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Specified intestinal epithelial cells reprogram and contribute to the
regeneration and renewal of the epithelium upon injury. Muta-
tions that deregulate such renewal processes may contribute to
tumorigenesis. Using intestinal organoids, we show that concom-
itant activation of Notch signaling and ablation of p53 induce a
highly proliferative and regenerative cell state, which is associated
with increased levels of Yap and the histone methyltransferase
Mll1. The induced signaling system orchestrates high proliferation,
self-renewal, and niche-factor-independent growth, and elevates
the trimethylation of histone 3 at lysine 4 (H3K4me3). We demon-
strate that Yap and Mll1 are also elevated in patient-derived colo-
rectal cancer (CRC) organoids and control growth and viability. Our
data suggest that Notch activation and p53 ablation induce a sig-
naling circuitry involving Yap and the epigenetic regulator Mll1,
which locks cells in a proliferative and regenerative state that ren-
ders them susceptible for tumorigenesis.
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The small intestinal epithelium is continuously renewed by
active stem cells that steadily produce absorptive and secre-

tory cells, which enable nutrient supply and protect the epithe-
lium (1). The cellular hierarchy is dynamic and specified cells can
reprogram to replenish stem cells after epithelial injury and stem
cell loss (2–6). These processes require tight control, as deregu-
lated and persistent repair processes may lead to cancer (7). Re-
generative as well as tumorigenic processes in the intestinal
epithelium have been linked to the activity of the transcription
factor Yap (8–10). Yap mediates the growth of intestinal stem
cells and is overexpressed and activated in colon cancer (9, 11–15).
Nuclear location controls protein stability and the transcriptional
activity of Yap (13, 16). Notch signaling can synergize with Yap in
the control of tumor cell proliferation (17, 12). Notch signaling
promotes stem cell function, is activated during regeneration, and
advances colon cancer progression (18–23). Binding of Notch li-
gands to Notch receptors located on adjacent cells induces the
proteolytic cleavage of the Notch receptor and the released
Notch-intracellular-cleaved domain (NICD), which translocate to
the nucleus (24). At homeostasis, Notch signaling controls cell
specification of absorptive (Notch active) versus secretory (Notch
inactive) cells, determined by an autoregulatory circuit called
lateral inhibition, in which Notch-activated cells down-regulate the
expression of Notch ligands, which results in diminished Notch
activation in the adjacent cell (20, 21).
Activation of Notch signaling and loss of p53 in the intestinal

epithelium (in NICDEYFPflox/flox/p53flox/flox; VillinCreERT2 mice,
here called NICD/p53−/− mice) by inducible Cre-mediated re-
combination causes the production of the intracellular domain of

the Notch receptor (NICD) and ablation of p53 (25). Mice can
develop invasive intestinal tumors with metastases, thus reca-
pitulating human tumors to a great extent (25). However, the
tumors develop only after months and exhibit accumulation of
mutations. The data indicate that Notch activation and loss of
p53 generate a stable cell state capable of accumulating muta-
tions, which ultimately result in transformation.
To understand the establishment of a persistent cell state

susceptible to oncogenic transformation in NICD/p53−/− mice, we
took advantage of studying organoids, which preserve the genomic
and cellular complexity of the tissue of origin to a large extent, and
consist of stem cells and differentiated cell types (26). Small in-
testinal organoids form a self-organized cellular hierarchy, regrow
over many passages, and require the growth factors R-spondin,
Egf, and Noggin for maintenance of stem cells, proliferation, and
differentiation control, respectively (27).
Here, we show that activation of Notch and ablation of p53

induce a stable regenerative cell state with a high expression of
genes specific for regenerative epithelia such as Clu, Anxa-1, and
Trop2, as well as classical Yap target genes such as Ctgf and
Cyr61. Such NICD/p53−/− organoids adopt a spheroid shape, self-
renew, and grow independently of essential growth factors oth-
erwise supplemented for organoid growth and maintenance, a
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phenomenon that resembles tumor organoids. NICD/p53−/−

organoids exhibit elevated levels of nuclear Yap, Mll1, and H3K4
trimethylation, which we also detected in human CRC tissue. Yap
interacts with Mll1 and Wdr5, two essential components of the
trithorax-histone methyltransferase complex. We show that the
viability of regenerative NICD/p53−/− organoids and human
patient-derived CRC organoids depends on both Yap and Mll1.
Our data suggest that Notch signaling and loss of p53 induce and
maintain a regenerative program with high Yap and Mll1, which
link regenerative processes to tumorigenesis.

Results
NICD/p53−/−Mutant Organoids Grow Spheroid Shaped and Niche-Factor
Independent.From the small intestine of NICDEYFPflox/flox/p53flox/flox;
VillinCreERT2 mice (25) we established organoids and induced Cre-
mediated recombination by 4-hydroxytamoxifen (4-OHT) in cul-
ture. The mutagenesis resulted in ablation of p53 and in the pro-
duction of the NICD (SI Appendix, Fig. 1A). NICD and loss of p53
induced the formation of spheroid-shaped organoids (Fig. 1 A,
Upper). The uninduced organoids grew in the known crypt-like
organoid structures (27) and served as controls (Fig. 1 A,
Lower). Coproduction of EYFP from the Rosa26floxStopfloxNICD-
EYFP locus allowed us to trace mutant cells (SI Appendix, Fig.
S1B). EYFP tracing, 5 d after induction of mutagenesis, revealed

that spheroid formation occurred from a subpopulation of cells (SI
Appendix, Fig. S1B). Upon single-cell dissociation, these mutant
cells regrew and steadily formed spheroid-shaped organoids (SI
Appendix, Fig. S1B and Fig. 1A). NICD/p53−/− organoid cells grew
as polarized single epithelial cell layers: electron microscopy
showed that epithelial cells had microvilli at the apical surface,
facing the inside of the organoid (SI Appendix, Fig. S1C, see en-
largements, Upper Right), and the basement membrane was lo-
cated toward the outside. The cells were joined by lateral tight
junctions close to the apical side (see Inset, Below and hatched
oval in the enlargement), by desmosomes over the lateral side
(marked by yellow asterisks), and by interdigitations in the middle.
NICD/p53−/− organoids exhibited an enrichment of actin mesh at
the apical surface, shown by whole-mount phalloidin staining (SI
Appendix, Fig. S1D).
NICD/p53−/− organoids grew independently of the growth fac-

tors Egf, Noggin, and R-spondin1 (ENR) (SI Appendix, Fig. S1E),
which were essential for the growth of control organoids (see
cloud of dead cells in SI Appendix, Fig. S1 E, Lower, control
−ENR). Growth factor-independent growth was not induced in
single-mutant organoids either mutant for p53 or NICD; the
culture of both required R-spondin (SI Appendix, Fig. S1F).
R-spondin/Wnt signaling is essential for organoid viability and
growth (27). However, viability of the NICD/p53−/− organoids was
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Fig. 1. NICD/p53−/− mutant organoids grow spheroid shaped and exhibit regenerative properties. (A) Brightfield and immunofluorescence for Ki67 of NICD/
p53−/− organoids (Upper) and control organoids (Lower) (Left, Scale bar, 250 μm.); three-dimensional reconstitution of confocal z-stack images (Middle) and
optical section (Right) of immunofluorescence for Ki67 (red) and DAPI (blue). (Scale bar, 50 μm.) Surface buds in the controls are marked by dashed lines. The Inset
shows dividing cells. (B) Violin plot of differentially regulated genes (DRGs) inNICD/p53−/− compared to control organoids for cell-type-specific gene signatures. (C)
Violin plot of stem cell genes differentially regulated in NICD/p53−/− compared to control organoids. (D) Relative mRNA expression of stem cell markers. (E) Violin
plot of fetal/regenerative markers differentially regulated in NICD/p53−/− compared to control organoids. (F) Relative mRNA expression of fetal/regenerative
genes. (G) Volcano plot of fetal/regenerative makers differentially regulated in NICD/p53−/− organoids. (*P ≤ 0.05, **P ≤ 0.001, ***P ≤ 0.0001.)
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independent of Wnt signaling, as organoid growth was not af-
fected by treatment with the Wnt inhibitor ICG-001 (SI Appendix,
Fig. S1G). The results indicate that NICD and p53−/− mutations
act in concert to mediate niche-factor-independent growth and
self-renewal. Ki67 staining showed that NICD/p53−/− organoid
cells were highly proliferative (Fig. 1A, see dividing cells in the
Inset, Upper panel), while in control organoids, proliferation was
restricted to crypt buds (Fig. 1 A, Lower, marked by white
dashed lines).
Notch signaling is known to prevent the differentiation of se-

cretory cells in the intestine by repressing the expression of the
pan-secretory marker Math1 (28). Indeed, the expression of the
secretory markers Lyz, ChgA, andGob5 and ofMath1 was strongly
reduced in NICD/p53−/− organoids compared to controls (SI Ap-
pendix, Fig. S1H). NICD/p53−/− organoids did not contain secre-
tory cells, as shown by the absence of Paneth cells (expressing
lysozyme, red arrow), goblet cells (expressing the intestinal trefoil
factor 3 [ITF], red arrow), and enteroendocrine cells (expressing
chromograninA [ChroA], green arrow) (SI Appendix, Fig. S1I).
RNA sequencing of NICD/p53−/− and control organoids con-

firmed changes in cellular composition when compared to de-
fined cell-type-specific gene signatures generated by single-cell
sequencing (29) and from a gene ontology gene set for enter-
oendocrine cells. Genes specific for secretory cells (blue) as well
as the gene signatures of enterocytes (gray) were down-regulated
(Fig. 1B). Genes of a stem cell signature (30) revealed a set of
up- and down-regulated stem cell genes in NICD/p53−/− orga-
noids, as shown by a violin plot and heat map analysis (Fig. 1C
and SI Appendix, Fig. S1J). RT-PCR confirmed that the expression
of the classical stem cell markers Lgr5 and Ascl2 was strongly
down-regulated, while Bmi1 and Tert levels were elevated or
remained unchanged (Fig. 1D). These results show that the NICD/
p53−/− organoids are composed of cells that grow niche-factor
independently and are in a hyperproliferative, self-renewing cell
state, yet have low expression of classical intestinal stem cell genes.

NICD/p53−/− Mutations Induce a Regenerative Program. Intestinal
injury triggers a transient epithelial reprogramming into a highly
proliferative state. This epithelium has fetal-like features and can
be mimicked in organoids that also display regenerative/fetal-like
properties and display a spheroid shape (8), as observed here.
We therefore analyzed the expression of fetal/regenerative sig-
nature genes in the NICD/p53−/− organoids. NICD/p53−/− orga-
noids exhibited a marked elevation of a fetal/regenerative profile
(Fig. 1E). We validated the increased expression of the regen-
erative genes Clu, Tacstd2 (Trop2), Anxa1, and Spp1 (8, 31, 32)
by RT-PCR (Fig. 1F). The strong increase in regenerative gene
expression also becomes evident using transcriptome analysis, as
displayed in a volcano plot of differentially expressed genes in
NICD/p53−/− organoids compared to controls (Fig. 1G). Thus,
the NICD and p53−/− mutations induced regenerative-like pro-
grams in organoids, which grow niche-factor independently.

NICD/p53−/− Mutations Induce Nuclear Yap That Promotes Growth
and Viability of Organoids and Tumors. Nuclear translocation and
activation of Yap have been implicated in regeneration and tis-
sue repair in the intestinal epithelium (8, 9). Gene expression
profiling revealed that genes up-regulated by Yap in intestinal
organoids (9) were increased in NICD/p53−/− organoids (Fig. 2A),
and genes down-regulated by Yap were decreased, respectively (SI
Appendix, Fig. S2A). The increased transcriptional activity of Yap
upon expression of NICD and loss of p53 was confirmed by ele-
vated expression of the well-established Yap target genes Ctgf,
Cyr61, Ankrd1, and Igfbp3 (33), as assessed by RT-PCR (Fig. 2B).
We compared the subcellular location of Yap in NICD/p53−/− and
control organoids by immunofluorescence. Strong Yap staining
was found in nuclei of NICD/p53−/− organoids (Fig. 2 C, Right, see
Inset, Below, marked by green arrows). Yap staining was much

weaker in the nuclei of crypt-like cells of control organoids (Fig.
2 C, Left). Western blot confirmed that mutant organoids pro-
duced higher levels of total and active Yap (Fig. 2D). However,
the levels of YapmRNAwere not changed (Fig. 2E). Tumors from
NICD/p53−/− mice (25) also showed nuclear Yap (SI Appendix,
Fig. S2B). To address the role of Yap in more detail, we inhibited
the transcriptional activity of Yap by the small molecule Verte-
porfin (VP) (34), which reduced the viability of NICD/p53−/−

organoids in time- and concentration-dependent manners (SI Ap-
pendix, Fig. S2 C andD). By lentiviral transduction of NICD/p53−/−

organoids we introduced a doxycycline-inducible shYap cassette,
which upon induction coproduces turboRFP that allows monitoring
of shRNA expression (35). Three days of induction with doxycy-
cline reduced the levels of Yap down to 40% (SI Appendix, Fig.
S2E) and reduced organoid growth (SI Appendix, Fig. S2F, the
control spheroid size is marked by a hatched circle, quantified on
the Far Right). These results demonstrate that the growth and vi-
ability of NICD/p53−/− organoids is dependent on Yap.

A Src, Yap, and Mapk Signaling Cascade in NICD/p53−/− Organoids.
During regeneration, Yap activation is promoted by activity of
the tyrosine kinase Src (8), which is activated via Stat3 in p53-
ablated cells (36), and Stat3 signaling is also involved in epithelial
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Fig. 2. NICD/p53−/− mutations promote nuclear Yap. (A) Volcano plot of
DRGs in NICD/p53−/− organoids with indicated genes up-regulated in Yap-
expressing organoids. (B) mRNA expression of specific Yap target genes
comparing control and NICD/p53−/− organoids. (C) Immunofluorescence
staining from control (Left) and NICD/p53−/− organoids (Right) for Yap
(green) and E-cadherin (red), nuclei counterstained with DAPI; magnifica-
tions of Insets below (Scale bar, 50 μm.); the green arrows point to increased
nuclear Yap in the mutants. Quantification of immunofluorescence intensity
of nuclear Yap on the Right. (D) Western blot of control and NICD/p53−/−

organoids showing increased total and active Yap in the mutants. (E) Similar
expression of Yap mRNA in control and NICD/p53−/− organoids, assessed by
qRT-PCR. (*P ≤ 0.05, **P ≤ 0.001, ***P ≤ 0.0001.)
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repair mechanisms (37). RNA sequencing revealed that Stat3
targets (38) were up-regulated in NICD/p53−/− organoids (SI
Appendix, Fig. S3A). Strikingly, at 24 h of Src kinase inhibition by
PP2, Yap was sequestered in the cytosol (Fig. 3A) and Yap target
genes were down-regulated (Fig. 3B). Prolonged inhibition of the
Src activity reduced growth and viability of NICD/p53−/− organo-
ids (SI Appendix, Fig. S3B). Western blot analysis of wild-type
(WT) small intestinal organoids revealed a decrease of active
Yap levels upon inhibition of Src kinase. Although, inhibition of
Mst1/2 kinases with XMU-MP1 increased the level of active Yap,
this could not rescue the effect of Src kinase inhibition on Yap (SI
Appendix, Fig. S3C). In conclusion, Src kinase promotes stability
of active Yap downstream of Mst1/2 kinases in wild-type orga-
noids. In contrast, in NICD/p53−/− organoids neither Src, nor
Mst1/2 kinase inhibition altered the level of active Yap protein (SI
Appendix, Fig. S3C). These data indicate that Src promotes nu-
clear accumulation but not stability of Yap in NICD/p53−/−

organoids to control their growth and viability. Yap has been
described to cross-talk with Mapk signaling in regenerative pro-
cesses of the lung (39), reinforcing the idea that Yap activity
mediates Egf-independent growth of NICD/p53−/− organoids.
Expression of an active form of Yap (S5A-Yap) in patient-derived
colorectal cancer organoids strongly activated Mapk signaling with
a pronounced increase in pErk levels (Fig. 3C). Inhibition of
Mapk signaling with small molecule inhibitors of the MAP kinases
Mek1 (U0126) and Erk1/2 (SCH772984) revealed that growth and
viability of NICD/p53−/− organoids were dependent on Erk1/2
activity, whereas inhibition of the upstream kinase Mek1 did not
affect organoid growth and viability, as assessed by tracking of
organoids and viability assays (Fig. 3 D and E). Inhibition of Yap
with VP showed a strong reduction in the level of activated
phosphorylated Erk, while the level of activated Mek1 remained
unchanged (SI Appendix, Fig. S3D). Erk inhibition down-regulated
the expression of the Yap target genes Clu, Egr1, and Ly6a (SI
Appendix, Fig. S3E), suggesting a signaling axis of Src-Yap-Erk in
promoting the regenerative cell state.

Menin-Mll1/Mll2 Interaction Mediates H3K4me3, Cell Proliferation,
and Viability of NICD/p53−/− Organoids. In the intestinal epithe-
lium, Yap promotes transcriptional changes toward a regenera-
tive cell state (8). However, epigenetic factors involved in this
process are still to be determined. Elevated H3K4me3 methyl-
ation and transcriptional activity has been correlated to Yap
(40–42). Since the histone methyltransferase Mll1 has been
shown to take part in reprogramming processes (43–45), and we
have recently demonstrated a role of Mll1 and H3K4me3 in
conferring a cancer stem cell fate in salivary gland and colon
tumors (46, 47), we investigated whether Mll1 is involved in the
regenerative cell state of NICD/p53−/− organoids. In the small
intestinal epithelium we detected pronounced H3K4me3 in the
crypt cell compartment (Fig. 4 A, Left). A subset of crypt cells
showed nuclear active Yap staining (SI Appendix, Fig. S4A, see
arrows), while total Yap levels were increased in all crypt cells,
compared to differentiated cells of the villus, in which Yap was
predominantly located at the apical cell membrane (Fig. 4 A,
Middle). The expression of Mll1 was high in the crypt cell com-
partment and low in differentiated villus cells (Fig. 4 A, Right).
Immunofluorescence for NICD/p53−/− organoids revealed an
increase of H3K4me3 levels (Fig. 4 B, Upper pictures, see also
enlarged Inset, quantification on the Right) compared to controls
(Lower pictures), which suggested an involvement of H3K4 tri-
methyltransferases in sustaining NICD/p53−/− organoids. We com-
pared Mll1 levels in NICD/p53−/− and control organoids by
immunofluorescence and observed a strong increase in Mll1 pro-
tein levels in the nuclei of the mutants (Fig. 4 C, Upper) compared
to low Mll1 levels in the controls (Fig. 4 C, Lower). Tumors of
NICD/p53−/− mice (25) also showed high expression of Mll1 (SI
Appendix, Fig. S4B) and high levels of H3K4me3 (SI Appendix, Fig.

S4C). Western blotting revealed a strong increase in the protein
levels of Mll1 in NICD/p53−/− organoids as well as its homolog
Mll2, while Wdr5 and Ash2l, two core components of Mll meth-
yltransferase complexes, were unchanged (SI Appendix, Fig. S4D).
However, mRNA levels of Mll1 and Mll2 were not changed in
NICD/p53−/− organoids compared to controls (SI Appendix, Fig.
S4E). The small molecule MI-2 interferes with the pocket where
the scaffold protein Menin binds to Mll1 and Mll2, which impedes
their methyltransferase activity (see scheme in SI Appendix, Fig.
S4F) (48). MI-2 treatment strongly reduced H3K4me3 in the
NICD/p53−/− organoids, and to a much lesser extent H3K4me2
and H3K4me1, as shown by immunofluorescence (SI Appendix,
Fig. S4 G–I). Further, MI-2 treatment reduced the proliferation of
NICD/p53−/− organoids, as shown by immunofluorescence for Ki67
(SI Appendix, Fig. S4J). Prolonged treatment with MI-2 reduced
the viability and induced the collapse of NICD/p53−/− organoids in
time- and concentration-dependent manners, while control orga-
noids remained intact (Fig. 4D and E). These findings indicate that
H3K4me3, cell proliferation, and viability ofNICD/p53−/− organoids
depend on the Menin-Mll1/Mll2 interaction. As the growth and
viability ofNICD/p53−/− organoids depended on both Yap andMll1/
2, we performed coimmunoprecipitations of endogenous Yap and
Mll1, and vice versa, from NICD/p53−/− organoid lysates to address
the possibility of interaction. Yap coimmunoprecipitated Mll1 as
well as Wdr5, but not Mll2 (Fig. 4F). Mll1 coimmunoprecipitated
Yap and its known interacting partner Wdr5 (Fig. 4G) (49). The
results reveal that Yap interacts with the histone-methyltransferase
complex containing Wdr5 and Mll1.

YAP and MLL1 Regulate Growth and Viability of Human Patient-Derived
Colorectal Cancer Organoids. To assess a relevance of YAP and
MLL1 in human colon cancer, we analyzed the role of both reg-
ulators in tumor biopsies, patient-derived xenografts (PDXs) and
patient-derived organoids (PDOs) from human CRC samples (50,
51). We observed nuclear location of YAP and MLL1 in patient-
derived xenografts (SI Appendix, Fig. S5 A and B) as well as high
levels of MLL1 in tumor biopsies of CRC patients (Fig. 5A,
compare Inset b to healthy tissue in Inset a, quantification on the
Right). The Cancer Genome Atlas (TCGA) database analysis (at
http://www.cbioportal.org) revealed a decreased disease- and
progression-free survival of patients with elevated MLL1 levels (SI
Appendix, Fig. S5 C and D). Correlation analysis of TCGA colon
cancer expression data revealed a coexpression of MLL1 and YAP
(SI Appendix, Fig. S5 E and F) as well as of YAP targets (ANKRD1
and CLU), regenerative marker genes (CLU, SPP1, ANXA1, and
TROP2/TACSTD2), and Notch targets (HEY1) (SI Appendix, Fig.
S5F). We assessed to what extent the patient-derived CRC orga-
noid (PDO) model correlated to the mouse-derived NICD/p53−/−

organoids. The analyzed PDOs harbor p53 mutations (52) and
indeed remained unresponsive to treatment with Nutlin3a, while
the treatment induced cell death in naïve human colon organoids
(SI Appendix, Fig. S5 G, Middle). Inhibition of Notch activity with
the gamma-secretase inhibitor DAPT did not cause obvious
morphological changes (SI Appendix, Fig. S5 G, Right). However,
PDOs exhibited higher Notch signaling activity compared to WT
organoids, assessed by lower ATOH1 and higher HEY1 expression
levels (Fig. 5B). The Notch repressed gene ATOH1 and the Notch
suppressed secretory cell-state geneMUC2 (20) were up-regulated
in WT organoids but remained unchanged in PDOs upon Notch
inhibition (SI Appendix, Fig. S5H). Prolonged inhibition of Notch
signaling reduced the growth of the organoids (SI Appendix, Fig.
S5I) and reduced the levels of pErk1/2 and activated YAP (SI
Appendix, Fig. S5J), demonstrating that Notch activity contributes
to YAP activity and promotes MAPK signaling in PDOs. The
regenerative genes TROP2 and ANXA1 as well as LY6E also
showed higher expression in PDOs (Fig. 5B), which also exhibited
higher nuclear YAP (SI Appendix, Fig. S5K) and higher H3K4me3
and MLL1 levels (Fig. 5 C and D), compared to naïve colon
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organoids. We treated patient-derived organoids with the Yap
inhibitor VP and the Menin-Mll1/2 inhibitor MI-2. VP treatment
impaired the growth of the human organoids (SI Appendix, Fig.
S6A). Treatment with MI-2 for 24 h strongly reduced H3K4me3
(SI Appendix, Fig. S6B), and prolonged MI-2 treatment reduced
the growth and caused death of the human organoids (Fig. 5E),
while naïve colon organoids survived (SI Appendix, Fig. S6C). We

also detected reduced expression of the Yap targets CTGF and
CYR61 in PDO upon 24 h of MI-2 treatment (SI Appendix, Fig.
S6D). By lentiviral transduction, we introduced a doxycycline-
inducible shMLL1 cassette into the human tumor organoids,
which upon induction coproduces turboRFP, allowing monitoring
of shRNA production (35). Stable integration of the cassette was
monitored by GFP expression (Fig. 5F and SI Appendix, Fig. S6E).
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treated NICD/p53−/− organoids (Lower) for E-cadherin (red) and Yap (green); Middle, magnifications of Insets. (Scale bar, 50 μm.) Quantification of immu-
nofluorescence intensity of nuclear Yap on the Right. (B) Relative mRNA expression of Yap target genes comparing untreated and PP2-treated NICD/p53−/−

organoids. (**P ≤ 0.001, ***P ≤ 0.0001.) (C) Western blot for Mapk activation in organoids with and without doxycycline-induced expression of activated YAP
(S5A). (D) Tracking of individual NICD/p53−/− organoids over time treated with U0126 (Mek1/2 inhibitor) and SCH772984 (Erk1/2 inhibitor). (E) Concentration-
dependent viability of NICD/p53−/− organoids treated with Mek1/2 and Erk1/2 inhibitors (RLU: relative light units).
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Noninduced organoids did not express turboRFP (SI Appendix,
Fig. S6E). Eight days after MLL1 knockdown organoids producing
shMLL1 (green and red) failed to grow (SI Appendix, Fig. S6E).
Only organoids incapable of MLL1 knockdown grew (green only)
(SI Appendix, Fig. S6E, marked by green arrow). After 12 d of
induced shRNA expression, organoid cells with MLL1 knockdown
were negatively selected (Fig. 5F, notice the loss of green-red
double-positive organoids/cells, SI Appendix, Fig. S6E). Taken
together, these results reveal that loss of p53 and activation of
Notch signaling promote and maintain a highly proliferative cel-
lular state that resembles the regenerative state and is functionally
linked to Yap and MLL1.

Discussion
Our work shows that combination of Notch activation and p53
ablation induces and locks intestinal organoids in a regenerative
state. This cell state is persistent and enables self-renewal and
growth, independent of otherwise essential niche factors. The
regenerative and niche-factor-independent cell state is only ac-
quired upon combination of Notch activation and loss of p53 and

involves activation of Yap, which is required for self-renewal and
viability. Yap orchestrates high proliferation by promoting Mapk
signaling and elevates H3K4me3 in concert with Mll1. We show
that Yap interacts with Mll1 and Wdr5, which suggests a con-
nection of Yap with Mll1-mediated histone methylation.
Intestinal repair programs involve transient increases in nu-

clear Yap (8, 10, 37) and increased proliferation and expression
of genes specific for regenerative epithelia, such as Clu, Anxa-1,
and Trop2 (8, 31). These processes occur to induce a highly pro-
liferative epithelium, which is essential for wound healing. During
regeneration this is a transient process, while our data here suggest
that mutational processes may aberrantly induce and maintain such
a state, which could predispose cells to carcinogenesis. We dem-
onstrate thatNICD/p53−/− organoids exhibit pronounced activation
and nuclear translocation of Yap as well as Mll1 that locks cells in a
regenerative and highly proliferative cell state. During regenera-
tion, intestinal epithelial cells are reprogrammed into a primitive
state, which encompasses the activation of Yap and suppression of
classical adult stem cell genes (8).NICD/p53−/− organoids resemble
this and exhibit pronounced induction of regenerative genes and a
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decreased expression of the classical adult intestinal stem cell genes
Ascl2 and Lgr5. In organoids and in vivo the regenerative cell state
with high Yap expression is induced by altered signaling, which has
been linked to changes in the extracellular matrix (8). The two
mutations in NICD/p53−/− organoids are sufficient to induce this
regenerative cell state, promote Yap target genes, and constitu-
tively elevate the expression of the regenerative genes Clu, Anxa-1,
and Trop2. Clu is expressed by unique cells in the intestinal epi-
thelium, which transiently expand in a Yap1-dependent manner
upon tissue injury (8, 31). This Clu+ cell population is subsequently
able to replenish Lgr5+ stem cells and to regenerate the epithelium
(31). Regeneration involves the reformation of crypt-based stem
cell niches, which requires the generation of Notch-active stem
cells and Notch-inactive secretory Paneth cells. In a process called
symmetry breaking, Yap activity causes expression of Notch li-
gands, which results in Notch activation in adjacent cells. Such
Notch-active cells down-regulate the expression of Notch ligands,
which in turn results in lower Notch activity in the neighboring,
Yap-active cell. The cells with low Notch activity differentiate into
secretory Paneth cells that promote reconstitution of the stem cell
niche (53). Of note, Notch signaling prevents secretory cell dif-
ferentiation (21, 28). Accordingly, the constitutive Notch activity in
NICD/p53−/− organoids blocks symmetry breaking and secretory
cell differentiation, and cells adopt a spheroid shape and are
locked in a Yap-active regenerative state. Furthermore, we dis-
covered that Yap activity results in Erk activation, and thus may
promote the Egf-independent growth and resistance to Mek1 in-
hibition of NICD/p53−/− organoids. Mechanisms of growth factor-
independent activation of Erk by Yap has been described involving
the AXL receptor kinase (54), as well as Mek-independent Erk
activation (55). Moreover, it has been shown that Yap transcrip-
tional activity mediates resistance to MEK1/2 inhibitors (56, 57).
Together, Yap and Notch signaling activity control organoid
growth and maintenance of the regenerative cell state.
A remarkable finding of our study is the crucial role of Mll1

and H3K4 trimethylation in the regenerative NICD/p53−/− orga-
noids. Mll1 has been demonstrated to take part in reprogramming
processes (43–45), changes in histone modifications such as
H3K4me3 occur during cell reprogramming, and reprogramming
factors recruit core components of Mll histone methyltransferase
complexes like Wdr5 (58). In addition, the reprogramming factor
Yap has been implicated in chromatin remodeling (59). We here
find that Yap interacts with Wdr5 and Mll1 in NICD/p53−/−

organoids, which suggests a link between Yap-induced reprog-
ramming and Mll1 activity in the regenerative intestinal epithe-
lium. Our data reveal Mll1 as an epigenetic factor that is involved
in Yap-dependent reprogramming into a fetal-like cell state.
Whether Mll1 participates in the control of symmetry breaking in
cell specification is an interesting revelation for future research.
We found that the high nuclear levels of Yap in NICD/p53−/−

organoids were dependent on active Src, which supports the
finding of integrin-regulated and Src-dependent Yap activation in
cell reprogramming during regeneration (8). In hematopoiesis,
integrin signaling is induced by Mll1 (60). These data support the
notion of a signaling cascade of Mll1, integrin/Src, and Yap in
NICD/p53−/− cells.
In colorectal tumors, Notch1 has been shown to characterize a

subset of cancer stem cells that are undifferentiated, proliferative,
and self-renewing, but lack expression of the characterized cancer
stem cell markers such as Lgr5 (61). Such Notch1+ cancer stem
cells were not analyzed for Yap activity. However, given similar
properties of the Notch1+ cancer stem cells and our NICD/p53−/−

organoids, coherent combination with our observation that Notch
activity promotes Yap in patient-derived organoids supposes that
Yap activity might promote the Notch-active cancer stem cell.
While the role of Yap in cancer is well established (15), the

implication of Mll1 and histone modifiers in colon cancer is
an emerging field of research (47). Recent experiments in cell

cultures and in xenografted tumor cells showed that Mll1 is
crucial in solid cancer cells (62–64). We had previously shown
that genetic and pharmacological inhibition of Mll1 in mouse sal-
ivary gland, human head and neck cancer, and a Wnt-dependent
intestinal cancer model prevented tumor formation (46, 47). In
leukemia, inhibition of Mll1 and other chromatin modifiers is ef-
fective as a treatment option (65, 66). We here show that treatment
of mouse and human intestinal tumor organoids with the small
molecule Menin-Mll1 inhibitor MI-2 strongly decreases H3K4me3,
cell proliferation, and organoid viability. Cells of human colon
cancer organoids with induced knockdown of Mll1 were negatively
selected, which further indicates the crucial role of Mll1 in sus-
taining these cancer cells. Our study suggests that the Menin-Mll1
complex is a key regulatory unit in intestinal cancer and proposes
future investigations into Mll1 as a novel therapeutic target in
colorectal cancer.
Altogether, our study points to a crucial role of Notch, Yap,

and the Mll1/Wdr5 complex in intestinal tumorigenesis and re-
generation. The data suggest that constitutive activation of Notch
in p53-deficient cells promotes Yap and Mll1, reprograms cells
into a regenerative state, induces niche-factor-independent growth,
and—if persistent—renders cells susceptible to tumorigenesis.

Materials and Methods
See SI Appendix, Supplementary Methods for additional details.

Organoid Culture. Organoids were generated from small intestine of Villin-
CreERT2; NICDflox/flox; p53flox/flox mice (25), cultured in small intestinal orga-
noid media, and treated with the indicated compounds. Mutagenesis was
induced in culture 4-OHT (details in SI Appendix, Supplementary Methods).

Colorectal Cancer Samples and Patient-Derived Cancer Organoid. Analysis of
human colon material was approved by the local Institutional Review Board
of Charité University Medicine (Charité Ethics, 10117 Berlin, Germany) (EA 1/
069/11 and EA2/008/18) and the ethics committee of the Medical University
of Graz (Ethics Commission of the Medical University of Graz, 8036 Graz,
Austria), confirmed by the ethics committee of the St. John of God Hospital
Graz (23-015 ex 10/11). Experiments conformed to the World Medical As-
sociation Declaration of Helsinki and the Department of Health and Human
Services Belmont Report. Obtained samples were deidentified before prep-
aration and analysis in the laboratory. Cancer organoid and naïve WT colon
organoidcultures were established and propagated as described before
(51, 67).

Generation of Lentiviral Particles. For doxycycline-inducible shRNA knock-
down of Yap and Mll1 in combination with a fluorescent reporter the pIn-
ducer tool kit vectors were used (35); lentiviral particles were produced to
infect organoids (details in SI Appendix, Supplementary Methods).

Histology, Immunohistochemistry, and Light Electron Microscopy. Immuno-
histochemistry was performed on formaldehyde-fixed and paraffin-
embedded sections. Images were taken with a DIM6000 (Leica), LSM710
(Zeiss), and CSU-W1 (Nikon). Images were analyzed with Fiji and Imaris 8
(Bitplane/Andor) software. For electron microscopy, ultrathin sections of
fixed organoids were stained with uranyl acetate and lead citrate, and ex-
amined at 80 kV with a Morgagni electron microscope (details in SI Ap-
pendix, Supplementary Methods).

Western Blots and Coimmunopreciptiation. See SI Appendix, Supplementary
Methods for details.

qRT-PCR and RNA Sequencing. Total RNA of organoids was isolated using
TRIzol extraction (Invitrogen) and purified via phenol/chloroform extraction.
RNA was reverse transcribed with random hexamer primers (Invitrogen) and
MMLV Reverse Transcriptase (Promega, 200 U/μL), following the manufac-
turer’s instructions. For quantitative reverse transcription, PCR was performed
in a CFX96-C1000T thermal cycler (Bio-Rad) or RNA was further processed for
mRNA sequencing (details in SI Appendix, Supplementary Methods).

Data Availability. RNA-sequencing data have been deposited in ExpressArray
(http://www.ebi.ac.uk/arrayexpress/experiments/E-MTAB-6588). All study data
are included in the article and/or supporting information.
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