fixed spatial
and metabolic cost to build and maintain axons (2, 3, 17, 18).
Specifically, nerves with the same cross-sectional area can either
contain many small axons or a few large axons (Fig. 1), which
inevitably leads to SATs in neural signaling. The specific forms
of SATs depend on how the nerves encode information (19–22),
and a wide range of time-based and rate-based codes are found
throughout brains (23).

In the spike-based encoding scheme, information is encoded
in the presence or absence of a spike within each time inter-
val, analogous to digital packet-switching networks (20, 24). For
example, spike-based coding is found in many subcortical struc-
tures, such as spatial localization in the auditory system encoded
as time delay between the two ears (25) and regulation of synap-
tic plasticity by the relative timing of spikes (26). It has also
been observed that many types of neurons can generate spikes
with accurate timing (19, 22), which is typically required in
spike-based or time-based codes.

Assuming all axons have the same size, the component SATs
can be shown to satisfy

R=λTs , [2]

where R> 0 is measured by bits per unit time, Ts > 0 is mea-
sured in unit time, and R and Ts should use an identical time
unit. The constant λ(> 0) is proportional to the spatial and
metabolic resources required to build and maintain the axons.
In rate-based encoding, the SATs are approximated by the

Table 1. Parameters in the basic model

Parameter Description

x(t) Error at time step t
K Controller
Ts≥ 0 Signaling delay
Ta≥ 0 Advanced warning
Ti ≥ 0 Internal delay
T = Ts + Ti − Ta Total delay
R Signaling rate (bits per unit time)
λ Cost associated with the resource use
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information capacity of a communication channel of Poisson
type:

R=
1

2
λT , [3]

where R, T , and λ are the same variables as in Eq. 2. The
value of λ depends on the composition of the nerve. For exam-
ple, proprioceptive nerves often have large λ, which allows lower
latency with lower data rate compared with unmyelinated pain
fibers, which are slow, but have a high signaling rate. For a fixed
resource level λ, the same rate R can be achieved with half of
the delay using spike-based encoding than with (less efficient)
rate-based encoding.

Eqs. 2 and 3 characterize the amount of information that can
be transmitted within the latency requirements for control and
are derived as follows. First, the space and energy to build and
maintain nerves, quantified by λ, are translated into the size vs.
number trade-off for axons. Next, the size vs. number trade-off is
converted into the latency and rate trade-offs. Here, the speed at
which an action potential travels depends on the axon size, and
the maximum firing rate depends on the metabolic energy that is
available. These constraints, together with assumptions on how
the information is encoded, determine the maximum signaling
rates. A detailed derivation is given in SI Appendix. Our approach
is different from the approach that uses asymptotic information
theory to characterize the amount of information that can be
transmitted without considering latencies.

In our model, the performance limits at the systems level do
not require the component SATs to take the forms given in Eqs.
2 and 3. Component SATs differ by encoding schemes and the
presence or absence of myelination, noise and redundancy, and
cross-talk between axons. Although we use the SATs in Eq. 2
here, similar analysis can be performed for other component
SATs.
System SATs. When performing sensorimotor control, the
component-level SATs constrain the system-level SATs. To char-
acterize this relation, we first use robust control tools to find the
errors as functions of the component-level signaling delays and
rates in both deterministic and stochastic settings. The precise
formulations of the control problem for both cases are given in
the SI Appendix.

The worst-case framework is suitable for modeling risk-averse
sensorimotor behaviors, such as riding a mountain bike along a
cliff (in the presence of the life-threatening risk) (27–30). When
the disturbance is bounded in infinity norm, the worst-case error
normalized by the size of the disturbance satisfies

sup
‖w‖∞≤1

‖x‖∞≥max(0,T )+
(
2R − 1

)
−1. [4]

This error sup‖w‖∞≤1 ‖x‖∞=sup{‖x‖∞/‖w‖∞} captures the
ratio of amplification or attenuation in worst-case error-per-unit
size disturbance in worst case. This ratio can be used with dif-
ferent units. For example, if the sampling interval for control is
τ seconds, then T has a unit of sampling intervals, and R has a
unit of bits per sampling interval. If the disturbance has a size of
W cm per second, then |w(t)| ≤ τW cm at each sampling inter-
val, and the error is bounded by max(0,T )+

(
2R − 1

)−1. Eq. 4
also applies when there is feedback control, when the controller
senses x , and feedforward control, when the controller senses w .

The average-case framework is more applicable to risk-neutral
sensorimotor behaviors, such as riding a mountain bike across a
broad field, where fatal risk is minimal (31, 32). When the dis-
turbance has zero mean and bounded variance, the steady-state
mean squared error normalized by error variance satisfies

sup
E[w ]=0,var(w)=1

E[x2]≥max(0,T )+
(
22R − 1

)−1

, [5]

where supE[w ]=0E[x2] =E[x2]/E[w2] captures the ratio of ampli-
fication or attenuation in the mean squared error per unit
variance in disturbance.

This error captures the ratio of amplification or attenuation in
average error-per-unit variance in disturbance.

The error bounds in both cases (Eqs. 4 and 5) are qualitatively
similar: Both bounds decompose into two terms. The shared first
term, max(0,T ), only depends on the total delay and, thus, can
be considered as the delay error. The other terms, (2R − 1)−1

and (22R − 1)−1, depend only on the signaling rate and can be
considered the rate error. Here, the units of the delay and rate
errors are based on control errors, which are measures of system
performance, rather than time or information measures (e.g.,
bits), which are the units used in the signaling delay and rate at
the component level.

This decomposition of errors is consistent with the experi-
mental observation that the error for the trials with both added
delay and added quantization was approximately the sum of the
errors for the trials with the delay and the quantization added
separately (Fig 5B; see Materials and Methods for details). The
delay error, the rate error, and the total error in the experi-
ment contain the internal errors of the subjects’ sensorimotor
control system, in addition to the error caused by added delay,
the error caused by added quantization, and the error caused by
added delay and quantization, respectively. Therefore, the total
error equals the sum of the delay error (error due to added
delay plus internal error) and rate error (error due to added
quantization plus internal error) minus internal error. When the
added delay is negligible, the delay error approximately equals
the internal error, and the total error (≈ rate error + delay
error − internal error) equals the rate error. Similarly, when
added quantization is negligible, the rate error approximately
equals the internal error, and the total error approximately
equals the delay error. Beyond the worst-case framework
described above, the same conclusion holds for the stochastic
setting (experiment and results are in SI Appendix, section 4).

We are now ready to characterize how the SATs at the com-
ponent level impact the SATs at the system level. Combining the
component SATs in Eq. 2 for spike-based encoding, the error
bound of Eq. 4 in the worst case, and T =Ts +Ti −Ta , we
obtain the system SATs (the influence of the neural signaling
constraints on sensorimotor control) in Fig. 5A. Here, a similar
analysis can also be performed with other forms of component
SATs (encoding schemes) or with the error bound of Eq. 5 in the
average case.

Increasing the delay in the feedback loop increases the delay
errors, while increasing the rate leads to a large decrease in the
rate errors. Thus, delays can cause small disturbances to esca-
late into larger errors, and increasing the rate reduces errors
exponentially in the context of control. These properties of the
fundamental limits hold for rate constraints imposed on the sens-
ing, communication, and actuation units. Intuitively, actuation
quantization gives errors in control, whereas sensor and com-
munication quantization gives errors in state estimate, which, in
turn, leads to equal-sized errors in control. However, this con-
dition may not hold if feedforward/predictive control is used to
compensate for the same set of disturbances.

The minimum error is achieved when the deleterious effects
of the nerve-signaling delay and inaccuracy are both controlled
within a moderate range. Thus, both the nerve composition
that minimizes the delay of nerve signaling and the composition
that maximizes its rate work together, resulting in suboptimal
performance. In contrast, optimizing one at the expensive the
other ends up in suboptimal performance. In particular, choos-
ing components that optimize the signaling rate, which is often
done in models based on asymptotic information theory, may
lead to large delays and less robust sensorimotor control. When
resources are limited, optimization must balance the impacts of
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both signaling delay and signaling rate. The consequences of this
trade-off are explored in Discussion.

Oculomotor Control for Visual Tracking. We now apply our theory
to the layered control architectures for visual object tracking.
The visual tracking of a moving object by smooth pursuit involves
two major control loops: a fast feedforward VOR loop that com-
pensates for head motion and a slower visual feedback loop
through the visual cortex (Fig. 2B) (11, 12).

The vestibular inputs project to both the vestibular nucleus
and the cerebellar cortex, which, in turn, projects back to the
vestibular nucleus. This feedback loop from the cerebellar cor-
tex is important for tuning the gain of the feedforward pathway
to the vestibular nucleus. This tuning allows adaptation to the
growth in head size during development and optical gain changes
from new eyeglasses. The cerebellar inputs also correct the
gain for changes in fixation distance and torsional head move-
ments (13, 33). Drifts across the retina due to unmatched gains
are compensated by the visual system, which maintains vernier
hyperacuity in the arcsecond range (2% of the diameter of a cone
photoreceptor in the fovea) for images drifting up to 3◦/s (34).

From a control perspective, an important difference between
the two loops is their levels of advanced warning. The VOR
loop reacts rapidly after the head moves. We call this regime the
delayed reaction of the VOR loop, in which the uncertainty w(t)
becomes accessible to the controller after w(t) affects the error
dynamics, giving rise to positive net delay Ti −Ta ≥ 0. In biking,
vision allows looking ahead down the trail, which translates into
a net advanced warning with enough look ahead. But in VOR,
this doesn’t happen.

In contrast, changes in the visual environment are highly pre-
dictable, so the visual loop can plan eye movements in advance,
a negative net delay. We call this regime the advanced plan-
ning of the visual loop, in which the uncertainty w(t) becomes
accessible to the controller before w(t) affects the error dynam-
ics, giving rise to positive net warning Ta −Ti ≥ 0 (negative net
delay). These two regimes are qualitatively different in their
optimal choice of Ts and R for achieving the optimal robust
performance, as illustrated in Fig. 6.

1) Delayed reaction: When the net delay Ti −Ta > 0 is large,
the total error can be much larger than the size of the uncer-
tainty ‖w‖∞ and goes to infinity as Ti→∞. This large error
amplification is consistent with the all-too-familiar observa-
tion that even a small bump on a trail can cause a cyclist
to lose control of the bike and crash. As Ti increases, the
delay error increasingly dominates the total error. Since the
delay error largely contributes to the total error, the total
error is minimized when Ts is set to be small in return for
small R. Therefore, a feedback loop in this regime performs
better when it is built from a few large axons. Interestingly,
the flat optimal delay/rate within the delayed reaction regime
suggests that optimal performance can be achieved by using
one type of nerve composition for a broad range of advanced
warnings. This property is beneficial because the net delay
(defined from advanced warning) differs across sensorimotor
tasks.

2) Advanced planning: When the net warning Ta −Ti > 0 is
large, the total error approaches zero as R→∞. This large
disturbance attenuation is consistent with the observation
that a cyclist can avoid obstacles given enough time to plan
a response, such as taking a path around them or bracing
against their impact. Given sufficiently large advanced warn-
ing Ta , the rate error increasingly dominates the total error
because the growth in Ts incurs no additional delay error.
Since the rate error contributes largely to the total error, the
total error is minimized when the signaling rate R is set to be
large at the expense of large signaling delay Ts . Therefore, a

Fig. 6. Delayed reaction vs. advanced planning for visual tracking. (A) The
minimum total error Eq. 4 subject to the component SATs in Eq. 2 and its
composition (the delay error and the rate error) are shown for varying net
delay Ti − Ta(≥ 0) or net warning Ta− Ti(≥ 0). (B) The optimal signaling
delay Ts, total delay T( := Ts + Ti − Ta), and rate R for varying net delay or
net warning. In both A and B, the resource to build and maintain axons are
assumed to be fixed and are set to λ= 0.1.

feedback loop in this regime performs better when it is built
from many small axons.

This prediction is qualitatively consistent with the anatomy of
the human oculomotor system (Fig. 1). The vestibular nerve,
which transmits three-dimensional (3D) velocity information
from the inner ear to the vestibular nucleus in the brainstem,
has 20, 000 axons with a mean diameter 3µm and coefficient
of variation 0.4µm . These fast axons allow feedforward eye-
muscle control with a delay of approximately 10 ms (21). In
contrast, the optic nerve carrying visual signals from the retina
has approximately 1 million axons with a mean diameter 0.6µm
and coefficient of variation 0.5µm , significantly smaller, but
more numerous, and with greater variability (2, 3). The optic
nerve projects to the cortex through the thalamus, where visual
signals are sequentially processed in several cortical areas before
projecting back to subcortical structures that control eye move-
ments. As a consequence of this long loop, the visual feedback
delay is approximately 100 ms.

The consequences of layering in the oculomotor system can
be observed by tracking your hand moving left and right across
the visual field with increasing frequency while holding the head
still and comparing this with shaking the head back and forth
(in a “no” pattern) at an increasing frequency while holding the
hand still. The hand starts to blur due to delays in visual object
tracking at around 1 to 2 Hz, whereas blurring due to the inability
to compensate for fast head motion occurs at frequencies above
20 Hz. The difference is that the visual loop has lower levels of
tolerable delays than the VOR loop. However, though slower,
the visual loop is more accurate.

Although both the VOR and visual layers have hard limits in
speeds and accuracies individually, the limits do not translate
into “inaccurate” or “slow” control at the system level because
each layer is designed to exploit the structures of the available
information and control processes in that layer. Specifically, the
limited signaling rate of the VOR loop does not compromise sta-
bilization against head motions because this loop only requires
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3D velocity information in control. The visual feedback loop
exploits the predictability in the visual environment to mitigate
the latency in visual information processing. A separation of
these two loops allows stabilization of head motion with a lower-
dimensional velocity signal, and visual object motion typically
provides a large advanced warning.

The benefits of diversity between layers are visualized in Fig.
8A, which compares the system SATs when the VOR and visual
layers use diverse delays and rates with a case when the delays
and rates are uniform. Given the same amount of resources to
build and maintain axons, the performance is more robust in the
diverse case.

This case study suggests that an accurate, but slow, visual
tracking layer and a faster, but inaccurate, VOR layer jointly
create a virtual eye controller that is both fast and accu-
rate. Although the component SAT imposes system trade-offs
between minimizing the delay errors or rate errors in sensorimo-
tor control, diversity deconstrains severe system SATs by using a
slower, but more accurate, higher visual layer to reduce the rate
cost and an inaccurate, but faster, lower reflex layer to reduce the
delay cost. We call this diversity-enabled sweet spots (DESSs); i.e.,
the diversity between different layers helps achieve both fast and
accurate sensorimotor control, despite the slowness or inaccu-
racy of individual layers. The sweet spots in Fig. 8 are in regions
near the origin, where delay errors and rate errors are both
minimized.

There are others layers in the oculomotor system. For rapid
saccadic responses to planned targets, the location from reti-
nal sensors projects directly to the superior colliculus, from
which saccades are launched. For targeting a moving stimulus,
peripheral retinal inputs have lower latencies than in the fovea.

Visual and Vestibular Feedbacks for Balancing. Analogous DESSs
can also be observed in the control processes used to balance
unstable biking dynamics. Balancing uses a layered architecture
involving visual, vestibular, and proprioceptive control loops.
The development of the control system for balance begins in
children 6 to 18 mo old and is further enhanced with practice
for more complex tasks such as biking. Visual, vestibular, and
proprioceptive loops have diverse speeds and information rates,
which complement each other to produce robust performance
in balancing. Balancing with one leg is easy with normal visual
and vestibular systems, and significant loss of balance with eyes
closed often indicates proprioceptive or cerebellar injury. Stand-
ing on one leg is also harder with eyes closed than with eyes open
because the vestibular loop without vision does not have access
to the accurate information from the visual loop. Spinning or
alcohol (or drugs) temporarily disrupt the vestibular control and
increase the difficulty of standing on one leg. Unilateral or bilat-
eral vestibular loss is also known to compromise the robustness
of balancing and posture control (35, 36).

Lateral Control in Trail Following. DESSs can also be observed in
the layered control architecture used for lateral control in moun-
tain biking. Planning loops at a higher layer of visual processing
in the cortex and basal ganglia track the trail. Spinal feedforward
control compensates for large bumps, and feedback compensates
for small bumps, disturbances that are difficult to see. Below and
above these two layers, a lower layer regulates muscle stiffness in
anticipation of future bumps, and higher layers make cognitive
decisions that are strategic. Here, we focus on the visual planning
and reflex layers in the context of robust control and component
diversity.

To understand this mechanism, we use biking experiments
(Fig. 3) to simulate the lateral control in the mountain biking
when the impact due to head and body movements is negligible.
The lateral error dynamics is given by Eq. 1, where x (t) is the
error, w(t) is the disturbance, and u(t) is the control action. The

disturbance w(t)= b(t)+ r(t) contains the signal b(t) caused by
the bumps on the ground and the signal r(t) due to the curvature
of the trail. We assume that ratio of the size of b(t) to the size
of r(t) is some ε> 0. The control action u(t)= u`(t)+ uh(t) is
generated by u`(t) from the reflex loop and uh(t) from the plan-
ning loop. The reflex loop (denote by L) compensates for bumps
using reflex at a lower layer, and the planning loop (denoted by
H ) tracks the trail at a higher layer.

There are speed and accuracy constraints in each control loop.
We assume that the reflex loop can transmit signals from sensory
to motor units with a signaling rate R` and total delay T`+Ti ,
where T` models the signaling delay, Ti aggregates other inter-
nal delays, and R` and T` are subject to a component SAT
R`=λ`T`. The planning loop has a signaling rate Rh and total
delay Th −Ta , where Th models the signaling delay, Ta is the
advanced warning, and Rh and Th are subject to a component
SAT Rh =λhTh . The difference in their level of internal delay or
advanced warning comes from the fact that the control response
to trail curvature can be planned in advance by viewing the trail
ahead, whereas the bumps are often controlled after a cyclist
senses their impact.

With sufficiently large advanced warning Ta(>Th), the state-
deviation sup‖b‖∞≤ε,‖r‖∞≤1 ‖x‖∞ is lower-bounded by{

T`+Ti +
1

2R` − 1

}
ε+

1

2Rh − 1
. [6]

Here, the rates (R`,Rh) are the information capacity used by
the subtasks in individual layers, but this model does not include
other layers, which may perform other tasks such as homeostasis.
This lower bound is tight in the sense that a controller exists that
achieves this bound. Analogous to the case of Eq. 4, the perfor-
mance bound in Eq. 6 holds, regardless of whether the planning
and reflex layers have feedback or feedforward structures.

Note that the overall lower bound for the error is the sum of
the errors in the lower reflex layer and the higher visual layer.
This property is consistent with experimental observations in Fig.
4. This decomposition holds when the bumps b and trail changes
r are independent and small enough to be independently con-
trolled by each layer (see Discussion for the situations when this
assumption does not hold). Under these assumptions, the feed-
back control system can be decomposed into two independent
subsystems that individually control the deleterious effects of b
and r . One uses the feedback loop L to control the error dynam-
ics Eq. 1 with r(t)≡ 0, while the other uses the feedback loop H
to control the error dynamics Eq. 1 with b(t)≡ 0.

The separation of Eq. 6 into the individual errors caused by
two subsystems allows us to use the preceding insight to study
the layered control architecture used in the biking tasks. The
reflex feedback typically operates in the regime of delayed reac-
tion, as reflexes often sense bumps only after the bike has hit
them. The planning feedback typically works in the regime of
advanced planning, since the trajectory of the bike and trail
can often be seen in advance. From Fig. 7A, the reflex feed-
back has the best performance with small signaling delay at the
expense of a low signaling rate. On the contrary, the planning
feedback has the best performance with a high signaling rate at
the expense of a large signaling delay. This theoretical predic-
tion on the relative delays of the two layers parallels the relative
delays in bump-only and trail-only tasks observed in our exper-
iment (SI Appendix, section 4.B) and complies with the existing
literature (37, 38).

The resulting benefit of diversity in delays and rates is illus-
trated in Fig. 7, which shows the optimal component composition
(Fig. 7A) and compares the system performances of the uniform
and diverse cases (Fig. 7B) when component SATs in Eq. 2 are
applied into the system performance in Eq. 6. The relaxed system
SATs in the diverse case compared to the uniform case suggest
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Fig. 7. Planning and reflex layers for lateral control in trail following. (A) The optimal delays and rates for system performance Eq. 6 subject to the
component SATs of the reflex layer Rh =λhTh, where the delay in the reflex layer Ti = 10 and the planning layer R` =λ`T` when the levels of advance
warning Ta are varied from 1 to 20. We set λh =λ` = 0.1 for the two layers. (B) Minimum error Eq. 6 for the case when the high layer and lower layer are
allowed to use components with diverse delay and rate or uniform delay and rate. The delays and rates in the diverse case do not have to be identical for
both layers, whereas they are constrained to be identical in the uniform case, i.e., R` = Rh and T` = Th. In the diverse case, the high-layer controller can
better exploit the advanced warning to minimize errors than in the uniform case.

that diversity in the layered control architecture helps improve
the fundamental performance limits arising from component
SATs (Fig. 8B). When the appropriate diversity and layers do not
exist, the disturbance is processed by a control loop whose delay
and rate are not optimized for the specifics of its access and the
extent of advanced warning. Thus, the uniform case is expected
to have a larger error and worse performance, as indicated by the
limits in either of the two terms in Eq. 6, than by control loops
with optimized delays and rates. The diversity between the two
layers virtualizes the performance, allowing the overall system to
exploit both predictive control and fast reflex to reduce errors.

Discussion
Our theoretical analysis of oculomotor control and biking
showed that the deleterious effects of component delays and
inaccuracies on control performance can be mitigated by layering
and diversity. Diversity allows optimal trade-offs between delay
error and rate error (Fig. 8).

Comparisons with Previous Studies. At the component level,
reducing the energy needed for information transmission is often

a major concern (39), but in our framework, information trans-
mission is only one means to achieve efficient control. At the
system level, fast, accurate, and robust control is important for
survival (4, 31). Here, we consider the design objective of opti-
mizing the robustness of sensorimotor control given limited
biological resources in energy and space.
Optimal nerve composition from a system perspective. The
difference in the two design goals leads to different conclusions
for the optimal composition of nerves. From the component
perspective of maximizing information rate within the energy
and resource budget, having many small axons that send infor-
mation at the lowest acceptable rate is desirable (2). From the
system perspective of achieving robust sensorimotor behaviors,
balancing speed and accuracy in neural signaling is more impor-
tant since this minimizes the total control error due to delays
and limited rates (Fig. 5). Conversely, maximizing signaling rate
may lead to large delays due to the component SATs, which,
in turn, degrade the robustness in sensorimotor control. These
contrasting results reveal the fundamental difference between
optimizing component properties and optimizing system
performance.

Fig. 8. Diversity in the components (Diverse) improves performance compared with uniform components (Uniform). In the diverse cases, both layers are
allowed to use heterogeneous signaling delays and rates. In uniform cases, they are constrained to be homogeneous. The horizontal axis shows the sum
of the rate errors in both layers, and the vertical axis shows the sum of the delay errors in both layers. For both the setting of visual object tracking and
lateral control in trail tracking, we can observe DESSs (i.e., the diverse cases have less stringent SATs in control than the uniform cases). (A) For visual object
tracking, we used the component SAT R` = 0.1T` for the reflex loop and Rh = 0.1Th for the planning loop. The component SATs are converted into system
SATs by Eq. 6 with parameters Ti = 10, Ta = 10, and ε= 1. Although the plot is shown for specific levels of net delay and net warning, Fig. 6 suggest that,
in the diverse case, the advantageous performance holds over a broad range of net delay/warning as the optimal signaling delay and rate takes a constant
value when the net delay and net warning are in [−4, 10] and [−10, 4], respectively. (B) For the lateral control in trail tracking, we used the component
SAT R` = 0.1T` for the reflex loop and Rh = 0.1Th for the visual loop. The component SATs are converted into system SATs by Eq. 6 with parameters Ti = 0,
Ta = 100, and ε= 1. In the diverse case, the reflex layer and the planning layer are allowed to use heterogeneous signaling delays and rates, whereas in the
uniform case, they are constrained to be homogeneous.
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Enabling factors of robust performance. Unlike models of sen-
sorimotor control that abstract away the component speed and
accuracy limits and assume they are negligible, our model explic-
itly incorporates these constraints and their impact on system
performance using robust networked control theory. Although
both types of models can explain the empirical observation
that component limits have minimal impact on sensorimotor
performance, the factors that enable robust performance arise
differently in the two models.

When the component limits are negligible, to achieve robust
performance only requires properly dealing with uncertainties
using the mechanisms such as sensorimotor adaptation, opti-
mal feedback control, impedance control, predictive control,
Bayesian decision making, and robust (risk-averse) control (31,
40). However, when component limits are not negligible, robust
sensorimotor control additionally requires the mechanisms to
successfully mitigate the component hard limits through the use
of effective layered control architectures with appropriate diver-
sity. In other words, even with a collection of inexpensive layers,
which may be slow or inaccurate, an effective layering can vir-
tualize a fast and accurate control response. Such performance
is achieved when the layers have proper diversity to collec-
tively span the heterogeneous requirements needed for robustly
performing a task (Fig. 8).

Assumptions and Limitations. We approached mountain biking as
a complex biological system by isolating each part of the com-
plexity in carefully designed experiments and drawing general
conclusions that can then be further tested. Our focus was on the
diversity of components and layers. We chose an experimental
paradigm designed to separate this mechanism from many others
that might otherwise have obscured it.
Sensorimotor integration. In the biking task, the subject is sta-
ble in the chair, the bumps do not affect visual trail track-
ing, and the only motor output is the position of the wheel.
In this simplified version of biking on a smooth road in an
ideal environment, we showed that the errors due to trails and
bumps are additive and that the closed-loop performance bound
matched the empirical observations. Our basic model captures
the essence of how component limitations are deconstrained at
the system level and is consistent with the results of our experi-
ments and the properties of nerves. Our model can be extended
in several theoretical and experimental directions to better
understand the control processes and encompass a broader
range of tasks.
System dynamics. How do dynamical system properties such as
poles and zeros change the relationship between component
SATs and the stability and performance of the whole system?
The impact of delay in unstable systems may lead to oscillations,
a qualitatively different regime from (marginally) stable systems.
Such models can be used to model human stick balancing, whose
dynamics have unstable poles and zeros. Pole balancing gets
harder when the visual focus shifts toward the lower end of the
stick.
Disturbances. What is the impact of specific types of disturbances
and their properties on system design? For example, the low
rotational inertia and low probability of perturbation of the orbit
in oculomotor dynamics may explain why oculomotor control can
achieve remarkable performance, even with minimal propriocep-
tion, which is essential in guiding limb movements and achieving
fast and accurate feedback control.
Sensorimotor control. What other influence do quantization,
delay, saturation, and other properties have on the performance
of motor systems and sensorimotor integration? Component
constraints can be further refined by including the specific
roles they have in neural coding and their functions in feed-
back and feedforward pathways (2, 41–44). The model can be
extended to account for the constraints of the motor system

(muscle strength, accuracy, speed, and fatigue) in the context
of reaching (10), throwing (45), and biking (e.g., a strong biker
is often able to recover from a larger displacement than a
weaker one). The impact of component constraints on perfor-
mance in the biking task can be studied for patients with motor
disabilities, such as those with Parkinson’s disease, who may
have disrupted speed and accuracy constraints in their control
loops.
Interactions between layers and control systems. When biking
on a twisty, bumpy road, stabilizing against bumps and visual
object tracking is more complex. The VOR and internal feed-
back loops (particularly within the visual cortex) work together to
stabilize vision despite bumps. In this situation, the errors from
the two layers may not be additive. Depending on the specifics
of the lower layer, the bumps may influence how well the higher
layer can sense and make decisions. Including the effects of bike
dynamics on head and body movements could reveal interactions
between these controllers and layers.

In our model, descending prediction errors from sensors
were transferred to actuators to take advantage of the avail-
able signaling rate. This feedback resembles predictive coding,
which may explain the existence of massive feedback from
higher cortical areas back to the primary sensory areas of
cortex (41, 46).

The further integration of different control loops by match-
ing controller gains, information transmission, and coordination
between layers is a major challenge. The cerebellum collects pro-
prioceptive and efference copies of motor commands from the
entire body and manages gain adaptation, while keeping sensori-
motor loops from interfering with each other (47). For example,
in the VOR circuit, vestibular inputs project to both the cerebel-
lar cortex and the vestibular nucleus, and the cerebellum, in turn,
projects back to the vestibular nucleus. The cerebellum adjusts
the gain of the feedforward loop using sensory prediction error
signals from image slip in the retina during head movements
(48). Gain is also modulated by verging the eyes. Interestingly,
during a vergence eye movement, the gain is reset before the
eyes reach the endpoint (13, 33). For head movements that are
not horizontal, the transformation to nonorthogonal eye muscles
is even more complex.
Cognition. More layers that could be added to our model include
model-based prediction, memory, cortical representations, alert-
ness, and attention, all of which influence computation and
communication in the central nervous system. Integrating these
additional layers could lead to a better understanding of how dis-
tributed control is achieved in brains. Connecting the SATs in
sensorimotor control and the SATs in decision making will pro-
vide further insights into how control and cognitive processes are
optimally integrated.
Factors that contribute to DESSs. In our models of oculomo-
tor control and trail following, the higher layer performs pre-
dictive planning and control and requires a higher data rate
than the lower layer. This is commonly found in engineering
systems. For example, a model-predictive controller or path
planner at the higher layer is combined with a proportional–
integral–derivative or robust controllers at the lower layer.
The optimality condition suggests that the lower layer per-
forms best at a fast time scale, while the higher layer per-
forms best with higher data rates and processing power.
Moreover, given an autonomous system that requires heavy
computation in decision making, adding the reflex for fast
responses can largely reduce the latency requirement of the
higher layer.

Other factors that contribute to DESSs include division of
labor (49), hierarchical analysis of sensory input with different
spatial and temporal scales at each successive layer, the diverse
properties of the muscles, and uncertainties that govern the
control of subtasks in each layer.
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Design considerations beyond SATs. There are other ways to
improve system performance. One example is overarm throwing,
where moving the arm at high speeds leads to increased accu-
racy. Although muscle noise increases with force in the normal
operating range, it drops at maximum strength. Other examples
include the gyroscopic effect: Biking transitions from unstable to
stable dynamics as the velocity crosses a threshold; figure-skate
spinning is more stable at a faster speed (gyroscopic effect); and
hopping helps stabilize balance. This phenomenon could arise
from a combination of factors: activating more layers; increased
sensing sensitivity and actuation capability due to larger motion
amplitude; the use of oscillation to stabilize control; and the
gyroscopic effect.

Improving the Fundamental Performance Limits. DESSs require
multiple layers with optimal and robust policies and diversified
hardware within each layer. The overall performance of the lay-
ered system can improve on the limits in each layer. Below, we
discuss some of these improvements.
Multiplexing motor systems and waterbed effects. An appropri-
ate diversity of layers is needed so that essential tasks can be
efficiently multiplexed and performed quickly and accurately.
There are many feedback loops in sensorimotor systems that
can be multiplexed (50). We have examined how humans can
multitask bike-trail tracking and stabilizing against bumps (Figs.
1B and 4), but trail tracking while texting—not anticipated by
evolution—leads to catastrophic crashes. Robust behavior is
accomplished by a deliberate design that has separate layers of
sensorimotor pathways for each subtask.

Multiplexing is a costly investment, since building and main-
taining each layer requires additional biological resources.
Moreover, there are waterbed-like effects in the sensitiv-
ity of a system to disturbances: In feedback control, sup-
pression in one frequency range necessarily increases dis-
turbances in some other frequency range. This phenomena
is captured in Bode’s sensitivity integral (51, 52). Revisiting
Bode’s sensitivity integral from the perspective of layering and
diversity provides a complementary perspective of disturbance
rejection (51, 52).

More generally, waterbed-like effects can occur when designs
optimized for one type of environment induce fragility in other
types. Thus, in the evolution of layered control architectures with
a fixed resource budget, improving the capability for one task
may induce fragility in others. Identifying these hidden trade-
offs and waterbed-like effects could provide a new evolution-
ary perspective on the organization of sensorimotor control in
brains, effects that have been largely overlooked in most studies.
Our framework for analyzing multilayer systems could provide
explanations for why some tasks share and others compete for
resources.
Cross-layer learning and optimizing architectures. DESSs can be
achieved by decomposing a new task into subtasks that are imple-
mented in different layers. Each layer has hard limits in speed,
accuracy, and flexibility in learning and control. Higher layers
are often flexible, but slow, whereas lower layers are faster,
but less flexible. Repetitive practice identifies and accumulates
evidence on potential subtasks that do not require much flex-
ibility and can be automated in lower layers with improved
speed and accuracy. Learning how to efficiently allocate lay-
ers allows the system to better virtualize tasks to achieve fast,
accurate, and flexible behaviors, despite layers that are by them-
selves slow, inaccurate, or rigid. Suboptimal allocations of layers
can expose the hard limits of individual layers to performance
bottlenecks.

This is illustrated in overarm throwing. Beginners often use
the central nervous system to think about controlling the release
of the ball, but highly skilled players use feedforward control of
finger force and stiffness to control the timing of release (45).

Feedforward control is faster, more accurate, and can rapidly
adapt. This is possible because feedforward control operates at
a millisecond level through the exceptional sensitivity of force
sensing, which greatly improves throwing accuracy. Force con-
trol has a much lower-dimensional design space for finger-muscle
stiffness. Low-dimensional rigid motion allows for fast adapta-
tion to new targets and wind conditions. By shifting high-level
control to a lower layer, higher-level resources can be redeployed
for other tasks.

Cross-layer learning is qualitatively different from incremen-
tally improving control parameters within a layer. This type
of learning happens on a much slower time scale and leads
to abrupt changes in behavior. Because of these properties,
cross-layer learning is more difficult to observe and study in
controlled experiments. Our layered architecture could serve
as a starting point for developing a theory for cross-layer
learning (53).

DESS Is a Universal Design Principle. Diversity is “the most ubiq-
uitous rule” in living systems (49). In this paper, we studied the
underlying mechanisms through which diversity in the delays and
rates of sensing and signaling between layers improves control
performance. In another paper, we show that diversity of compo-
nents within a layer also boosts performance and, in particular,
that Fitts’ law for SATs in reaching can be explained by DESSs
in motor nerves (10).

DESSs can also be found in many other systems: Humans
combine fast and slow decision-making processes (54, 55); the
immune system combines fast general responses with slower tar-
geted responses (56); the smart grid combines power flow in a
slow layer and frequency control in a fast layer; and Internet of
Things integrates cloud computing (which has high computing
capability and is centralized) with edge computing (which can
quickly respond to local disturbances).

Conclusions
Our case studies are just the tip of the diversity iceberg through
which diverse mechanisms in prediction, estimation, and actu-
ation within and between layers boost system performance.
Understanding the design principles of layered architectures
in biological systems, particularly those that achieve DESSs in
delayed, quantized, distributed, and localized control, can inspire
the design of robust technological systems, which increasingly
face challenges similar to those encountered in human senso-
rimotor control. Design tools and engineering case studies, in
turn, will help distill the design principles in biological systems
that enable robust and flexible behaviors through complex and
heterogeneous neural mechanisms.

Materials and Methods
We developed a platform for biking games that simulates some aspects of
riding a mountain bike (57). The platform is inexpensive and easy to imple-
ment. During the experiment, the subject looked at a PC monitor and turned
a wheel to follow the desired trajectory. The trajectory had a constant
velocity for each segment, but abruptly switched between right and left
segments. The console for the biking task is shown in Fig. 3. We conducted
experiments with four participants and recorded their biking trajectories
and lateral errors in control.

To study how layers multiplex, we compared the behaviors when there
are bumps in the road, curvature in the trail, and both. In the first task,
the bumps were generated by pushing the steering wheel at a constant
torque for 0.5 s. In the second task, the trail was generated with the
angle θ∈{10◦, 20◦, . . . , 80◦} and alternated between left and right with
exponentially distributed time intervals, so that the participants could not
anticipate the abrupt shifts without advanced warning in vision. In the last
task, the bump and trail changes were generated independently according
to the first two settings. A comparison of the error dynamics of the three
tasks is shown in Fig. 4.

To test of the impact of component SATs, we compared the behav-
iors when steering-wheel input acts on the position with delays, with
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quantizations, and both. The worst-case errors were measured in the
three tasks. In the first task, the added delays were set to be T =

−0.8,−0.6, . . . , 0.2, 0.4 s, where negative delays were realized by adding
an advanced warning in the visual input, and the positive delays were imple-
mented by adding an external delay in actuation. In the second task, the
rate of the quantizer was set to be R = 1, 2, . . . , 7 bits per unit time. In the
third task, the delay and quantization were added according to the first and
second settings, respectively. In addition, the delay and rate were set to sat-
isfy T = (R− 5)/5, which simulates the component SAT in Eq. 2. Each set of
parameters lasted for 30 s before switching to a new set of parameters. The
first 10 s of each 30-s trial were not used to measure the performance in
order to eliminate switching and learning effects. Before each experiment,
subjects were trained until their performance stabilized. The errors between
the desired and actual trajectory are shown in Fig. 5B. This plot suggests that
the error caused by the added delay and quantization is the sum of the error
caused by added quantization and the error caused by added delay, as sug-

gested by the theoretical prediction Eq. 4 in the deterministic setting. We
also tested the average errors in an average-case framework (SI Appendix,
section 4).
Participants. All participants gave informed consent. Study protocol num-
ber 19-0912 was approved by the Institutional Review Board at the
California Institute of Technology.

Data Availability. All data and programs used to analyze the data are
available at GitHub (https://github.com/ncclabsustech/SAT-in-sensorimotor-
control).
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49. M. D. G. Buzsáki, The Brain from Inside Out (Oxford University Press, Oxford, UK,
2019).

50. C. Koch, N. Tsuchiya, Attention and consciousness: Two distinct brain processes. Trends
Cognit. Sci. 11, 16–22 (2007).

51. S. Fang, J. Chen, I. Hideaki, Towards Integrating Control and Information Theories
(Lecture Notes in Control and Information Sciences, Springer, Cham, Switzerland,
2017), vol. 465.

52. Y. P. Leong, J. C. Doyle, Effects of delays, poles and zeros on time domain waterbed
tradeoffs and oscillations. IEEE Control Syst. Lett. 1, 122–127 (2017).

53. T. J. Sejnowski, The unreasonable effectiveness of deep learning in artificial
intelligence. Proc. Natl. Acad. Sci. U.S.A. 48, 30033–30038 (2020).

54. D. Kahneman, P. Egan, Thinking, Fast and Slow (Farrar, Straus and Giroux, New York,
NY, 2011), vol. 1.

55. P. C. Trimmer et al., Mammalian choices: Combining fast-but-inaccurate and slow-but-
accurate decision-making systems. Proc. Biol. Sci. 275, 2353–2361 (2008).

56. A. M. Smith, Host-pathogen kinetics during influenza infection and coinfection:
Insights from predictive modeling. Immunol. Rev. 285, 97–112 (2018).

57. Q. Liu et al., WheelCon: A wheel control-based gaming platform for studying human
sensorimotor control. J. Vis. Exp., 10.3791/61092 (2020).

Nakahira et al.
Diversity-enabled sweet spots in layered architectures and speed–accuracy trade-offs in sensorimotor
control

PNAS | 11 of 11
https://doi.org/10.1073/pnas.1916367118

https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916367118/-/DCSupplemental
https://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1916367118/-/DCSupplemental
https://github.com/ncclabsustech/SAT-in-sensorimotor-control
https://github.com/ncclabsustech/SAT-in-sensorimotor-control
https://arxiv.org/abs/1906.00905
https://doi.org/10.1073/pnas.1916367118

