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Abstract

Sepsis is a series of clinical syndromes caused by the immunological response to infection. The clinical evidence for sepsis
could typically attribute to bacterial infection or bacterial endotoxins, but infections due to viruses, fungi or parasites could
also lead to sepsis. Regardless of the etiology, rapid clinical deterioration, prolonged stay in intensive care units and high
risk for mortality correlate with the incidence of sepsis. Despite its prevalence and morbidity, improvement in sepsis
outcomes has remained limited. In this comprehensive review, we summarize the current landscape of risk estimation,
diagnosis, treatment and prognosis strategies in the setting of sepsis and discuss future challenges. We argue that the
advent of modern technologies such as in-depth molecular profiling, biomedical big data and machine intelligence methods
will augment the treatment and prevention of sepsis. The volume, variety, veracity and velocity of heterogeneous data
generated as part of healthcare delivery and recent advances in biotechnology-driven therapeutics and companion
diagnostics may provide a new wave of approaches to identify the most at-risk sepsis patients and reduce the symptom
burden in patients within shorter turnaround times. Developing novel therapies by leveraging modern drug discovery
strategies including computational drug repositioning, cell and gene-therapy, clustered regularly interspaced short
palindromic repeats -based genetic editing systems, immunotherapy, microbiome restoration, nanomaterial-based therapy
and phage therapy may help to develop treatments to target sepsis. We also provide empirical evidence for potential new
sepsis targets including FER and STARD3NL. Implementing data-driven methods that use real-time collection and analysis
of clinical variables to trace, track and treat sepsis-related adverse outcomes will be key. Understanding the root and route
of sepsis and its comorbid conditions that complicate treatment outcomes and lead to organ dysfunction may help to
facilitate identification of most at-risk patients and prevent further deterioration. To conclude, leveraging the advances in
precision medicine, biomedical data science and translational bioinformatics approaches may help to develop better
strategies to diagnose and treat sepsis in the next decade.
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Background
Sepsis is a persistently growing health concern in America, espe-
cially in light of the aging population demographics. More than
1.5 million people are affected by sepsis in the USA each year,
leading to 250 000 deaths [1]. This results in an estimated mortal-
ity rate of 17%, which is staggering for such a prevalent disease.
Sepsis is also a burden to the healthcare system financial state,
accounting for $23.7 billion in 2013 alone (6.2% of all hospital-
ization costs) [2]. It is the primary cause of death of intensive
care unit (ICU) patients, even as sepsis patients occupy only
10% of ICU beds [3]. Mortality rates attributed to sepsis remain
disappointingly high at 15–20%, necessitating novel diagnostic
and treatment strategies for earlier prevention and manage-
ment to improve clinical outcomes [3, 4]. Traditional approaches,
which assay single biomarkers, largely fail to identify most of the
patients at risk for sepsis and instead are better suited to predict
severity and mortality [5]. Hence, we need a systems medicine
approach to diagnose, treat and estimate the prognoses of sepsis.
With the introduction of longitudinal electronic health records
(EHR) [6, 7], low-cost genomics and other molecular profiling
technologies [8], novel machine intelligence algorithms [9, 10],
modern drug discovery and companion diagnostics develop-
ment strategies [11], we now are equipped with a plethora of
powerful tools not previously available [10, 12]. In this review,
we address some of the current challenges, and forecast how
various aspects of precision medicine, biomedical data science
and translational bioinformatics approaches will collaboratively
help us to combat sepsis.

Defining sepsis

Difficulties in treating sepsis is partly due to challenges in under-
standing the mechanisms underlying the syndrome given its
wide pathophysiological and clinical variability. Even a strict

definition of sepsis has been elusive. In 1992, an international
consensus panel first defined sepsis as a systemic inflamma-
tory response syndrome (SIRS) [13]. In addition to establishing
the SIRS criteria, the panel also defined sepsis, severe sepsis,
septic shock, sepsis-induced hypotension and multiple organ
dysfunction syndrome [14]. Severe sepsis includes acute organ
dysfunction whereas septic shock results from significant reduc-
tion of tissue perfusion due to hypotension that is refractory
to fluid resuscitation and with hyperlactatemia [14]. Sepsis was
recently reevaluated by the task force of the European Society
of Intensive Care Medicine (ESICM) and Society of Critical Care
Medicine (SCCM) in their guidelines in 2014, in order to redefine
sepsis and the criteria for diagnosis. In the Sepsis-3 paper, sepsis
was re-defined as a ‘life-threatening organ dysfunction caused
by a dysregulated host response to infection’ [15]. This definition
was clinically supported by a source of infection with two or
more quick sequential organ failure assessment (qSOFA) criteria.
Sepsis-3 removed the severe sepsis classification entirely as no
objective definition for end-organ dysfunction currently exists.
It was also recognized by ESICM/SCCM guidelines that sepsis
remains a poorly understood process. Therefore, no gold stan-
dard could yet be established to unequivocally identify a septic
patient.

The wide variability in the clinical manifestations of sepsis
contributes to the challenges in its definition. As a syndrome,
the constellation of septic signs and symptoms is largely
dependent on the site of infection, the causative pathogen, the
pattern of end-organ dysfunction and the underlying healthy
physiological profile of the patient [16]. Although the etiology
of sepsis is unknown in one-half of cases, the majority of
cases are caused by hospital or community acquired gram
positive cocci Staphylococcus aureus, pathogenic Streptococcus spp.
and gram negative bacilli such as Escherichia coli, Pseudomonas
aeruginosa and Klebsiella [17]. In addition, fungi species such
as Candida albicans, Histoplasma and (especially in the case of
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patients with AIDS) Pneumocystis jirovecii are known to cause
sepsis in immunocompromised patients [18, 19]. Symptoms in
severe sepsis and septic shock that indicate organ dysfunction
include altered mental status, dyspnea, oliguria, jaundice and
dysglycemia [16, 20]. Unfortunately, many of these symptoms
are not highly specific to sepsis. Furthermore, the body’s
physiologic response to increase systemic vascular resistance
by endogenous catecholamines during the early stages of septic
shock may offset the initial drop in blood pressure due to
decreased effective intravascular volume from diffuse capillary
leakage [21]. However, later stages of sepsis are characterized
inability to effectively compensate and resulting systemic tissue
hypoxia leading to acidosis and vasodilation [22]. A better
understanding of the complex host response elicited during
sepsis further suggests that the SIRS criteria of 1992 needed to
be redefined in order to more accurately diagnose patients at risk
for clinical deterioration. As the Sepsis-3 criteria has described,
‘sepsis is a multifaceted host response to an infecting pathogen
that may be significantly amplified by endogenous factors’
[15]. Rather than a solely host pro-inflammatory response to
infection, sepsis is now recognized as a complex interplay
between both pro- and anti-inflammatory responses [23].
Inflammatory stimuli from the pathogens trigger host immune
cells to release proinflammatory mediators such as TNF-a, IL-1,
IFN-y, IL-12 and IL-18. These proinflammatory mediators
interaction with prostaglandins, platelet activating factors,
adhesion molecules and stress hormones results in vasodilation,
increased vascular permeability and reduced perfusion. In
addition, pro-inflammatory molecules activate opposing anti-
inflammatory molecules, such as IL-10, that lead to periods
of immunosuppression. These periods of immunosuppression
can contribute to increased risk of nosocomial infections
and reactivation of latent viruses [24]. This multifaceted
host immune response with major nonimmunologic factors
(cardiovascular, neuronal, autonomic, hormonal, metabolic and
coagulation) may contribute to diminished oxygenation of the
end-organs, leading to acute organ dysfunction.

Risk stratification and diagnoses
Sepsis is a syndromic condition that increases mortality in
both pediatric and adult populations. Early identification may
help set the course of treatment strategies and maximize
therapeutic efficacy. The need to develop earlier preemptive
identification and prophylactic treatment will benefit all
ages but will clearly require personalized approaches based
on different sub-populations (immunocompromised or non-
immunocompromised; geriatric versus pediatric etc.). Devel-
opment of new risk stratification algorithms, multianalyte
diagnostics and biomarker panels are emerging to proactively
identify patients at risk for sepsis. In this section, we propose
the development of integrative approaches and multi-analyte-
based diagnostic aids coupled with machine learning to enable
better outcomes. We also discuss the possibilities of designing a
polygenic risk score for sepsis and associated outcomes.

An integrative approach for the accelerated diagnoses
and personalized treatment

Much work has focused upon improving early diagnosis, treat-
ment and prognosis of sepsis with diagnosis criteria, biomarkers
of sepsis and host genomics. Identifying biomarkers associ-
ated with sepsis offers multiple clinical benefits. By expanding

clinical biomarkers of sepsis, such as serum lactate and pro-
calcitonin [25], with pro-inflammatory and anti-inflammatory
cytokines, chemokines and acute phase proteins, we will be able
to measure and create unique biochemical profiles for sepsis.
Profiling of, for instance, 16 s ribosomal RNA via PCR can help
identify a causative bacterial agent even when blood cultures are
negative [26]. Current approaches for diagnosis and treatment
include antimicrobial stewardship via microarray analysis [27]
and point of care detection of bacterial DNA from whole blood
[28], but combining new sequencing technologies with machine
intelligence could improve the yield of these approaches. In
addition, changes in biomarkers over the clinical course of sepsis
can be used to monitor improvement or deterioration during
management. Also, intensive biochemical profiling could help
identify sepsis patients at higher risk for poorer outcomes such
as with multiple organ dysfunction [25, 26]. Finally, the use of
biomarkers in conjunction with a patient’s unique genetic sus-
ceptibility to infection will allow us to generate individualized
prevention strategies and medical therapies for patients at risk
with sepsis [29]. As a result, the clinical approach to sepsis will
evolve to require a systems view with analysis of patient vitals,
unique biomarker profile, metabolites, host genomic profile and
his or her microbiome [30, 31]. Diagnostics aids can also be
built by combining different omics modalities and multi-analyte
technology platforms. For example, proteogenomics is a hybrid
biotechnology approach that combines genomic sequencing or
transcriptomic sequencing with proteomics profiling to pro-
vide a static-to-dynamic view of biological systems. A proteoge-
nomics platform was recently developed to develop a liquid
biopsy to detect multiple types of cancers [32]. By similarly using
biomarker signatures from different analytes and combining
predictive models using proteogenomics, metabo-proteomics
and other hybrid-omics technologies can be built for diagnoses
and prognoses (Figure 1) [31, 33, 34]. Furthermore, responders
and non-responders can be identified using multi-modal diag-
nostic platforms. The refinement of these methods could be
used to develop personalized, comorbidity-based drug discovery
strategies.

Predictive algorithms for accelerated diagnoses
of sepsis

Designing predictive models may help stratify patients who may
benefit with the end result of improved resource allocation and
outcomes [35–41]. A variety of algorithms are already used to
predict stages of clinical acuity in the setting of hospital admis-
sions (See Table 1) [42]. Several risk stratification tools have also
been reported that may potentially give an early indication of
sepsis. Variants of algorithms like the modified early warning
system, such as TREWScore [43] were recently proposed to help
predict patients at risk. TREWScore is a targeted real-time early
warning score that predicts which patients are most susceptible
to septic shock within few hours. This prediction is achieved
using a Cox proportional hazards model with L1 regularization
as a supervised model with time until the onset of septic shock
as the dependent variable. The model assumes that the onset
of shock and the sepsis severity levels are critical. The baseline
hazard function was fit using a multiple imputation method and
estimated from a subset of 400 000 time-to-event and feature
pairs from the development set. This has been used to repeatedly
sample the event time for each interval-censored sample and
generate 100 complete copies of the development dataset. A
separate model was trained from each of the N copies of the
development dataset. To predict on data from a new subject,
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Figure 1. Translational bioinformatics framework for developing multi-analyte, heterogeneous, data-driven diagnostic aid for sepsis.

Table 1. Representative list of algorithms for predicting patient outcomes in the setting of sepsis

Sepsis risk algorithms Abbreviation Benefits

BOMBARD BOMBARD BOMBARD was more accurate than SIRS and qSOFA at
predicting severe sepsis/septic shock and sepsis mortality.

Hamilton early warnings system HEWS Good discriminative ability for predicting the occurrence of a
critical event among septic patients.

Modified early warning system MEWS Provides great predictive value and accuracy for early clinical
deterioration.

National early warning score NEWS NEWS has better performance than qSOFA and SIRS.
Quick version of sequential organ failure
assessment

qSOFA Ability to predict mortality based on organ dysfunction
severity and easier to score clinically than SOFA.

Reasons for geographic and racial differences
in stroke-severe sepsis risk score

REGARDS-SSRS Effective for predicting community-dwelling adults at high
risk of sepsis.

Systemic inflammatory response syndrome SIRS Higher sensitivity to detect sepsis-related mortality than
qSOFA

Sepsis ‘sniffer’ algorithm SSA SSA reduced the risk of incorrectly categorizing patients at
low risk for sepsis, detected sepsis high risk in half the time,
and reduced redundant NST screens.

Targeted real-time early warning score TREWScore Ability to detect at risk patients early using a learned
algorithm model that takes into account many more factors.

predicted risk values were obtained from each of the N models;
these values were combined using Rubin’s equations that com-
pute the final risk value as the average of risk values outputted
from each of the N models. The area under the curve obtained
for the TREWScore was 0.83 (95% CI, 0.81–0.85). At a specificity of
0.67 [false-positive rate of 0.33], TREWScore achieved a sensitiv-
ity of 0.85. Patients were identified at a median of 28.2 h before
shock onset.

A polygenic risk score for sepsis and adverse outcomes

Risk stratification using panel of genetic variants to identify
patients at risk for complex diseases like myocardial infarction,
stroke and neuropsychiatric disorders is an emerging theme
of precision medicine [44–46]. Emerging results from genome-
wide association studies (GWAS) reveal several plausible risk
alleles associated with sepsis and related clinical outcomes
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Figure 2. Emerging targets, pathways from genome-wide association studies of sepsis phenotypes. (A) Molecular neighborhood of FER protein; red nodes are proteins

implicated in regulation of mast cell degranulation. (B) Genome-wide associations of variants implicated in response to sepsis therapy. (C) Biological processes mediated

by the molecular neighborhood of STARD3NL. (D) First-degree interactome of STARD3NL.

[47, 48]. A study that combines GWAS with deep sequencing
identified association of several interesting genes with clinical
outcomes like 28-day mortality after sepsis (VPS13A) and
procalcitonin level in sepsis patients (CRISPLD2). Another GWAS
investigation surveyed the genetic landscape to find the poten-
tial variants indicating survival from sepsis due to pneumonia.
While such investigations address a critical knowledge gap, it
remains elusive whether any common genomic markers could
be predictive of the incidence of sepsis. In the absence of such
direct genomic evidence for predictive sepsis risk, developing a
genetic risk score for various detrimental outcomes associated
with sepsis (heart failure, respiratory arrest, etc.) may help
to find patients that need accelerated care in the context of
an infection (Figure 2). While the health economic utility of
whole-genome sequencing is still being debated, sequencing
the genome and providing such information to compute risk
scores may help to identify and accelerate treatments using
genomic information [49].

Limitations of using singular biomarkers highlights
the need for combinatorial markers of syndromic
stages in sepsis

More than 100 biomarkers are listed in sepsis-related review
articles and meta-analyses showing varying degree of clinical
utilities for diagnoses. Many of these biomarkers are only effec-

tive after the infection reaches a stage where treatment is less
effective or the beginning of major complications arise. Emerg-
ing advances in liquid biopsies [32, 50] and other molecular
signature-based screening of diseases could help in designing
a better diagnostic aid for various stages of sepsis. One such
strategy could involve searching for a combination of existing
biomarkers that could inform the preeminent stages of infor-
mation. Leveraging data from EHR and using laboratory-based
data points across different analytes and building predictive
models may help in building such models preemptive diagnostic
panels. Recently, we build a companion diagnostic aid to predict
response of statin, a drug that reduces blood cholesterol, using a
combination of data from gene expression profiling, biochemical
assays and imaging data integrated using machine intelligence
methods [51]. Similarly, models can be built by data from patients
with sepsis using data already aggregated in EHR by integrating
multi-analytes (genetic variation, protein level, metabolite sig-
nature, gene expression signature etc.) with machine learning
for effective monitoring of sepsis [39, 52].

Recently, Sweeney et al. [53] have developed a diagnostic aid
to classify the underlying infection as viral or bacterial using
gene expression signatures. With a lower negative likelihood
ratio than that of procalcitonin, their integrated antibiotics deci-
sion model (IADM) can be useful to rule out bacterial infections
[36]. IADM has a lower negative likelihood ratio than procal-
citonin. Thus, IADM may be more useful to rule out bacterial
infections that require antibiotics compared to viral infections.
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Figure 3. A personalized genomic framework for developing a polygenic risk for sepsis and associated outcomes.

While several statistical and machine learning algorithms are
making progress in healthcare as decision aids, it should be
noted that such methods have higher degree of false positive
rates and the assessment of the patient’s post prediction—
whether the patients flagged were eventually survived remains
open. Hence, modeling the accelerated identification with pro-
gression of patients through various clinical pathways is critical.
Modeling the end-to-end patient life cycle of the infection from
probability, identification, treatment and recovery from sepsis
using reinforcement learning or Bayesian deep learning methods
may help to improve such models in the future [34, 36, 54].

Treatments and Prognosis
Emerging drug discovery strategies for developing
treatments for sepsis

Current clinical pathways to target patients with sepsis include
rapid response to septic patients and immediate initiation
of antibiotic therapy. Depending on the clinical profile of the
patient and time of sepsis detection, bona fide sepsis diagnosis
can have a mortality rate as high as 30%. Furthermore, the
evolution of drug-resistant forms of sepsis is also a major
concern. Hence, leveraging modern drug discovery approaches
may yield new therapies for sepsis. Here we briefly discuss some
of the emerging themes (computational drug repositioning,
cell and gene-therapy, clustered regularly interspaced short
palindromic repeats (CRISPR)-based genetic editing systems,
immunotherapy, microbiome restoration and nanomaterial-
based therapy and phage therapy) in drug discovery in the
context of sepsis.

New evidence from genomic and phenomic
studies—druggable targets, mechanisms
and therapeutic response in sepsis

As more research focuses on the host immunologic responses
to infection, it has become increasingly clear that genomics
may help broaden our understanding of sepsis’ pathogenesis.
A landmark study in 1988 provided strong evidence for genetic
susceptibility to infection. It demonstrated a 5.8-fold increase

in mortality in adopted children who had at least one biolog-
ical parent die from infection [55, 56]. This set off a gold rush
in genomic research to identify the basis for genetic suscep-
tibility to infection. The prime targets are genes involved in
inflammatory pathways. Initial focus was directed primarily on
single nucleotide polymorphisms (SNPs) in those genes [57].
Advances in sequencing technology and expression analysis led
to the identification of candidate genes, genomic regions, struc-
tural variants, genetic variants and new molecular mechanisms
implicated in sepsis susceptibility [48, 58–66].

A number of polymorphisms in genes for antigen recognition
and inflammatory pathways have been implicated [23]. Recently,
a GWAS has identified a single gene strongly associated with
sepsis survival. Those who are homozygous for the C allele of the
Tyrosine-protein kinase Fer (FER; P = 6.00e-6; dbSNP identifier:
rs4723738) gene were shown to have a 44% reduction in sepsis
mortality [47]. Given the high frequency of this allele, there
could be a substantial population benefiting from this protective
effect. The variant is encoded in chromosome 7 and has a com-
pound role in mediating multiple autoimmune diseases includ-
ing type 1 diabetes, rheumatoid arthritis, juvenile idiopathic
arthritis, multiple sclerosis and Crohn’s disease. The precise role
of FER or its interacting partners in sepsis response remains
elusive and requires further biochemical discovery and trans-
lational research. Empirical protein structure results suggest
that this gene encodes FCH, SH2, and tyrosine kinase domains.
These different domains can be modeled using structural tem-
plates with sequence identity ranging from 40–100%. Thus, this
could be a potential druggable target to modulate therapeutic
responses in sepsis patients (Figure 3). We explored the molec-
ular neighborhood of FER to assess its potential as a target
and identified that within a network of 20 interactors, the pro-
tein–protein interaction network is highly enriched for rele-
vant biological interactions. The interactors collectively mediate
biological processes like regulation of mast cell degranulation,
leukocyte activation and innate immune response. Molecular
functions include IgE receptor activity, and signaling pathways
mediated by tyrosine kinases, whereas cellular localization were
enriched for various membrane locations. Proteins were also
enriched across KEGG pathways including adherens junction, Fc
epsilon RI pathway, cancer, asthma and leukocyte transendothe-
lial migration (Figures 3 and 4).
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Figure 4. Homology modeling of FER protein, a putative target for therapeutic response in sepsis.

Phenome-wide association studies (PheWAS) enables the
simultaneous identification of risk or protection for multiple
phenotypes that are associated with genetic variants [67, 68].
We performed an empirical analysis of the data from PheWAS
catalog (https://phewascatalog.org/phewas) for phenotype
‘Treatment response for severe sepsis’. We found that variants
associated with sepsis response could mediate protective
effects for 203 conditions including migraine, chondrocalcinosis
and pelvic inflammatory disease among others (mapped
genes includes KRT18P32, MKL1, TTC4P1, STARD3NL, NKX2-6;
all observations P ≤ 0.05; OR ≤ 1.00). We further noted that
conditions such as congenital anomalies of head and neck,
congenital anomalies of intensive, hypertensive complications,
jaundice, postinflammatory pulmonary fibrosis etc. were
associated with mapped genes such as MKL1, NKX2-6, STARD3NL,
KRT18P32, TTC4P1 (all observations P ≤ 0.05; OR ≤ 1.00) (Figures 3
and 4). Collectively these phenotypes are indicative of one
or more complications in the setting of sepsis, and could be
indicative of shared pathways driving common pathobiology.
Hence, exploring the genomic and phenomic bases of these
co-morbidity cascades may yield new druggable targets.

We explored the molecular neighborhood of one of these
genes, STARD3NL, using predicted and experimental protein–
protein interaction data from human proteome. The exact
functional role of STARD3NL is yet to be elucidated beyond an
indication as a component of cholesterol transport pathways,
functional enrichment analyses of the molecular neighborhood
(n = 20 genes) indicates that the protein could play a critical role
in viral genome replication and positive regulation by host of
viral release from host cell (Figure 4).

We also analyzed the current druggability status of the four
emerging genes using the Illuminating Druggable Genome—

PHAROS database ([69], see: https://pharos.nih.gov/idg): FER,
STARD3NL, and VPS13A. Briefly, IDG-Pharos provides a four-level
framework for simplifying the target development/druggability
status. Tclin indicates the target have approved drugs with
known mechanism of action; Tchem refers to the evidence targets
with some level of chemical activity evidence; Tbio level suggests
the availability of biological evidence and finally, Tdark applies to
targets without any clinical, chemical or biological information.
Interestingly, FER has nine compounds that could target the
protein and have a Tchem level. Whereas both STARD3NL and
VPS13A have a status of Tbio status that indicates the availability
of biological knowledge about the target. However, both of these
proteins are classified as ‘non-IDG’ candidates that illustrate the
difficulty to target these using current approaches.

Computational drug repositioning

Developing a new molecule or combination therapy to target
a disease requires extensive funding, years of fundamental
research to understand the mechanism, even before any clinical
trials are initiated. However, computational drug positioning
using Food and Drug Administration (FDA) approved compounds
for new indications may reduce upfront costs and decrease
time-to-market [41, 70]. Computational drug repositioning is
a growing area of translational research with evidence for
more than 200 compounds indicated across thousands of
disease indications (See: RepurposeDB—Reference Database
of Drug Repositioning Investigations, http://repurposedb.
dudleylab.org/) [71]. Recently, Ghosh et al. [72] performed
a randomized control trial to assess the efficacy of 650
compounds in Septic patients/C57Bl/6 mice and human
endothelial cells. They identified compounds in the family of

https://phewascatalog.org/phewas
https://pharos.nih.gov/idg
http://repurposedb.dudleylab.org/
http://repurposedb.dudleylab.org/
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3-hydroxy-3-methyl-glutaryl-CoA reductase inhibitor drug class
(statins) as lead candidates. Mechanistically, they propose
that −3-methyl-glutaryl-CoA reductase inhibitors may operate
through a novel Foxo1-angiopoietin-2 mechanism to suppress
de novo production of angiopoietin-2 to inhibit sepsis. Multiple
studies have shown that inflammation plays an integral role
in chronic cardiovascular diseases like coronary artery disease;
see results from CANTOS (https://clinicaltrials.gov/ct2/show/
NCT01327846) and Jupiter trials (https://clinicaltrials.gov/ct2/
show/NCT00239681). Interestingly, it has been demonstrated
that intensive statin therapy is most effective in those with
high baseline levels of inflammation. This may be particularly
relevant as patients die of cardiogenic shock in the setting of
sepsis. Delineating the etiological routs of cardiogenic shock
from bacterial toxins and life-style or genetic attributable
cardiovascular disease is a challenge. Sepsis and cardiovascular
diseases are potentially comorbid, given the role of chronic
inflammation from endothelial dysfunction [73]. Identification
of statins as a putative anti-sepsis agent is an interesting
finding that needs further study. In another study, Kim et al.
[74] used drug repositioning for identifying potential candidates
for SIRS. Computational drug repositioning can also be used to
identify combination of therapies and therapeutic opportunities
especially for comorbid diseases [75–77]. For example, we
recently reported a method to target molecular sub-network
of genes shared by two diseases as plausible signature driving
pathways associated with both diseases [78]. Such pathways
could be targeted specifically using repurposed compounds for
better outcomes.

Cell and gene therapy for sepsis

Cell therapy is typically defined as the administration of living
whole cells to the patient for treatment of diseases. The use
of mesenchymal stem cells as a potential therapy is being
considered given the cells’ immunomodulatory properties on
cytokine and chemokine synthesis in sepsis. MNCs are able to
reduce tissue inflammation and produce antibacterial peptides
that target offending pathogens, thereby reducing morbidity and
mortality. However, there are effective dose uncertainties, high
costs, production challenges and regulatory landscape that must
be considered [79]. Gene therapy is a set of strategies that modify
the expression of an individual’s genes or repair abnormal genes.
This involves administering specific DNA or RNA molecules
using viral or non-viral vectors (see https://www.asgct.org/
education/gene-and-cell-therapy-defined and https://www.
fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/
default.htm). With the advent of single-cell RNA sequencing
and other technologies, disease level cell profiles can help
find population of cells increased or depleted in the setting
of sepsis and its phenotypes. Kymriah (tisagenlecleucel) is a
cell-based gene therapy chimeric antigen receptor-T cell that
specifically induces an immune response against cancer cells
for certain pediatric and young adult patients with a form of
acute lymphoblastic leukemia. Similarly, developing cell-specific
immune response to sepsis-associated cells may help to improve
prognoses [80, 81].

Immunotherapy for sepsis

Application of immune therapy is an idea that is more than
three decades old [82–85]. However, the availability of modern
immunotherapy strategies combined with next-generation
sequencing technologies [86–89] can be applicable to a variety

of conditions including cancers, infectious diseases [90], respi-
ratory diseases, [90] and cardiovascular diseases [91]. Several
therapeutics that combine the concept of immunotherapy with
cell and gene therapies are in the advanced stages of clinical
trials for various cancers. Immunotherapies are currently
being evaluated as a candidate for various infectious diseases
including viral, bacterial and fungal infections [92–98]. Some of
the most promising immunotherapies currently being studied
for use in sepsis attempt to reduce T cell exhaustion and
apoptosis or augment immune cell proliferation and activation.
Recombinant interleukin-7 blocks apoptosis while enhances
lymphocytic activation and proliferation (Figure 5). Programmed
cell death 1 (PD1) or PDL1-specific antibodies inhibit PD1-PDL1
interaction to reduce apoptosis and augment T cell activation
by macrophages as well. Recombinant interferon-γ ; (IFN−γ )
and recombinant granulocyte/macrophage colony-stimulating
factor (GM-CSF) primarily act on monocytes/macrophages to
enhance activation of innate immunity. Both IFN−γ and GM-
CSF help increase expression of HLA-DR, enhancing antigen
presenting capacity, and pro-inflammatory cytokine production.

Phage therapy to target sepsis

Phage therapy is an emerging therapeutic approach to leverage
lytic bacteriophages to combat specific bacterial strains associ-
ated from infection. Phage therapy is currently being explored
as a therapeutic strategy for sepsis [99–101]. An area of grow-
ing concern in the prevention of sepsis is the emergence of
antimicrobial-resistant bacteria (AMR) [102]. AMR is defined as
having either having a multi-drug resistance (MDR) or exten-
sive drug resistance, formerly well-managed bacterial strains
like Mycobacterium tuberculosis have emerged now as potentially
lethal threats in cases where the bacterial load cannot be man-
aged by traditional therapy. With the prolific use and misuse of
antibiotics there is concern among the healthcare community
that proper antibiotic stewardship may not be enough to pre-
vent the increase of drug resistant bacteria involved in many
sepsis cases [103]. Bacteria that have adapted to be resistant
to modern forms of bacteriostatic medications are increasing
in number and are beginning to present more often, so new
approaches like bacteriophage therapy are emerging as a poten-
tial responses to bacteria-induced sepsis. Bacteriophages are
viral bodies that have evolved to be highly specific in targeting
specific bacterial strains for reproduction while typically ignor-
ing human cells. Already MDR strains like P. aeruginosa have
drastically low survival rates if they proliferate into extraintesti-
nal spaces, but there is promising results that a combination of
P. aeruginosa bacteriophage treatment and antibiotics can turn
back the inflammatory response and control bacteria load to
the point of recovery [104]. It should be noted that the optimal
use of antibiotics is critical to ensuring the safety, efficacy and
outcomes for such treatments.

Microbiome restoration using probiotics and synbiotics

Emerging evidence also suggests that gut microbiome may also
play a critical role in sepsis and its acuity in the clinical setting
[105–113]. For example, Bifidobacteria spp. were upregulated in
controls compared to late onset sepsis samples and Escherichia
spp. were upregulated in necrotizing enterocolitis and sepsis
[106, 114]. Similarly, evidence for the role of microbial dysbiosis in
the microbiome, pathobiome as well as microbiome restoration
are emerging in sepsis. For example, a randomized symbiotic
trial has shown that sepsis in rural areas of countries could be

https://clinicaltrials.gov/ct2/show/NCT01327846
https://clinicaltrials.gov/ct2/show/NCT01327846
https://clinicaltrials.gov/ct2/show/NCT00239681
https://clinicaltrials.gov/ct2/show/NCT00239681
https://www.asgct.org/education/gene-and-cell-therapy-defined
https://www.asgct.org/education/gene-and-cell-therapy-defined
https://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/default.htm
https://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/default.htm
https://www.fda.gov/biologicsbloodvaccines/cellulargenetherapyproducts/default.htm
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Figure 5. Emerging immunotherapy opportunities in the setting of sepsis.

prevented using a symbiotic diet (mix of probiotic and prebiotic
strains [115]) containing L. plantarum ATCC-202195 [116]. Further
studies would need to understand whether such synbiotic treat-
ment would be beneficial for adults and patients with multiple
comorbidities.

Nanobiotechnology-based theranostic approaches
for sepsis

Nanotechnology and its recent advances in the medicine offers a
new class of treatment, diagnostic and theranostic opportunities
for sepsis [117]. For example, sialic-acid decorated nanoparticles
[118] biological microelectromechanical systems [119], nanopar-
ticles (cerium oxide [120], antioxidant nanoparticles [121],
biomimetic nanoparticles [122], sialic acid-coated nanoparticles
[118]) are being explored as materials for developing diagnostic
and therapeutic approaches to target sepsis.

Genetic editing to target sepsis

Genetic editing is a modern approach for precise genetic
engineering to edit (insert, delete or modify) genomic regions
[123–125]. New methods including CRISPR and CRISPR-associated
genes based systems are particularly precise in their ability to
edit genomic regions with varying degree off-target effects [126,
127]. While the use of genetic editing is an active area of research,
genetic editing could be used to diagnose or target the infectious
agents in the context sepsis [128–132].

Prognosis of sepsis therapies

Compared to risk stratification diagnoses and treatment, sep-
sis prognoses may be the least studied research theme in the
context of the disease. Long-term prognoses of sepsis patients
are poor. Patients with no organ damage have 15–30% mortality
rates, whereas patients with severe sepsis or septic shock have a
mortality rate of 40–60% [133–136]. While there are several stud-
ies reporting advances in the early detection of sepsis, factors
that drive successful, long-term prognoses remain elusive. As a
range that involves ∼20% differences, precisely subtyping sepsis
and modeling care pathways may help to improve prognoses.
Care pathway modeling is an emerging theme in biomedical
and healthcare data science [137–139]. Briefly, care pathway
modeling estimates the disease or syndromic trajectory for a
given patient and how perturbations via medications or other
clinical interventions could help to lead to a positive outcomes
and better prognostic outlooks [132, 140, 141]. Modeling various
care pathways for different age groups and patient subtypes may
lead to the development of intelligent clinical decision systems.
Combing various biomedical and healthcare data sources and
building a national and international case repository with exten-
sive clinical history and patient reported information may help
to tackle this challenging problem [38].

Discussion
Sepsis is a complex infectious disease with diverse clinical
manifestations. Viral, bacterial and fungal agents as well as
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metagenomic interactions are implicated in sepsis and dif-
ferential phenotypes. Although not well understood, there
is an association between pneumococcal pneumonia and
septic shock. In a recent study, 114 of 1041 patients with
pneumonia had a septic shock upon admission [142]. However,
independent risk factors could be involved such as tobacco
smoking and chronic corticosteroid treatment. As well as
pneumonia, bloodstream infection has a higher correlation to
triggering sepsis. Septicemia, a bloodstream infection, which
involves dangerous bacteria and toxins transporting through
the human body, that can eventually lead to sepsis if left
untreated since after all sepsis is a severe complication of
septicemia. Analyzing single-modality data would only lead
to the limited understanding of the pathobiology. However,
leveraging the combination of biomarkers, data from EHR and
combining with in-depth molecular profiling and modeling
using multi-scale modeling may yield new insights. Sepsis
is a syndrome with a high risk of mortality, ICU visits and
hospital readmissions. Sepsis is evolving as a significant
clinical, scientific and operational encounter that influences
healthcare outcomes. Precise diagnoses with ample time for
clinical interventions, treatment with higher response rates and
progressive outcomes in sepsis remain as significant challenges.
In this article, we provided an overview of emerging technologies
including the role of computational medicine, novel therapeutic
opportunities and application of machine intelligence methods
that may help improve them. As a primary cause for mortality
rates associated with hospitalization, developing informatics
solutions, predictive models and personalizing risk estimates
would have significant implications in quality of healthcare
delivery and influence patient outcomes. However, mere data-
driven methods or informatics approaches may not provide
results without constant feedback from clinical pathways and
patient trajectories.

Emerging role of translational bioinformatics
approaches in sepsis

Translational bioinformatics approaches are collectively accel-
erating the discovery of therapeutic strategies for rare and
common diseases. Recent progress in cardiology, oncology,
immuno-oncology and autoimmune diseases was the net
result of growth in computing, artificial intelligence, biomedical
technologies and translational bioinformatics. However, the
impact of translational bioinformatics approaches in the area
of sepsis is very limited. For example, PubMed search retrieves
around 700 papers for a query with ‘sepsis + bioinformatics’
compared to 10× times publications that discuss bioinformatics
approaches in the setting of cancer and cardiovascular diseases.
The apparent lack of translational bioinformatics research could
be attributed to various reasons; one reason could be the lack
of centralized informatics resources that compile a variety of
biomedical and clinical data in the setting of sepsis. Organizing
the biomedical data and combining clinical data including
patient trajectories, clinical history and therapeutic responses
may help to build a community that could ask broad research
questions to understand various molecular etiologies of sepsis
and target them using individualized approaches.

Future prospects

Despite the availability of care guidelines that reliably improve
outcomes, overall sepsis mortality has increased in the past
decade. Most healthcare organizations are struggling with

mortality rates between 19–30% for bona fide sepsis patients.
This high morbidity and mortality adversely influence quality of
healthcare delivery, revenue-cycle, and reduce patient recovery
rates. The clinical implications from different sepsis cases
must be considered for data analysis. Understanding root and
route of sepsis incidents from heterogeneous biomedical and
health care would help to find identify drivers that prevent
infection. Designing translational bioinformatics resource that
aid in developing predictive models, multianalyte diagnostic
aids, targeted drug discovery and repositioning strategies
would help to stratify and treat patients at risk and improve
prognoses.
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Key Points
• Sepsis is a life-threatening condition that affects more

than 30 million people worldwide every year with high
mortality rates (15–20%).

• Irrespective of advances in translational bioinformatics,
sepsis remains to be an understudied theme compared
to cancer and cardiovascular diseases.

• Understanding the clinical trajectory that leads to sep-
sis incidents from real-world data streams would help
to develop diagnostics and therapeutic approaches to
target sepsis and reduce its global disease burden.

• Developing predictive models using molecular data
combined with clinical data would help to stratify
patients at risk for improved care and design healthcare
strategies that improve outcome and reduce mortality.

• Combining biomedical big data with translational
bioinformatics approaches and machine intelligence
could help to develop novel strategies to combat sepsis.
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