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Abstract

Modern machine learning techniques (such as deep learning) offer immense opportunities in the field of human biological
aging research. Aging is a complex process, experienced by all living organisms. While traditional machine learning and
data mining approaches are still popular in aging research, they typically need feature engineering or feature extraction for
robust performance. Explicit feature engineering represents a major challenge, as it requires significant domain knowledge.
The latest advances in deep learning provide a paradigm shift in eliciting meaningful knowledge from complex data
without performing explicit feature engineering. In this article, we review the recent literature on applying deep learning in
biological age estimation. We consider the current data modalities that have been used to study aging and the deep learning
architectures that have been applied. We identify four broad classes of measures to quantify the performance of algorithms
for biological age estimation and based on these evaluate the current approaches. The paper concludes with a brief
discussion on possible future directions in biological aging research using deep learning. This study has significant
potentials for improving our understanding of the health status of individuals, for instance, based on their physical
activities, blood samples and body shapes. Thus, the results of the study could have implications in different health care
settings, from palliative care to public health.

Key words: deep learning; biological age; bioinformatics; biomarkers; anthropometry; locomotor activity; electronic health
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Introduction
Aging is a gradual process experienced by all living organisms.
Human aging is a complex process that depends on different
types of tissues that are comprised of billions of cells. Aging
leads to diseases, functional performance deterioration and both

physical and physiological damage over time. Age estimation is
an important medical and public health challenge. The major
challenge is that most measures used to characterize age, for
instance, biological markers vary significantly from person to
person, even for people with the same chronological age (CA).
The reason is that, the multi-faceted nature of aging with its

https://academic.oup.com/
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many unknowns (example, genetics, nutrition, body shape,
health condition, cardiorespiratory fitness, social conditions
and life style) contribute to influence the perceived age of an
individual. CA is based on the date of birth. However, biological
age (BA) is a conceptual idea that a person’s true age can be
different from his/her CA. Although BA is a loosely used concept
and lacks precise definition, it is often viewed as the true age
of an individual [24]. Thus, BA provides a better measure of
the life expectancy of an individual than his or her CA. The
common idea is to calculate BA based on some age-dependent
variables [3, 8, 21, 47], where CA may or may not be a required
variable depending on the application. In this article, we provide
a technical overview of the recent and future applications
of deep learning techniques for estimating BA. In particular,
we investigate the performance of different deep learning
architectures applied on data modalities such as biomarkers,
body measurements and physical locomotor activity (recorded
by a wearable device) for reliable estimation of BA in adults.

Levine[30] compared the performance of five BA estimation
algorithms and identified the Klemera and Doubal (KD) method
[24] as the most reliable predictor for mortality. Cho et al. [8]
studied various BA estimation methods to examine the relation
with work ability index (WAI). WAI is a measure that reflects
present health condition rather than how it changes over age.
The KD method on PCA features produced relatively reliable
results. Mitnitski et al. [34] compared performance of frailty index
(FI) with biomarker-based measures of BA. They employed the
KD algorithm in predicting mortality. In another work, Belsky et
al. [6] compared different methods of BA estimation, including
genomic, epigenetic and blood biomarker measures. Two other
recent work on BA estimation used the notions of phenotypic
age [31] and age neighborhoods [43]. These studies did not use
deep learning techniques.

Putin et al. [38] studied the use of biomarkers in a deep
learning framework for CA prediction. They utilized an ensemble
of multiple deep neural networks (DNNs) and trained on blood
biomarkers. They employed a variation of the implementation
of permutation feature importance [2] technique to evaluate
the relative importance of each blood biochemistry marker to
ensemble accuracy. The best performance by a DNN was a
mean absolute error (MAE) of 6.07 years in predicting CA and
the ensemble learning produced an MAE of 5.55 years. They
identified the five most important biomarkers for predicting
human CA: albumin, glucose, alkaline phosphatase, urea and
erythrocytes. Fischer et al. [13] earlier identified four biomarkers:
alpha-1-acid glycoprotein, albumin, very-low-density lipopro-
tein particle size and citrate for predicting all-cause mortality
by applying biomarker profiling via nuclear magnetic resonance
spectroscopy. They also showed that these four biomarkers can
predict healthy people that may be at a short-term risk of dying
within 5 years from heart disease, cancer and other illness.
Findings from these studies suggest that particular biomarkers
can be related to aging and mortality (for example albumin). Cole
et al. [10] studied the use of structural neuro-imaging magnetic
resonance imaging (MRI) under a Gaussian process regression
framework. The predicted age was identified as ‘brain-predicted
age’ or brain age for short. They combined DNA-methylation
with brain age and showed that the combination improves mor-
tality risk prediction. On the contrary, they also combined brain
age with grey matter and cerebrospinal fluid volumes but that
did not improve mortality risk prediction. Bobrov et al. [7] pro-
posed a DNN-based model to estimate BA using eye corner
images (called PhotoAgeClock). Their method resulted in an
MAE of 2.3 years and 95% correlation with CA; however, they

did not consider BA. Mamoshina et al. [32] used a multilayer
DNN model and showed population specific aging patterns for
Canadian, Korean and Eastern European subjects. In a recent
paper, Rahman and Adjeroh [44] applied a deep convolutional
long short-term memory (ConvLSTM) model on a week-long
physical activity data measured per minute to estimate BA. They
also compared the estimated BAs with the KD method applied on
biomarkers in a common data set. Estimating BA using different
feature sets is interesting and brings in different perspectives.
Pyrkov et al. [40] applied a 1-dimensional convolutional neural
network (CNN) on the physical activity data to estimate BA. Cole
et al. [9] studied a deep learning framework using 3D-CNN-based
approach with raw MRI data. They showed that their model
can predict CA for healthy individuals. They also showed brain
predicted age is heritable and can be used in genetic studies of
brain aging.

Miotto et al. [33] discussed applications of deep learning
in medicine highlighting the major aspects that significantly
impact health care. Their study is limited to biomedical data,
especially those that originated from clinical imaging, electronic
health records, genomes and wearable devices. Ravi et al. [45] pre-
sented a review of deep learning in health informatics. The study
focuses on applications of deep learning in translational bioin-
formatics, medical imaging, pervasive sensing, medical infor-
matics and public health. However, these studies did not cover
aging (neither chronological nor biological).

Zhavoronkov et al. [53] discussed recent advances and per-
spectives in using artificial intelligence (AI) for studying aging
and longevity. Specifically, they discussed studies related to deep
learning, transfer learning and reinforcement learning. They also
discussed different data modalities often used in BA estimation
such as biomedical images (e.g. MRI), genetic markers and epige-
netic attributes. Although this is a comprehensive study on aging
and longevity describing machine learning (ML) algorithms that
are used in different aging research, the paper did not discuss the
issue of quantification of BA. Generally, survival models based on
mortality status are used to compare/quantify these estimated
BAs. Further, there was no discussion on how the different meth-
ods compare for instance, when applied on healthy individuals
and on those that suffer from chronic diseases (e.g. diabetes,
kidney disease, cardiovascular disease, etc.).

Given that deep learning provides newer architectures and
stronger performance in various domains, we strongly believe
that deep learning have much to offer in the area of biological
aging and aging acceleration. In this review, we do not provide
a comprehensive discussion on technical details on the deep
learning (DL) architectures, rather we provide an overview of the
DL techniques used to estimate BA. One of the major challenges
is quantifying the estimated BA; we discuss how to approach the
quantification problem. We describe the advances and opportu-
nities that are brought in with the DL algorithms, over traditional
ML algorithms.

The remainder of this paper is organized as follows: in Sec-
tion 2, we describe different DL architectures relevant to BA
estimation. Section 3 describes the different data modalities
used for studying biological aging. Section 4 provides metrics
for performance evaluation and for quantifying BA. Section 5
shows comparative results for BA estimation methods in terms
of mortality models. In Section 6, we discuss several interesting
observations, such as, the connection between BA and general
health status, relation with known health indices, and relation
with disease status. Section 7 concludes the paper and describes
potential directions for future work in this area. Table 14 lists the
key terms and definitions used in this paper.
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Figure 1. DL architectures used in BA estimation (A) dense (or deep) neural network (DNN), (B) long short-term memory (LSTM) cells (LSTM updates for timestep t given

the input Xt and the previous state ht−1 and previous cell output Ct−1), (C) convolutional neural network (CNN) and (D) convoutional LSTM cell. Here (A) and (C) show

the network while (B) and (D) show the basic structure; to use the models for age estimation, we add dense layers and a single unit output.

DL architectures
Machine learning (ML) is a general method of AI where a
computer can learn from the data with/without a specifically
designed algorithm. DL is a sub-field of ML that uses hierarchi-
cal/layered learning [29]. DL varies from traditional ML in how
they learn representations from the data. DL typically consists
of many layers (hence deep) of non-linear computational units.
The idea is to glean complex and meaningful information from
the data in successive layers. Each layer sends the output to its
next layer. This is also known as layered representation learning
based on stacked neural networks. The term ‘deep’ is used to
denote more than a single layer. Here we briefly describe the
popular DL architectures that have been used in age estimation.
More detailed descriptions can be found in [29, 32, 38, 40, 44, 53].

Deep neural network

An artificial neural network (ANN) consists of a single hidden
layer. ANN provides the basis for the deep (or dense) neural
network with the inclusion of more layers. Given the input
data, a layer learns from the data and stores the information as
numeric weights. Technically, weights are the parameters of a
layer. Training a DNN revolves around the following: (i) layers of
the network, (ii) input data and the target/output, (iii) the loss
function and (iv) the optimizer, that determines how the learning
occurs. The network of layers chained together learns/maps
the input data to the target. The loss function compares these
predictions to the output. The optimizer updates the network’s
weights based on the value from the loss function. Figure 1A
shows a general structure of a DNN. This deep architecture

can be used for a regression or classification problem and is
widely used in different areas. The learning/training process
sometimes can be very slow depending on the data dimension
and the number of layers. DNNs [32, 38] have been used for CA
estimation.

Recurrent neural network

A recurrent neural network (RNN) has a ‘state’ that stores the
information pertaining to what it has observed/processed thus
far, and it processes sequential data through a number of iter-
ations. So, an RNN is basically a neural network containing an
internal loop and the state of the RNN is changed/reset between
two sequences. The RNN, however, suffers from the problem
of propagating vanishing gradients [17]. The long short-term
memory (LSTM) is one of the most popular RNNs developed
by Hochreiter and Schmidhuber [17] that adds a way to carry
information across sequences. This saves information for later
and prevents older signals from vanishing gradually. RNNs are
good for memorizing sequential events and time dependencies.
However, they suffer from the vanishing gradient problem and
are about the slowest of the DL architectures. LSTM improves the
performance over RNN but does not entirely solve the problem
of vanishing gradient. Zhang et al. [52] used an attention-based
LSTM network for fine-grained age estimation. Rahman and
Adjeroh [44] combined an LSTM and a CNN to estimate BA from
physical activity data.

Convolutional neural network

The convolutional neural network (CNN) [29] is probably the
most popular architecture currently used for image analysis.
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The single most compelling reason for this is that the feature
extraction is done by the network itself and is much better than
the traditional feature extraction algorithms. CNN is a specific
type of neural network that is generally composed of convo-
lution and pooling layers. The convolution operation extracts
patches from its input feature map and applies the same trans-
formation to all of these patches, producing an output feature
map. Convolutions are defined by two key parameters: (i) size
of the patch (e.g., 3×3, 3×3×3) and (ii) number of filters. The
convolution operation works by sliding these windows over the
input feature map from every accessible/possible location. Each
patch is now transformed via a tensor product with learned
weight matrix called convolution kernel. The convolution layer
uses filters that perform a convolution operation. The pooling
layer performs down-sampling, typically immediately after con-
volution. Max and average pooling are common where max-
imum and average values are taken, respectively. The reason
for pooling is to introduce spatial invariance to the convolution
operation. Similar to DNN [38], a fully connected layer operates
on a flattened input where all the inputs are connected to all the
neurons. 1D-CNN [40] works with the input layer over a single
spatial (or temporal) dimension. 2D-CNN [27] and 3D-CNN [22]
use different representations compared with the 1D CNN. The
structure in the sequence of 2D and 3D representations of the
daily activities makes it easier to learn valuable patterns from
the activity data. This may be difficult using 1D CNN or DNN.
For 2D-CNN, we consider the data as an image of size 168×60
(DH×M) ignoring the days as temporal information. However, for
3D-CNN we consider the data as a 3D volume with temporal
information across the days, where each day has 24 h and an
hour is 60 min. So to break it down, we represent it as a 3D
information of 7×24×60 (D×H×M) min. Both the 2D (DH×M)
and 3D representation (D×H×M) of the 1D physical activity data
expose different feature dimensions that cannot be observed
easily using a 1D CNN architecture. In particular, using the 24×60
matrix representation of physical activity, records at minute 1
and minute 61 are neighbors (when considered as 2D in a matrix
form), while in a 1D sequential view they will be 60 timesteps
apart. Two important factors here are that the spatial structure
is changed and that the sequence of 2D and 3D information is
very different from that of the original 1D time series (especially
the information gathered from the 1D CNN and DNN).

The CNN + LSTM architecture uses CNN layers on the input
data and combines with LSTMs for extracting improved tempo-
ral sequence information. This architecture is suitable for both
spatial and temporal feature extraction. CNN + LSTMs were
developed for time series prediction problems and for the appli-
cation of generating textual descriptions from videos (sequence
of images). Another application is to generate a textual descrip-
tion of activity in a sequence of images. This architecture has
also been used in speech recognition and natural language pro-
cessing problems where CNNs perform the job of feature extrac-
tions for the LSTMs on audio and textual input data. If the input
has a 2D structure (e.g. image) or 1D structure (e.g. text), this
approach can be applied. CNN + LSTM architecture was applied
to BA estimation in [44].

Another variation in combining CNN and LSTM is ConvL-
STM [44, 50]. Under this architecture, the convolution structures
are applied at both the input-to-state transition and at the
state-to-state transitions. The ConvLSTM differs from simple
CNN+LSTM in that, for CNN+LSTM, the convolution structure
(CNN) is applied as the first layer and sequentially the LSTM layer
is applied in the second layer. Similar to CNN, fully connected
dense layers are used after ConvLSTM. Unlike CNN+LSTM, the

ConvLSTM approach provides a 3D view of the data, thus making
it easier to identify temporal patterns in the data. Recently,
authors in [44] used ConvLSTM for BA estimation using physical
activity data.

Generative adversarial network

Generative adversarial networks (GANs) [15] are unsupervised,
probabilistic models that generate data similar to the original
data set that the GANs are trained on. GANs are a way of training
a generative model to perform supervised learning with two
sub-models– (i) the generator and (ii) the discriminator. The
generator network takes the input as a random point in latent
space and tries to decode it into a synthetic data (e.g. image).
The discriminator network takes an input (real or synthetic) and
predicts if it is from the training set (real input) or generator
network (fake or synthetic input). The generator network tries
to fool the discriminator network evolving towards generating
more realistic synthetic data while the discriminator network
tries to adapt constantly to match with the advanced capabil-
ities of the generator network. Once the training is done, the
generator is capable of converting any point in input space to a
compelling synthetic point. The caveat is that, there is no explicit
guarantee of meaningful structure, and it is not continuous. GAN
was applied in [49] using face images to study CA.

Transfer learning

Transfer learning (TL) is an ML approach where a model learned
from a task is re-purposed or reused on a different but related
task [37]. The idea is to improve the learning for the second task
based on the knowledge gathered from the first task. TL tends
to work if both the tasks are general in principle. That is, if the
features are specific to the base task and unrelated to the second
task, the TL will probably not work well. TL can be used as a
pre-trained model or as a develop model approach. A number
of pre-trained models on large and challenging data sets are
now available from different research institutes. We can select
them from the pool for suitable cause. We can either reuse the
model or tune the model for the specific task. However, when
pre-trained models are not available, we can develop our own
custom model for the base task, which can later be re-purposed
for a model on the second task.

From the foregoing, various neural network models use very
different architectures. However, to compare the performance
of the DL methods described above, we need to consider some
of the parameters. For instance, how deep the networks are
(number of layers), number of filters in each layer, learning rate,
loss function, weight initialization, dropout percent, optimiza-
tion techniques, etc.

Data modalities
Here we consider the basic data modalities or types of data that
have been used as inputs for BA estimation algorithms. These
have ranged from blood biomarkers [38, 43] to images [9] to
physical activity data [40, 44] to genomic or epigenetic data [19].
The National Health and Human Nutrition Examination Surveys
(NHANES) provides biomarkers for different years from 1999–
2015 (https://wwwn.cdc.gov/nchs/nhanes/). NHANES employs a
complex cluster design to sample members of the civilian USA
population who are not institutionalized. NHANES uses strati-
fied multistage probability to sample the data. Ethnicity included
white, black, Hispanic and others. The NHANES data set provides
information on biomarkers, anthropometry and physical activity

https://wwwn.cdc.gov/nchs/nhanes/
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Table 1. Key anthropometric and biomarker attributes for study participants using the NHANES data set

Anthropometric attributes μ ± σ Biomarkers μ ± σ

Anthropometric Average ± SD Biomarkers Average ± SD
Weight(W)(kg) 75.49 ± 16.54 C-reactive protein 0.37 ± 0.80
Height(H)(cm) 167.83 ± 10.14 Glycated hemoglobin 5.51 ± 0.90
BMI(kg/m2) 26.72 ± 4.95 Serum albumin 4.29 ± 0.37
Arm length (cm) 37.16 ± 2.75 Total cholesterol 196.58 ± 42.03
Arm circumference (cm) 31.57 ± 4.19 Serum urea nitrogen 13.14 ± 5.63
Waist circumference (cm) 93.56 ± 13.62 Serum alkaline phosphatase 71.98 ± 26.50
Triceps skinfold (cm) 17.92 ± 8.01 Systolic blood pressure 123.99 ± 20.33
Subscapular skinfold (cm) 19.95 ± 7.80 Diastolic blood pressure 69.24 ± 13.55
Vertical trunk circumference (VTC) (cm) 159.00 ± 10.28 Pulse 71.93 ± 12.36
Neck circumference (NC)(cm) 39.67 ± 2.70 High density lipoprotein 53.87 ± 16.13
A body shape index (ABSI)(m11/6kg−2/3) 0.08 ± 0.01 Hemoglobin 14.31 ± 1.53
Body surface area (BSA)(cm2) 18235.73 ± 2223.73 Lymphocyte percent 30.08 ± 8.64
Surface-based body shape (SBSI) 0.12 ± 0.01 White blood cell count 7.19 ± 2.49
Waist-to-height ratio (WHtR) 0.56 ± 0.08 Hematocrit 42.05 ± 4.45
BSA to VTC ratio (BSTC) 114.28 ± 6.73 Red blood cell count 4.68 ± 0.52
VTC to NC ratio (VTNR) 4.01 ± 0.08 Platelet count 259.14 ± 67.33
VTC to H ratio (VTHR) 0.95 ± 0.05
VTC to WC ratio (VTWR) 1.72 ± 0.18 Age (years) 46.45 ± 19.87

on individuals from the civilian US population. We obtained
21,451 individuals with 1,664 deaths during the 5–16 years of
follow-up (1999–2015) from NHANES. Human Ageing Genomic
Resources provides a collection of tools and databases in the
area of genetics of human ageing (http://genomics.senescence.
info/). For instance, this provides data sets for GenAge, GenDR,
GeneExpression, LongevityMap, DrugAge and CellAge. Below we
describe some of the larger data sets of different modalities that
are used for age estimation.

Biomarkers

From the NHANES data set, we identified 21,451 individuals
with information on their biomarkers. Biomarkers are used for
both CA and BA estimation. For aging biomarkers, some of the
biomarkers used are C-reactive protein, glycated hemoglobin,
albumin, total cholesterol, urea nitrogen, alkaline phosphatase,
systolic blood pressure, diastolic blood pressure, pulse, high den-
sity lipoprotein, hemoglobin, lymphocyte percent, white blood
cell count, hematocrit, red blood cell count and platelet count.
Table 1 shows the key biomarkers used in this study. Subsets
of these have been used in earlier work as key biomarkers of
BA, however, using non-deep learning methods [5, 24, 30, 43,
47]. Putin et al. [38] used a DL framework for CA prediction.
Similarly, Mamoshina et al. [32] used a DL framework and studied
physiological meaning of biomarkers for human aging.

Anthropometry

Human body measurements represent a simple and easy-to-
acquire group of features often used in health profiling. Anthro-
pometric measurements generally include weight, height, body
mass index (BMI), arm length, arm circumference, waist circum-
ference, tricep skinfold, subscapular skinfold, vertical trunk cir-
cumference, neck circumference, body shape index, body surface
area, surface-based body shape index (SBSI) and waist-to-height
ratio (WHtR). Similar to biomarkers, we obtained data for 21,451
individuals from NHANES. Table 1 also shows the key body mea-
surements used in this study and their statistics. Adjeroh et al. [1]
studied correlation and predictability in human anthropometric

measurements. Rahman and Adjeroh [41] showed that different
anthropometric attributes are correlated with age and thus used
them to predict all cause mortality. In more recent studies,
they showed that anthropometric measurements can be used to
estimate both CA and BA [42].

Another popular data set for human anthropometric
measurements is the Civilian American and European Surface
Anthropometry Resource (CAESAR) [46] data set (http://store.sae.
org/caesar/). This data set includes manual hand measurements
of the various anthropometric attributes, recorded as both 3D
and 1D data. The 1D data sets from the CEASAR survey contains
2400 US and Canadian civilians, aged 18–65. Key measurements
shared by both NHANES and CAESAR data sets tend to have
similar general statistics. For example, the mean and standard
deviation were observed as follows: height (NHANES 167.83 ±
10.1; CAESAR 170.5 ± 10.2), waist circumference (NHANES 93.56
± 13.6; CAESAR 84.8 ± 14.4), weight (NHANES 75.5 ± 16.5; CAESAR
77 ± 19.8), BMI (NHANES 26.7 ± 4.9; CAESAR 26.3 ± 5.7).

Physical activity

Human physical activity can be measured by an accelerometer.
The intensity of the accelerometer can be used to estimate BA.
Locomotor physical activity is also related to cardiorespiratory
fitness (CRF) that has been linked to mortality [20]. NHANES
provides physical (locomotor) activity for a 7-day continuous
tracking of activity counts that is sampled every minute and
recorded using a physical activity monitor (ActiGraph AM-7164
piezoelectric accelerometer). Intensity of the physical activity
(also called device intensity value) is recorded by the physical
activity monitor. The devices were worn on the right hip by the
individuals using an elastic belt. The NHANES physical activity
data set contained information on 14,631 study participants
(7,176 in 2003–04 and 7,455 in 2005–06). Rahman and Adjeroh [44]
and Pyrkov et al. [40] showed different convolutional architec-
tures along with DNN to calculate BA from locomotor physical
activity data. Pyrkov et al. [39] also studied physical activity
data and their relationship with frailty, morbidity and mortality,
however, without using DL methods.

http://genomics.senescence.info/
http://genomics.senescence.info/
http://store.sae.org/caesar/
http://store.sae.org/caesar/
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Images

Different types of images have been used to estimate age for
instance face, gait and brain MRI. Age estimation from face is
probably the most popular. It remains a challenging problem
because face aging is a complex process and involves many fac-
tors. Detailed surveys of methods for face-based age estimation
can be found in Fu et al. [14] and Han et al. [16]. Bobrov et al. [7]
showed a DNN-based model (called PhotoAgeClock) to estimate
CA using image patches of eye corners. Their method resulted
in an MAE of 2.3 years and 95% correlation with CA. However,
none of the face image-based methods considered BA. MRI of
the brain has been used to predict CA. Cole et al. [9] studied ‘brain
predicted age’ as a biomarker from MRI data. They used a CNN-
based network to estimate the brain age and showed that brain-
predicted age represents a reliable and genetically influenced
phenotype that could be used as a biomarker.

Genetic and epigenetic profiles

The epigenome is characterized by its ability to respond to
cellular stimuli. Epigenetic modifications are often associated
with certain health changes and disease status. Thus, epige-
netic biomarkers are increasingly being used for early symp-
toms/detection of diseases, and hence as a predictor of future
risk of disease development. Epigenetic changes are a complex
combination of chemical, molecular and biological factors along
with the genome. DNA methylation is perhaps the most popular
and most studied epigenetic biomarker, and has been shown
to be associated with aging [19]. Different research groups have
studied the use of epigenetic factors, such as DNA methylation
as a basis for age prediction [12, 19, 51]. Recently, Belsky et
al. [6] compared different methods of BA estimation, including
genomic, epigenetic and blood biomarker measures.

Electronic medical records

Electronic medical records (EMRs) provide a detailed health
information about an individual. These records typically contain
vital signs, laboratory test variables (essentially biomarkers) and
many other features. Wang et al. [48] used EMR data from Mount
Sinai Health System, involving over 4 million patient records
from 1980 to 2015. After performing necessary refinement, they
used data from 385,918 individuals. Their study covered 85 vital
signs and 2,968 unique laboratory test variables. They showed
that combining vital signs and laboratory tests predicted CA
better than using each component separately.

Performance evaluation
Evaluation of CA is straight forward and well defined, but eval-
uation of BA is a less studied problem. With the increasing
interest in BA, and the expanding number of approaches for its
estimation, there is now an urgent need for effective methods to
evaluate the BA estimation algorithms. In this work, we consider
evaluation of BA estimation algorithms from four viewpoints,
namely error in CA estimation, BA acceleration, mortality mod-
eling and connection with health status. Since BA is said to
be a better predictor of functional age when compared with
CA, a good BA estimate should be able to separate individuals
based on their disease status or overall health. The last three
considerations are closely related to the general health of an
individual or of a population.

CA performance

The following metrics have been used to evaluate accuracy in
age estimation:

(1) Pearson correlation coefficient between x and y: ρ(x, y) =∑N
i=1 (xi−x̄)(yi−ȳ)√∑N

i=1 (xi−x̄)2
√∑N

i=1 (yi−ȳ)2
, where x and y are different attributes, N is

number of samples.
(2) Mean absolute error: MAE = 1

N

∑N
i=1 |yi − ŷi|, where yi is

the original value and ŷi is the estimated value. In this work,
MAE shows the average change/error between the CA and the
estimated age.

(3) Root mean square error (RMSE): RMSE =
√

1
n �n

i=1(yi − ŷi)2,

where yi is the original value and ŷi is the estimated value.

BA acceleration

Age acceleration is associated with problems in health. Age
acceleration can be used to evaluate BA estimation methods. In
general, age acceleration is defined as the difference between
CA and BA: � = CA − BA, where BA denotes the estimated
age and CA denotes the chronological age. However, in a recent
work, Rahman and Adjeroh [44] showed two new variations of
aging acceleration. They proposed a normalized biological age
acceleration (NBAA), denoted η = �

CA = CA−BA
CA . The normalized

form is used to reduce the effect of low values or high values
of CA. However, when the loss function used in the DL method
is based on the mean square error (as was used in this work),
the required fitting minimization during learning will imply that
this definition of η may still suffer from the known problem
of ‘regressing to the mean’ [28]. To address this problem, they
calculated the difference between an individuals’ BA and the
average for a corresponding age and gender-matched cohort,
defined as �g = BAg − BA and ηg = BAg−BA

CA , where BAg is the
average for the age-gender matched cohort.

Mortality modeling

For validation and comparisons of the BA estimation algorithms,
survival models, such as Cox proportional hazard model (Cox
PH) and Kaplan–Meier (KM) curves can be used. Log-rank test is
performed to quantify the KM plots. Log-rank test provides chi-
square distances. Rahman and Adjeroh [43] also used receiver
operating characteristics (ROC) curves to examine the sensitivity
and specificity of CA and the predicted BAs in mortality model-
ing. They have applied estimators of cumulative and incident/-
dynamic area under curve (AUC). These estimators are given by
the areas under the time dependent ROC curves estimated by
sensitivity and specificity.

Connection with health status

Another way to investigate the performance of the estimated
BAs in capturing health risks is to consider their possible rela-
tionship with known indicators of health risk or how the esti-
mated BA differentiates between subjects with known diseases
and those without.

Relationship with known health indices. For general indices
of health status, various popular indices, e.g. the BMI, WHtR
or the more recently introduced SBSI [41] or ABSI [26] can be
used. Rahman and Adjeroh [44] studied the variation of the BA
acceleration with variations in the WHtR and in SBSI categories.
The idea is to observe the pattern of the performances from first
quartile to the fourth quartile (in terms of estimated age). For a



Deep learning for biological age estimation 1773

Table 2. Performance of DL age estimation methods in CA estima-
tion, using anthropometric and biomarker features

Anthropometry Biomarkers

CNN DNN CNN DNN

MAE 18.35 22.06 20.88 8.99
RMSE 22.44 27.08 28.19 12.01
Corr (ρ) 0.15 0.10 0.22 0.80

good BA estimator, we should expect a clear separation as we
move from the lowest end to the highest end.

Relation with disease status. Another way is to analyze
whether the proposed measure of BA acceleration would
show any difference between healthy subjects and those with
certain known chronic diseases such as diabetes, cardiovascular
diseases (CVD) and kidney diseases. On average �g = BAg − BA
should be supposedly lower for the individuals having chronic
diseases when compared with those for all subjects or those
without any chronic disease. Also positive � and η correspond
to lower BA than the CA (more healthy), while negative values
correspond to higher BA than the CA (less healthy). Ideally,
subjects with no chronic disease should have the lowest
proportion of negative �s.

Results
In this study, we have used three different types of data modal-
ities, namely biomarkers, anthropometry and locomotor phys-
ical activity. For the individuals that have biomarkers (21,451
subjects with 18 features) and anthropometry (21,451 subjects
with 16 features), we used 1D CNN and DNN techniques. For the
physical activity data (7,104 individuals with 10,080 features),
however, we applied six different methods [DNN, CNN (1D, 2D,
3D), ConvLSTM and CNN+LSTM]. The 2D architectures (e.g. 2D
CNN, CNN+LSTM) and 3D architectures (3D CNN, ConvLSTM) are
not applicable for 1D biomarker and anthropometric features.

CA performance

Table 2 shows the comparative performance of the methods.
We observe that applying DNN on biomarkers have the lowest
MAE and highest correlation, whereas applying DNN on the
anthropometry data resulted in estimated BAs with the lowest
correlation with the CA. Table 3 shows the comparative perfor-
mance of the DL methods applied on the physical activity. Figure
2A shows the results for the estimated ages applying DNN and
CNN on biomarkers and anthropometric features, and Figure 2B
shows the estimated BAs applied on human physical activity
data.

We can observe that DNN outperformed CNN with respect to
the MAE (a measure of CA estimation performance) using the
biomarker data set. Different DL models tend to perform well on

different data modalities. The nature of the data has a significant
impact on the performance of a DL model. Typically, CNN (espe-
cially 2D-CNN) tends to do best on image data, which tends to
capture important spatial relations in the data or data where the
sequence ordering (e.g. temporal information) is significant. The
anthropometric data and biomarker data used in this work are
1D data and captured neither temporal nor spatial information.
Thus, we do not expect CNN to do very well on these (especially
in terms of MAE, given our loss function). The activity data
contains temporal information, which can easily be exploited by
CNN, as we will see later, the CNN models performed better than
the other models on this data set. However, we note that good
performance with respect to MAE, may not always translate to
very good performance in terms of BA estimation. For instance,
as we will see below, CNN did better than DNN on biomarker
data, with respect to BA, even though DNN had a smaller MAE.

Mortality modeling

To evaluate the estimated BAs, we have applied two statistical
models from survival analysis, namely Cox proportional hazard
model (CoxPH) [11, 25] and KM curves [23].

Cox PH. Under the Cox model, the relationship between haz-
ard and the covariates is described by considering the logarithm
of the hazard as a linear function of the variables. Here we
calculate the hazard ratio (HR) for each BA estimation algorithm.
We estimated BA using three different sets of data using dif-
ferent architectures, namely (i) anthropometry (CNN, DNN), (ii)
biomarkers (CNN, DNN) and (iii) physical activity (1D CNN, DNN,
CNN+LSTM, ConvLSTM, 2D CNN and 3D CNN models). Then we
calculated η = CA−BA

CA for each BA estimation algorithm.
We applied η as the co-variate in the Cox model. Results for

1D CNN and DNN applied to the anthropometry and biomarkers
data are shown in Table 4. Applying CNN the HR value is 1.13
for both anthropometry and biomarker features while applying
DNN the HR is 1.62 for anthropometry and 1.10 for biomarkers.
Similarly, Table 5 shows the results for Cox PH models applied on
the estimated ages using physical activity data. We found that
the BA estimation methods have generally similar performance
on this modality. Best overall results using physical activity were
obtained using 3D CNN, with HR = 1.14 (P-value 1.91E-16) using
the normalized BA acceleration, η.

KM plots and log-rank test. Another way to study the per-
formance of the estimated BAs is to analyse the KM survival
curves [23] obtained using the quantile factored NBAA (η =
CA−BA

CA ). A given variable is a good mortality predictor if the KM
curves are easily distinguishable (more distance between them),
and the variable gives lower survival rates from low to high
levels, with less crossing between curves. Figure 3 shows the KM
plots for the BA estimation methods using anthropometry and
biomarkers. In general, each method of predicting BA performed
well in distinguishing the proportion of survivors. Among the
DL BA estimation methods, distinction between the four quar-
tiles using CNN on biomarkers was not as good as the other

Table 3. Performance of DL age estimation methods in CA estimation using physical activity data

1D CNN DNN ConvLSTM CNN+LSTM 2D CNN 3D CNN

MAE 15.49 15.92 13.4 13.58 14.19 14.08
RMSE 18.81 18.38 16.74 16.45 17.48 19.40
Corr (ρ) 0.45 0.45 0.55 0.54 0.48 0.48
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Figure 2. Comparison of estimated age with CA for various DL methods using anthropometry, biomarkers and physical activity over the age range 18–84. Estimated BA

against CA using (A) biomarkers and anthropometric features, (B) locomotor physical activity data.

Table 4. Results of the Cox proportional hazard (Cox PH) models
applied on the normalized BA acceleration η = (CA − BA)/CA for
estimated BAs using blood biomarkers and anthropometric data

HR P-value

Anthropometry
CNN 1.13 ( 1.12, 1.14 ) 2.11E-16
DNN 1.62 ( 1.58, 1.68 ) 1.23E-16

Biomarkers
CNN 1.13 ( 1.12, 1.14 ) 1.63E-16
DNN [42] 1.10 ( 1.09, 1.11 ) 2.00E-09

Table 5. Results of the Cox proportional hazard (Cox PH) models
applied on the normalized BA acceleration η = (CA − BA)/CA for
estimated BAs using human locomotor physical activity data

DL architecture HR P-value

1D CNN [40] 1.05 ( 1.04, 1.07 ) 1.63E-11
DNN [44] 1.07 ( 1.06, 1.09 ) 1.75E-19
CNN+LSTM [44] 1.05 ( 1.05, 1.08 ) 1.65E-11
ConvLSTM [44] 1.05 ( 1.04, 1.07 ) 1.74E-11
2D CNN 1.06 ( 1.11, 1.17) 1.89E-14
3D CNN 1.13 ( 1.10, 1.16) 5.94E-20

three methods. Similarly, Figure 4 shows the KM plots for BA
estimation methods using different DL architectures on physical
activity data.

To further quantify the performance, we used the log-rank
test to compare the survival distributions obtained using the
different BA algorithms. The log-rank test compares the KM
curves to check if they are statistically equivalent. The output
of the test is a χ2-distance and the P-value associated with the
distance. Higher χ2-distances and low P-values indicate a better
separation between the curves and hence a better performance
in mortality modeling. The difference among the BA estimation
methods is more evident using quantitative measures, e.g. the
χ2-distance between their respective KM curves, as captured by
the log-rank test (Tables 6 and 7). DNN using anthropometric
features for BA estimation has the best χ2-distance in Table 6.
For physical activity data, 3D CNN estimated BA has the highest
χ2-distance followed by CNN+LSTM (see Table 7).

Connection with general health status

As discussed in [44], another way to investigate the perfor-
mance of the different BA estimation methods is to consider
their possible relationship with known indicators of health risk
or how the estimated BA differentiates between subjects with
known diseases and those without. Below we consider these two
perspectives in evaluating the DL-based BA estimation methods
introduced so far.

Relation with known health indices. For this evaluation,
we selected two general indices of health status, namely the
WHtR and the SBSI. WHtR is known to be a better measure of
health status [35] when compared with the BMI. Rahman and
Adjeroh [41] made a similar observation on the superiority of
SBSI over BMI. Thus, we studied the variation of the proposed
normalized BA acceleration (NBAA, denoted η) computed using
the estimated BA from each method with variations in the WHtR
and in SBSI categories. For biomarkers and anthropometric fea-
tures, we applied CNN and DNN. Table 8 shows the log-rank
test on the SBSI quartiles using biomarkers and anthropometric
features. The results are shown using η, for each SBSI category.
We observe that, in general the χ2 values increase from first
quartile to fourth quartile. For instance, using CNN for both
biomarkers and anthropometry and using DNN for biomarkers
χ2 distance increases monotonically (from Q1 to Q4) while using
DNN for anthropometry χ2 distance increases from Q1 to Q2,
then decreases from Q2 to Q3, respectively. Correspondingly,
Table 9 shows results for WHtR. Using CNN for both biomarkers
and anthropometry χ2 distance increases monotonically (from
Q1 to Q4). Using DNN χ2 distance increases from Q1 to Q2, then
decreases from Q2 to Q3, while the general trend is an increase
from Q1 to Q4.

Similar to biomarkers and anthropometric features, we
applied different DL approaches to physical activity data. Table
10 shows the log-rank test on SBSI quartiles for human physical
activity. We observed that, in general the χ2 values increase from
first quartile to fourth quartile. For instance, using CNN+LSTM
method, the χ2 distance increases monotonically (from Q1 to
Q4), while using DNN, CNN and ConvLSTM, the χ2 distance
decreases from Q1 to Q2, then increases from Q2 to Q3 and
Q3 to Q4, respectively. Correspondingly, with respect to the
WHtR quartiles, we observe a similar trend in general for all the
methods. Using CNN and ConvLSTM methods, the χ2 distances
increased monotonically (from Q1 to Q4), whereas using DNN
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Figure 3. The KM curves for estimated BAs using two DL architectures on biomarker data and anthropometric data. Results are based on normalized BA acceleration

η = CA−BA
CA , using the estimated BAs. Q1, Q2, Q3and Q4 denote 1st, 2nd, 3rd and 4th quartiles, respectively.

and CNN+LSTM show a decrease of χ2 distances from Q3 to Q4.
Table 11 shows the detailed results for log-rank test applied on
the WHtR quartiles.

Relation with disease status. We also considered the per-
formance of the proposed measure of BA acceleration in terms
of differences between healthy subjects and those with certain
known diseases. Tables 12 and 13 show the results grouped
for subjects having chronic diseases, such as diabetes, CVD
and kidney diseases. Table 12 shows the results for estimated
BAs based on biomarkers and anthropometry using CNN and

DNN. On average �g = BAg − BA is lower for the individuals
having chronic diseases than for all subjects. Subjects that do
not suffer from any chronic disease have a lower �g on average
for all methods. Positive and negative refer to average of the
subjects having positive and negative �, respectively. Positive
� and η corresponds to lower BA than the CA (more healthy),
while negative values correspond to higher BA than the CA (less
healthy). In general, % of negative � is higher for subjects with
disease, compared with all subjects. Subjects with no chronic
disease have the lowest proportion of negative �s. For both
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Figure 4. The KM curves for estimated BAs using six DL architectures on physical activity data applying η = CA−BA
CA for estimated BAs. Q1, Q2, Q3 and Q4 denote 1st,

2nd, 3rd and 4th quartiles, respectively.
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Table 6. Results of the log-rank test applied on the normalized BA
acceleration η = (CA − BA)/CA using the estimated BAs. Results are
for the anthropometric data set and the biomarker data set

DL architecture Chi-Sq P-value

Anthropometry
CNN 375.71 6.22E-17
DNN 642.42 2.19E-16

Biomarkers
CNN 226.16 1.29E-16
DNN [42] 56.64 3.07E-12

Table 7. Results of the log-rank test applied on the normalized BA
acceleration η = (CA − BA)/CA using the estimated BAs. Results are
for the human physical activity data set

DL architecture Chi-Sq P-value

1D CNN [40] 33.60 2.41E-07
DNN [44] 22.10 6.22E-05
CNN+LSTM [44] 48.19 1.94E-10
ConvLSTM [44] 24.15 2.33E-05
2D CNN 58.13 1.48E-12
3D CNN 36.79 5.09E-08

the anthropometric and biomarkers data set, CNN appears to
perform better than DNN on this measure of differentiating
between healthy subjects and those that have a given disease
(highlighted as bold for average and % positive). Correspondingly,
Table 13 shows the results for DL methods on human physical
activity data. In general, the performances of the methods are
similar. Based on the average �g and % positive or % negative, for
human activity data, best results were produced using 1D-CNN
(highlighted) followed by CNN+LSTM, 3D-CNN and ConvLSTM.

Discussion
In this work, we have investigated DL approaches on different
types of data (e.g. biomarkers, anthropometry, locomotor physi-
cal activity) to estimate BA. To quantify how well the estimated
BA captures the health risk, we applied the Cox proportional
hazard model and KM curves for analysis of all-cause mortality.
The DL models such as DNN, CNN, ConvLSTM, CNN+LSTM were
trained to exploit the dependence of the physiological/activity
changes with age. In all cases, the DL approaches were trained
to minimize the MSE between the CA and estimated BA.

Comparison

We have shown comparative performance of different data
modalities using survival models (Cox PH, KM plots and log-
rank test). We then observed performance of the estimated
BA in terms of connection with health status (relations with
popular health indices and in relation with disease status for
chronic diseases such as diabetes, kidney diseases and CVD).
Methods discussed in this study use supervised learning that
learn by minimizing the MSE. For the data set that contains both
biomarkers and anthropometry, we applied two DL methods
(CNN and DNN). DNN applied on anthropometric data has
the lowest MAE of 8.99 and highest correlation (ρ = 0.80).
Applying CoxPH and log-rank test DNN with anthropometry
data has the highest HR (1.62) and highest χ2-distance. Using log-
rank test for SBSI quartiles, applying CNN for both biomarkers
and anthropometry, χ2-distance increases monotonically from

Q1 to Q4. Similarly, using WHtR quartiles, applying CNN for
both biomarkers and anthropometry, χ2-distance increases
monotonically from Q1 to Q4. For anthropometric data set,
CNN appears to perform better than DNN on this measure of
differentiating between healthy subjects and those that have a
given disease. Between anthropometry and biomarker data sets,
applying CNN on the blood biomarkers produced the best result
on these two data modalities.

For the physical activity data, we applied six different meth-
ods (DNN, 1D-CNN, 2D-CNN, 3D-CNN, ConvLSTM, CNN+LSTM).
Table 3 shows the comparative performance of the different
methods. Among the methods, ConvLSTM and CNN+LSTM pro-
duced lowest MAE of 13.40, 13.58 and highest correlation (ρ =
0.55, 0.54), respectively. Applying η = �

CA = CA−BA
CA in CoxPH

model as the co-variate, for all the DL techniques, we observe
similarity in their HRs. However, for log-rank test, 3D-CNN has
the highest χ2-distance followed by CNN+LSTM. Using log-rank
test for SBSI quartiles applying CNN+LSTM and 3D-CNN χ2-
distance increases monotonically from Q1 to Q4. With respect
to WHtR quartiles, applying CNN and ConvLSTM χ2-distance
increases monotonically from Q1 to Q4. Based on the average �g

and % positive or % negative, for human activity data, we obtain
best results using 1D-CNN followed by CNN+LSTM, 3D-CNN and
ConvLSTM.

DL methods (DNN, CNN) applied for biomarkers and anthro-
pometric features do not have a clear cut winner with respect
to MAE, CoxPH, KM plots and χ2-distances. With respect to
connections with general health status, CNN-based methods
perform better than DNN. Similarly, for the physical activity
data, ConvLSTM has the lowest MAE and highest correlation,
3D-CNN has the highest HR, and 2D-CNN gives the highest χ2-
distance among the methods. With respect to relations with
known health indices, 2D-CNN-based method has best perfor-
mance and with respect to relation with disease status 1D-CNN
has the best overall performance.

The methods learn in the form of minimizing the difference
between estimated BA and the CA. This difference has been
called BA acceleration [34] in the literature. Pyrkov et al. [40]
suggested that an improvement in CA estimation can affect the
significance of BA acceleration for a particular test that may
involve health risks. This also relates to the issue of ‘paradox
of biomarkers’ as described by Klemera and Doubal [24] and
Hochschild [18]. These results seem to suggest that improved
CA estimation may not always lead to a deterioration in BA
estimation. The issue might be in how the estimated BA is used
for further analysis, rather than the accuracy of the initial CA
estimation. This clearly warrants further investigation.

Conclusion and future directions
In this work, we studied BA estimation methods using human
biomarkers, human anthropometry and locomotor activity. From
a public health perspective, aging can be a critical risk factor for
various pathologies such as many forms of cancers and type II
diabetes. The use of EMR systems has greatly increased in hos-
pitals and most hospitals have now adopted at least a basic EMR
system. Estimated BA based on the EMR features can be used
for disease susceptibility in public health, health management
and by insurance companies. We applied several different DL
models to estimate and compare BA using these methods. We
established that different modalities can be used to exploit 1D
features and temporal patterns (3D CNN, ConvLSTM) in human
locomotor physical activity to estimate BA. The paper used four
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Table 8. Log rank results applying the normalized BA acceleration (η = CA−BA
CA ) for different SBSI categories using anthropometric data and

biomarker data, respectively. Q1, Q2, etc. denote 1st quartile, 2nd quartile, etc.

DL
architecture

SBSIQ1 SBSIQ2 SBSIQ3 SBSIQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

Anthropometry
CNN 86.81 2.03E-16 219.15 1.92E-15 305.79 2.07E-14 727.11 3.03E-16
DNN 9.58 0.02 40.23 9.52E-09 10.96 0.01 36.93 4.77E-08

Biomarkers
CNN 130.63 1.29E-16 159.84 4.03E-11 317.14 2.29E-13 764.68 7.03E-12
DNN 15.63 0.001 32.68 3.75E-07 108.06 0.00 340.97 0

Table 9. Log rank results applying normalized BA acceleration (η = CA−BA
CA ) for different WHtR quartiles using anthropometric data and

biomarker data, respectively. Q1, Q2, etc. denote 1st quartile, 2nd quartile, etc.

DL
architecture

WHtRQ1 WHtRQ2 WHtRQ3 WHtRQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

Anthropometry
CNN 205.12 1.31E-07 388.57 6.20E-11 405.55 6.21E-09 687.06 8.03E-13
DNN 11.98 0.007 28.93 2.31E-06 15.68 0.001 13.77 0.003

Biomarkers
CNN 233.26 7.34E-08 342.22 2.41E-11 414.40 3.72E-10 556.95 4.04E-16
DNN 35.37 1.02E-07 122.66 5.93E-06 117.62 2.94E-17 226.82 9.21E-09

Table 10. Log rank results applying normalized BA acceleration (η = CA−BA
CA ) for different SBSI categories using activity data. Q1, Q2, etc. denote

1st quartile, 2nd quartile, etc.

DL
architecture

SBSIQ1 SBSIQ2 SBSIQ3 SBSIQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

CNN 11.13 0.01 10.22 0.02 23.47 3.22E-05 63.80 9.06E-14
DNN 42.27 3.51E-09 22.95 4.14E-05 71.61 1.89E-15 131.52 1.49E-11
CNN+LSTM 22.16 6.04E-05 27.16 5.45E-06 38.57 2.14E-08 96.32 2.07E-16
ConvLSTM 13.25 4.12E-03 8.57 3.55E-02 13.37 3.90E-03 38.01 2.81E-08
2D CNN 13.88 3.07E-03 18.98 2.76E-04 31.91 5.46E-07 78.28 1.11E-16
3D CNN 10.37 1.57E-02 7.06 7.01E-02 17.75 4.95E-04 48.95 1.34E-10

Table 11. Log rank results applying normalized BA acceleration (η) for different WHtR quartiles using activity data. Q1, Q2, etc. denote 1st
quartile, 2nd quartile, etc.

DL
architecture

WHtRQ1 WHtRQ2 WHtRQ3 WHtRQ4

Chi-sq P-value Chi-sq P-value Chi-sq P-value Chi-sq P-value

CNN 26.73 6.71E-06 29.97 1.40E-06 36.53 5.79E-08 38.92 1.81E-08
DNN 70.01 4.22E-15 93.30 3.18E-07 123.10 2.09E-08 91.77 9.17E-16
CNN+LSTM 51.67 3.52E-11 35.41 9.99E-08 68.72 7.99E-15 58.24 1.40E-12
ConvLSTM 15.01 1.81E-03 23.94 2.57E-05 24.93 1.60E-05 26.73 6.70E-06
2D CNN 29.67 1.61E-07 49.04 1.28E-10 54.48 8.84E-12 55.87 4.49E-12
3D CNN 9.13 2.76E-02 14.90 1.9E-03 28.79 4.02E-06 28.28 3.17E-06

different measures to compare performance in BA estimation,
including the traditional measures of prediction error, (namely,
MAE, RMSE and correlation). We also used relation with known
health indices (WHtR and SBSI) and relation with disease status
(CVD, diabetes and kidney diseases), in addition to traditional
mortality modeling using Cox PH, χ2-distance from the log-rank
test and KM curves.

DL methods are rapidly emerging and are starting to deliver
encouraging results in biological aging and longevity research.

Possible future work includes use of GANs in CA and BA estima-
tion (using physical activity data), use of 3D human modeling
combined with geometric DL [29], use of attention-based models
[4] and of domain adaptation [36] (use transfer learning from a
set of features to a different set). Methods discussed in this
work can either be used as standalone approaches or integrated
within learning pipelines for solving more complex tasks. These
pipelines can capture efficient feature selection. Deep networks
can be used to learn features over multiple modalities. In cross
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Table 12. Performance of estimated BA for subjects with different chronic diseases using different DL models. Results are shown for BA
acceleration (�g) estimated using anthropometric data and blood biomarkers, respectively

DNN (anthropometry) CNN (anthropometry)

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others

Average –0.96 –0.73 –0.67 –0.01 0.20 –4.89 –4.58 –2.62 –0.82 –0.18
Positive 0.66 0.81 0.60 0.78 0.81 8.34 8.24 8.39 8.90 9.05
Negative –1.69 –1.78 –1.64 –1.54 –1.45 –12.49 –12.90 –11.16 –10.55 –10.22
% Pos 30.86 40.67 43.26 65.98 73.36 36.51 39.33 43.68 50.02 52.07
% Neg 69.14 59.33 56.74 34.02 26.64 63.49 60.67 56.32 49.98 47.93

DNN (biomarkers) CNN (biomarkers)

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others
Average –4.42 –3.67 –2.91 0.29 1.32 –12.79 –25.10 –4.97 –0.96 0.86
Positive 2.73 4.39 3.14 4.65 4.83 9.33 11.24 11.47 12.24 12.45
Negative –5.47 –6.03 –5.05 –4.54 –4.19 –20.12 –35.75 –16.51 –14.04 –12.50
% Pos 12.87 22.67 26.11 52.51 61.09 24.87 22.67 41.26 49.77 53.54
% Neg 87.13 77.33 73.89 47.49 38.91 75.13 77.33 58.74 50.23 46.46

Table 13. Performance of estimated BA for subjects having different chronic diseases using different DL models. Results are shown for BA
acceleration (�g) estimated using physical activity data

CNN DNN

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others

Average –8.59 –9.89 –6.39 –3.17 –1.95 –2.94 –3.29 –1.87 –1.02 –0.68
Positive 5.61 12.74 9 9.17 9.34 0.7 1.7 0.72 0.82 0.83
Negative –11.9 –10.79 –11.27 –10.04 –9.5 –4.31 –5.13 –3.27 –2.47 –2.04
% Pos 18.87 3.85 24.04 35.78 40.1 27.36 26.92 34.97 44.11 47.71
% Neg 81.13 96.15 75.96 64.22 59.9 72.64 73.08 65.03 55.89 52.29

ConvLSTM CNN+LSTM

Diabetes Kidney CVD All Others Diabetes Kidney CVD All Others
Average –5.18 –3.66 –2.92 –0.67 0.25 –6.47 –6.2 –3.27 –1.62 –0.83
Positive 7.49 9.2 7.89 8.84 8.98 5.8 10.58 6.28 7.05 7.2
Negative –9.51 –10.47 –8.33 –8.07 –7.67 –9.32 –10.19 –8.53 –8.46 –8.29
% Pos 25.47 34.62 33.33 43.75 47.58 18.87 19.23 35.52 44.11 48.19
% Neg 74.53 65.38 66.67 56.25 52.42 81.13 80.77 64.48 55.89 51.81

2D-CNN 3D-CNN

Diabetes Kidney CVD All-Subjects Others Diabetes Kidney CVD All-Subjects Others
Average –6.42 –5.50 –3.82 –0.84 0.41 –4.06 –4.11 –2.10 0.90 2.05
Positive 5.59 5.37 6.11 8.07 8.53 7.84 9.50 8.59 10.69 11.12
Negative –11.16 –11.25 –9.55 –9.53 –9.21 –7.17 –8.19 –6.47 –6.60 –6.51
% Pos 28.30 34.62 36.61 49.37 54.23 20.75 23.08 28.96 43.39 48.55
% Neg 71.70 65.38 63.39 50.63 45.77 79.25 76.92 71.04 56.61 51.45

Table 14. Key terms and definitions used in the paper

DNN Deep neural network KM plots Kaplan–Meier plots

CNN Convolutional neural network Cox PH Cox proportional hazard model
BA Biological age CA Chronological age
KD Klemera doubal method η CA−BA

CA
LSTM Long short-term memory � CA − BA
RNN Recurrent neural network �g BAg − BA

ConvLSTM Convolutional LSTM ηg
BAg−BA

CA
SBSI Surface-based body shape index BAg BA age, gender-matched cohort
MAE mean absolute error AUC Area under the curve
ρ Pearson correlation coefficient HR Hazard ratio
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modality feature learning, better feature for one modality can be
learned if multiple modalities are present at learning time. While
using physical activity, blood biomarkers and anthropometric
data separately performs reasonably well for CA estimation
alone, fusing these multimodal information can substantially
improve performance of BA estimation. We can also observe
that different methods seem to perform better on different data
modalities. Thus, performing such multimodal fusion can be
best done by considering the DL method(s) that worked best
on a given data modality, and then combine these best results,
for instance, using score-level, or decision-level fusion. Another
potential future work will be to perform population specific
studies and observe performance on different ethnic groups,
while using these multimodal approaches.

Cardio respiratory fitness (CRF) is related to numerous physi-
ological systems, including cardiovascular, respiratory and mus-
culoskeletal systems [20]. Similar to biological age, CRF is also
considered as one other reflection of whole-body health and
function, and hence one of the predictors of all-cause mortality
[20]. Thus, another potential future work will be to study the
relationship between BA and CRF, for instance, using a DL frame-
work.

Another interesting challenge and potential extension of this
work is to study how the estimated BA can be used as a tool
for general health profiling. For instance, the DL-based methods
can be applied for public health campaign, and general health
monitoring, by analyzing the estimated BA at a population scale.
The results of such analysis could also serve as an early indicator
of patients that may require palliative care, and hence could
provide a tool for health-care providers and policy makers for
preparing for such patients.

Appendix
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Key Points
• We provide a survey on existing deep learning (DL)

architectures that have been used for biological age (BA)
estimation.

• We showed results of existing DL techniques for BA
estimation on different data modalities and compared
their performances.

• We showed performance evaluation based on different
techniques, including some techniques we introduced
in the paper.
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