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Abstract 

In the era of precision medicine, digital technologies and artificial intelligence, drug discovery and development face 
unprecedented opportunities for product and business model innovation, fundamentally changing the traditional 
approach of how drugs are discovered, developed and marketed. Critical to this transformation is the adoption of 
new technologies in the drug development process, catalyzing the transition from serendipity-driven to data-driven 
medicine. This paradigm shift comes with a need for both translation and precision, leading to a modern Translational 
Precision Medicine approach to drug discovery and development. Key components of Translational Precision Medicine 
are multi-omics profiling, digital biomarkers, model-based data integration, artificial intelligence, biomarker-guided 
trial designs and patient-centric companion diagnostics. In this review, we summarize and critically discuss the poten-
tial and challenges of Translational Precision Medicine from a cross-industry perspective.
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Background
Traditionally, drug development in large pharmaceuti-
cal companies is regarded as a conservative and risk-
averse discipline with highly regulated processes and 
slow adaptation to external innovation. However, in a 
rapidly evolving healthcare ecosystem, new technolo-
gies and innovative concepts of how to leverage them are 
needed to accelerate clinical trials, lower attrition rates, 
mitigate research and development (R&D)-related risks 
and overall improve pharmaceutical R&D productiv-
ity [1, 2]. Critical for future R&D success is the combi-
nation of transformative therapeutic concepts and drug 
targets with first-in-class potential, tailored digital tech-
nologies and patient-centric drug development, linked 

to a broader paradigm shift from one-size-fits-all medi-
cine towards precision medicine (the right medicine, for 
the right patient, at the right dose, at the right time) [3, 4]. 
While precision medicine is an appealing concept, there 
are several core challenges for implementation from 
bench to the bedside, as discussed previously [5–7].

One of the major bottlenecks for drug development 
is translation [8], particularly at the interface of drug 
discovery and early clinical development, referred to 
as the Translational Gap [8–10]. To close this gap and 
foster translational science, the National Institutes of 
Health (NIH) has established the National Center for 
Advancing Translational Sciences, a core hub to drive 
and integrate innovative translational activities across 
academia, industry and non-profit organizations [11]. 
Translational medicine as defined by the European 
Society for Translational Medicine [12] integrates sev-
eral R&D tools to bridge the translational gap and guide 
early drug development. Since translational medicine 
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and precision medicine approaches in drug develop-
ment are overlapping and intertwined, we use here the 
term Translational Precision Medicine to refer to this 
emerging discipline.

The Translational Precision Medicine concept inte-
grates core components from both translational medi-
cine (mechanism-based early drug development) and 
precision medicine (patient-centric late drug devel-
opment) into an end-to-end biomarker-guided drug 
development cycle. Critical success factors for Trans-
lational Precision Medicine are (i) the translation of 
mechanisms from research to early clinical devel-
opment (forward translation/bench-to-bedside), (ii) 
the back-translation from late clinical development 
insights to drug discovery (reverse translation/back-
translation/bedside-to-bench) [13], (iii) data-driven 
mechanism-indication pairing [14], (iv) the translation 
of omics signatures into clinically-relevant biomark-
ers and endotypes [15] and (v) the development of 
patient-tailored companion diagnostics and precision 
medicines [3]. Here we focus on the following key com-
ponents of Translational Precision Medicine (Fig. 1):

•	 Multi-omics profiling
•	 Biomarker-guided trial designs
•	 Model-based data integration
•	 Artificial Intelligence (AI)
•	 Digital biomarkers
•	 Patient engagement.

Multi‑omics profiling
Clinical data can be classified as phenotypic (such as 
demographics, physiologic assessments, disease scor-
ings, imaging, health questionnaires, digital patient 
assessments) or molecular (such as genomics, transcrip-
tomics, proteomics, metabolomics). Capturing com-
prehensive phenotypic data associated with a certain 
disease can be referred to as phenotyping (or phenomics), 
which is the traditional and most common approach to 
classify diseases irrespective of the biological origins of 
disease. Utilizing datasets to define disease subtypes at 
the molecular level can be referred to as endotyping, as 
exemplified in respiratory medicine [16, 17] or oncol-
ogy [18]. The National Academy of Sciences of the USA 
campaigned for a new, molecularly-informed taxonomy 
to define diseases based on molecular endotypes rather 
than traditional clinical symptoms [19]. However, endo-
typing requires deep pathophysiological disease insights 
and large molecular datasets to be successful. Within the 
last two decades, high-throughput omics technologies 
have provided the basis for endotyping and data-driven 
medicine [20, 21]. With the rapid advances of sequenc-
ing technology, genetics has revolutionized our under-
standing of monogenic diseases, such as cystic fibrosis 
[22] or mutation-driven cancers [23], but most human 
diseases are polygenic and consequently more complex 
to dissect. To approach these diseases at the genetic level, 
polygenic risk scores hold promise to predict genetic 
predisposition to disease or therapeutics [24], particu-
larly if combined with electronic health records (EHRs) 
[25]. Translational genomics aims to combine genetic 
and clinical data as a foundation for precision medicine 
approaches [7]. Besides genetics, particularly proteomics 
[26, 27] are gaining momentum for clinical biomarkers 
and drug development [28]. Unlike mass spectrometry, 
next-generation proteomic detection principles, such as 
aptamer-based technologies [29], typically require lower 
amounts of material (down to 1ul/sample) and can be 
more readily applied to large patient cohorts to identify 
causal proteins as candidates for therapeutic targeting 
[28, 30–33]. Compared to more established omics lay-
ers, such as transcriptomics, proteomics offer the benefit 
of measuring protein levels directly, thus facilitating the 
translation to the clinic where protein biomarkers are 
most commonly used.

Beyond single omics technologies, multi-omics pro-
filing platforms are emerging, including genomics, 
epigenomics, transcriptomics, proteomics, lipidom-
ics, metabolomics, microbiomics and others [34, 35]. 
Multi-omics profiling integrates several biological lay-
ers, allowing researchers to fully appreciate the interplay 
between genetics, gene regulation and proteins, and to 
obtain a more complete picture of the molecular patterns 
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Fig. 1  Interface position of Translational Precision Medicine in 
bridging translational medicine (early development) and precision 
medicine (late development). Disease models, multi-omics and 
molecular biomarkers are used to define disease endotypes. 
Real-world evidence, multi-omics, biomarkers (digital and 
molecular) and companion diagnostics are instrumental for 
the implementation of precision medicine. Model-based data 
integration, biomarker-guided trial designs and artificial intelligence 
are key data-driven tools for the integration of mechanism-centric 
translational medicine and patient-centric precision medicine
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underpinning complex diseases. Thus, multi-omics are 
well positioned to enable the identification of key dis-
ease nodes where multiple layers converge, maximizing 
the chances to identify novel drug targets, endotypes or 
biomarkers. Networks offer an effective way to integrate 
and visualize the output of multi-omics analyses, particu-
larly when the evidence does not converge at the level of 
a single gene, but within a biological pathway [36], and 
network propagation approaches can be applied to lever-
age network topology for the identification of key nodes 
[37]. Multi-omics are further essential for N-of-1 trials 
[38], for understanding drug-drug interactions and for 
the design of therapeutic drug combinations [39–41]. 
Despite this potential, there are several caveats and limi-
tations of multi-omics when applied to clinical drug 
development:

•	 Omics technologies assess large numbers of genes/
proteins, often in a semi-quantitative manner, and are 
highly sensitive to pre-analytical processes [42] such 
as batch effects [43]. Consequently, to build robust 
cases for clinical adoption, it is essential to include 
appropriate controls in the experimental design and 
to validate top hits by orthogonal quantitative meth-
ods [43, 44].

•	 Merging different multi-omics datasets [45] into 
a single data repository poses challenges to data 
transfer, integration and harmonization given differ-
ent data formats and data fragmentation. Moreover, 
analyzing large complex datasets, such as single-cell 
multi-omics [46], increases the chance for false posi-
tives and necessitates appropriate data processing, 
normalization and analysis with appropriate statisti-
cal methods [44, 47].

•	 Clinical trial feasibility [15, 48], especially for multi-
center and tissue-derived omics, remains a challenge. 
Restricting the number of well-selected clinical sites, 
strict standard operating procedures (SOPs), cross-
site controls and qualified analytical core facilities 
are essential for robust data generation. Well-curated 
biobanks [49] are further pivotal to link multi-omics 
data to disease characteristics and clinical trial out-
comes. Alignment on human biosample accessibility, 
FAIR data principles [50] and dissemination policies 
are also key for successful multi-omics collaboration 
networks.

Biomarker‑guided trial designs
Biomarkers are defined by the Biomarkers Definitions 
Working Group of the NIH/FDA, as “a characteristic 
that is objectively measured and evaluated as an indica-
tor of normal biological processes, pathogenic processes, 

or pharmacologic responses to a therapeutic intervention” 
[51]. In drug development, biomarkers are broadly used 
to inform on target engagement, pathway activation, 
pharmacokinetic/pharmacodynamic (PK/PD) modeling 
and dosing rationales, diagnosis/patient selection, disease 
stratification, prognosis and prediction as well as moni-
toring disease, safety and treatment efficacy. Biomarkers 
are classified into molecular, cellular, physiological, imag-
ing and digital modalities. As clinical trial endpoints, 
biomarkers provide the advantage of being quantitative 
and objective measures of (patho)biology in contrast to 
physician-based assessments which tend to be subjec-
tive and variable. Biomarkers are key to translate PD 
responses across species and to bridge the translational 
gap in early drug development [9, 10, 52], particularly 
for multifactorial systemic diseases [53] such as systemic 
immune-mediated diseases. From a drug development 
perspective, the longitudinal analysis of the AstraZeneca 
small molecule portfolio (five-dimensional (5R) frame-
work) demonstrated that the inclusion of biomarkers 
into early drug development (Ph2 studies) was associated 
with active or successful projects in contrast to compara-
ble projects without biomarkers [2].

The development of a new biomarker is a complex, 
multistep and iterative process, including biomarker dis-
covery (often based on omics data), pre-analytical valida-
tion, assessing different biofluids (best proximal to the 
disease), analytical validation and finally clinical valida-
tion and utility [48]. For each new drug target and disease 
indication, several biomarker modalities and candidates 
are usually explored to narrow-down on the drug target- 
and indication-relevant ones, as discussed here for auto-
immune diseases such as rheumatoid arthritis [54]. For 
biomarker use in clinical trials it is critical to define the 
context-of-use (CoU) [15, 55, 56]. CoU range from diag-
nostic, safety monitoring, PD response, to predictive and 
prognostic biomarker applications. For a detailed list of 
biomarker CoU, the reader is referred to the FDA-NIH 
biomarker working group and its related online resource 
BEST (Biomarkers, Endpoints and other Tools) [51]. 
Prognostic and predictive CoU are essential for clinical 
drug development: prognostic biomarkers at baseline are 
indicative of disease outcome independent from inter-
ventions (important to identify patients on high-risk 
for trial enrichment), whereas predictive biomarkers at 
baseline are indicative of response to a specific treatment 
(response prediction).

There are two basic paths how to integrate biomark-
ers in drug development: (1) within the context of a 
specific drug development program or (2) the official 
FDA biomarker qualification program (BQP). The spe-
cific drug development program path is the most com-
mon strategy pursued in pharmaceutical industry, 
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where the drug developer / sponsor includes selected 
biomarkers in clinical trials, mainly for internal deci-
sion-making and is responsible for all aspects of the 
biomarker development. The FDA BQP is required to 
qualify biomarkers as general drug development tools 
[57] to make them applicable for multiple drug devel-
opment programs and to qualify them as regulatory 
drug approval tools, which is a formal and lengthy pro-
cess usually involving consortia composed of multi-
ple academic and industry partners. In the FDA BQP, 
the candidate biomarker is qualified for a pre-speci-
fied CoU. The FDA provides an updated online list of 
BQP-qualified biomarkers [58]. Of note, qualifying a 
biomarker for a CoU via the BQP or qualifying a spe-
cific test measuring a biomarker are two different and 
independent approaches. For biomarker test/assay 
qualification, e.g. to develop a companion diagnostic 
assay (see below), pre-analytical and assay performance 
characteristics  are key. Beyond the US/FDA, other 
regional/national biomarker guidances and regulatory 
frameworks, such as guidances from European Medi-
cines Agency (EMA), Asian-Pacific (APAC) regulators, 
National  Medical  Products Administration (NMPA) 
and/or Pharmaceuticals and  Medical  Devices Agency 
(PDMA), have to be taken into account for biomarker 
qualification and clinical implementation.

In general, the level of impact that biomarkers can have 
depends on three key factors: (i) the validation and quali-
fication status of the biomarker, (ii) the CoU and (iii) the 
scientific evidence linking the biomarker with the CoU. 
Biomarkers in clinical trials are mostly used as explora-
tory endpoints to explore new mechanistic hypothesis 
and inform internal decision making. If biomarkers are 
deemed more impactful and clinically relevant, biomark-
ers are used as secondary or primary clinical endpoints. 
Typical examples here are physiological biomarkers like 
blood pressure, clinically-established protein biomarkers 
such as C-reactive protein, or imaging readouts. If there 
is convincing evidence from independent epidemiologi-
cal studies and clinical trials that biomarkers correlate 
closely with clinical outcome assessments, biomarkers 
can be considered to substitute for a clinical endpoint as 
surrogate endpoints, which have a major relevance for 
diseases with outcomes that take a long time to capture 
using traditional clinical endpoints. Examples here are 
systolic blood pressure for occurrence of stroke or low-
density lipoprotein cholesterol levels for occurrence of 
heart attacks. For implementation of biomarkers in phar-
maceutical industry trials, several drug development 
aspects have to be further taken into account, including 
informed consent/data protection considerations, clinical 
trial logistics/feasibility, impact on clinical decision-mak-
ing and cost-effectiveness [48, 59–61].

To actively guide clinical trial flows, biomarker-guided 
trial designs are the method of choice [62, 63], which are 
particularly useful for novel clinical trial designs using 
master protocols (basket, umbrella and adaptive platform 
trials) [64]. For a comprehensive overview on biomarker-
guided trial designs, the reader is referred to the BiGTeD 
online resource [65]. For biomarker-guided trial designs, 
biomarkers should be analyzed in Clinical  Labora-
tory Improvement Amendments (CLIA) certified (for US) 
or equivalent (non-US) labs. The two most commonly 
applied biomarker-guided trial designs are stratification 
[66] and enrichment [67]. Biomarker-based stratification, 
or stratified randomization, means that biomarkers are 
measured in all patients prior to randomization and are 
used to proportionally/equally balance treatment vs pla-
cebo arms with respect to biomarker status. Biomarker-
stratified designs have the advantage that patients are 
not excluded if they are biomarker-negative. The next 
more stringent level of biomarker trial design is enrich-
ment. For that design, inclusion of the individual patient 
into the clinical trial is depending on a defined biomarker 
assessment. Quality requirements for biomarkers and 
analytical labs are higher when using this approach, as 
protocol-defined treatment decisions depend directly 
on the biomarker. Enrichment designs can be especially 
useful for situations when it is not ethically justified to 
treat biomarker-negative patients based on biomarker-
response and/or biomarker-safety relationships, such as 
CYP metabolism. The recent FDA guidance on enrich-
ment [68] should be taken into account that recommends 
smart enrichment, adaptive enrichment and the inclu-
sion of a biomarker-negative population in at least one 
trial before NDA/MAA submission (with defined excep-
tions). Besides stratification and enrichment designs, 
other more complex biomarker-guided trials designs 
are summarized as biomarker-strategy designs [65]. All 
biomarker-guided trial designs can be implemented in 
non-adaptive or adaptive settings. The latter provides 
more flexibility for the trial, yet is also more challeng-
ing to implement. Apart from interventional biomarker-
guided trial designs, non-interventional (observational) 
biomarker-guided trial designs using master protocols 
have been proposed recently in the oncology field (Mas-
ter observational trials) [69].

Biomarker-guided trial designs ultimately pave the 
way towards precision medicine, i.e. tailoring drug 
development to specific patient characteristics [3, 70]. 
In 2015, the US government launched a Precision Medi-
cine Initiative [71, 72]. Precision medicine focuses on 
individual rather than average responses to therapy and 
led to the concept of N-of-1 trials [38], ideally based on 
longitudinal multi-omics data. While precision medi-
cine approaches are already widely implemented in 
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oncology and rare genetic diseases, other therapeutic 
areas have just begun to tailor drug development based 
on these principles [3]. Biomarkers can enable precision 
medicine through the development of companion diag-
nostics [73–75], mainly established in oncology [76]. 
Companion diagnostics are classified as in  vitro diag-
nostic (IVD) medical devices (IVD class I, II or III) and 
are typically co-developed with the drug to increase 
response rates by lowering the numbers-needed-to-
treat and/or to spare patients exposure to drugs that 
have a high probability to fail or even cause harm. The 
development path for an exploratory biomarker to a full 
IVD companion diagnostic is complex, requires at-risk 
investments and should start early in drug development 
in close alignment with health authorities [74, 75, 77, 
78]. Companion diagnostics should be broadly avail-
able and accessible to relevant healthcare profession-
als for clinical routine use. A list of cleared or approved 
companion diagnostic devices is provided by FDA 
[79]. Companion diagnostics [80] are strictly regulated 
by health authorities/FDA [81] and are differentiated 

from complementary diagnostics [82, 83] as they are 
essential for treatment decisions, whereas comple-
mentary diagnostics just support treatment decisions. 
As biopsy-derived tissue is often challenging to obtain 
from non-oncology patients, “liquid biopsies” (derived 
from peripheral blood/serum/plasma) are a major 
domain of companion diagnostics, yet assay perfor-
mance characteristics, such as sensitivity and specific-
ity, are key for success in that area. Figure 2 illustrates 
the flow from multi-omics-based endotyping, over bio-
marker-guided trial designs to companion diagnostics-
based precision medicine approaches.

To increase the benefit-risk ratio of drug candidates, 
safety aspects are increasingly becoming an integral part 
of biomarker-guided precision medicine approaches. For 
example, the observation that patients receiving check-
point inhibitor therapy experiencing immune-related 
adverse events also exhibit an improved treatment 
response was recently shown to be related to a polygenic 
risk score [84]. Furthermore, for the first time, a poly-
genic risk score could be established for the prediction of 
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Fig. 2  Flow of clinical trials (interventional or non-interventional) integrating multi-omics approaches to identify disease endotypes, which enables 
biomarker-guided trials designs (adaptive or non-adaptive) and paves the way towards precision medicine approaches (tailoring treatments for 
personalised healthcare)
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drug-induced liver injury, a common and very difficult to 
predict adverse event in the clinic [85].

When viewed in combination, biomarker-guided trial 
designs provide ideal tools to catalyze the transition from 
an empirical and physician-centric to a data-driven and 
patient-centric precision medicine approach [70, 86, 87]. 
However, technical (companion diagnostic assay develop-
ment), clinical (complex biomarker-guided trial designs, 
master protocols) and regulatory (requirements for com-
panion diagnostics as medical devices) hurdles have to be 
tackled, particularly in non-oncology indications [83, 88].

Model‑based data integration
Given the small size and low number of samples per 
subject in pre-clinical experiments as well as early clini-
cal trials, analyzing and leveraging biomarker data in 
translational medicine remains challenging. One way for 
improving the statistical power for detecting signals is to 
use longitudinal (i.e. time-dependent) model-based data 
integration. Mathematical models are used to describe 
the time course of PK and PD/biomarker results for 
better understanding of the pharmacology and to pre-
dict future experimental outcomes [89]. Already in the 
1930s, mathematical equations were used to describe PK 
data [90], but the start of more extensive model-based 
approaches took off with the development of computers 
and was brought into drug-development in the 1970s–
80s. The need has been highest for compounds with a 
small therapeutic window where dose-individualization 
was needed. This was especially challenging for com-
pounds with a substantial delay between the exposure 
and the biomarker PD response. Therefore, the initial 
approaches for describing inter-subject variability (popu-
lation “PopPKPD” models) were developed in anesthesi-
ology [91] and for anticoagulants (e.g. warfarin [92]).

Population models most often use simplified model 
structures to model the observed data (i.e. mainly meas-
ured in plasma/blood or ex-vivo). When considering 
chemotherapies, like methotrexate, questions arose 
about the tumor-relevant tissue distribution of the com-
pound [93]. Thus, a second class of models, i.e., physio-
logically-based, were developed to describe the whole 
Liberation, Absorption, Distribution, Metabolism, Excre-
tion (LADME) processes in more detail for small mol-
ecules, where these processes are heavily dependent on 
their physico-chemical properties [94]. This approach is 
used to predict drug-drug interactions, but also for scal-
ing from animals to humans in the translational medicine 
realm – alternatively to PopPK models.

Scaling PK parameters across species is mainly based 
on allometric scaling, which describes the weight-
dependence of physiological aspects (volumes, meta-
bolic rates, clearance, etc.) within and between species 

using power functions with fixed exponents. This works 
well for PK parameters [93], yet can be challenging for 
biomarkers due to inter-species differences of pathway 
expression, production rates or whole physiological net-
works. These approaches have gained more traction by 
integrating systems biology and quantitative systems 
pharmacology [95]. A third concept is to apply physical 
and biological assumptions, such as monotonous expo-
sure–response, continuity/smoothness of underlying sig-
nals or allometric scaling. These models can be used for 
high-dimensional data (like multi-omics) to reduce noise 
when multiple sampling time points are available per 
individual.

Finally, the FDA has established a new framework for 
model-informed drug development [96]: “FDA is con-
ducting a Model-Informed Drug Development (MIDD) 
Pilot Program to facilitate the development and applica-
tion of exposure-based, biological, and statistical mod-
els derived from preclinical and clinical data sources, 
referred to as MIDD approaches. MIDD approaches use 
a variety of quantitative methods to help balance the risks 
and benefits of drug products in development. When suc-
cessfully applied, MIDD approaches can improve clini-
cal trial efficiency, increase the probability of regulatory 
success, and optimize drug dosing/therapeutic individu-
alization in the absence of dedicated trials.” This MIDD 
pilot program is based on joint discussions between 
the pharmaceutical industry and the European health 
authorities/EMA, which led to a paper in 2016 on good 
modeling practices [97]. The latter includes the concept 
of the learning-and-confirming circle of modeling as well 
as drug development, where model-based predictions 
inform the next study design, e.g., predictions of PK and 
efficacy or safety biomarkers from animal data into first-
in-man studies. The acceptance or even push from health 
authorities for MIDD approaches [98] indicates the high 
value of model-based data integration.

Artificial Intelligence
The amount of data generated and collected in pharma-
ceutical R&D is increasing at an unprecedented pace. 
Combined with improvements in information process-
ing and more powerful hardware, machine learning, deep 
learning and AI in general are positioned to disrupt drug 
discovery and development towards an algorithm-based 
R&D [99]. Deep learning has already revolutionized sev-
eral industries, particularly in the area of image analysis 
and recognition, while its impact in biomedical R&D 
remains to be fully embraced [100]. High-dimensional 
multi-omics datasets derived from large longitudinal 
clinical studies provide an ideal ground for the applica-
tion of machine learning [101] and AI [99]. Examples 
with an impact on drug discovery and development 
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include: target identification [102–104], biomarker dis-
covery [105, 106] and patient endotyping [107, 108]. 
Machine learning and deep learning algorithms are also 
powerful analytical methods when applied to digital bio-
markers data, allowing to transform longitudinal, multi-
modal and complex raw data from sensors and connected 
digital devices into endpoints and clinically-relevant 
measures [109, 110].

Given the rigidity of traditional serendipity- and for-
ward translation-based drug development frameworks, 
shifting to a new mindset embracing the use of AI for the 
discovery and development of drugs is a critical success 
factor for Translational Precision Medicine [111]. A com-
prehensive cross-industry analysis recently mapped out 
AI-related activities across major pharmaceutical compa-
nies [112], coming to the conclusion that, compared with 
leading technology companies (e.g., Microsoft, Google), 
most pharmaceutical organizations are still in an early 
mature phase of using AI in R&D. However, an increas-
ing number of healthcare companies have now started 
their digital journey, building up AI competencies and 
data literacy across many areas of R&D [112]. For exam-
ple, Johnson & Johnson and Novartis have started to 
commercialize AI-based products and services in health-
care. Medical AI application focused so far mainly on the 
diagnosis of disease conditions based on EHRs, digital 
pathology and biomarkers [113, 114]. To go beyond and 
fully leverage AI technologies for clinical drug develop-
ment, it is essential to optimize and validate AI algo-
rithms for use in clinical trials and outcome prediction. 
AI-powered approaches have the potential to enable 
precision medicine, particularly in chronic disease con-
ditions, by dissecting complex high-dimensional patient 
datasets and tailoring drug development [115]. While 
traditionally regulatory authorities might not have been 
perceived as enthusiastic about advanced AI models in 
biomedical R&D, the landscape is evolving rapidly, exem-
plified by recent developments in the AI-based medical 
device space [116, 117] and the recent FDA pilot program 
Innovative Science and Technology Approaches for New 
Drugs (ISTAND) that incentivizes the use of AI-based 
algorithms to evaluate patients, develop novel endpoints, 
or inform study designs. Moving forward, it will be criti-
cal that pharmaceutical organizations continue to con-
structively engage early on with regulatory authorities 
on innovative ways to design and assess clinical trials, 
including a more widespread use of AI technologies in 
drug development.

Overall, the impact of AI in drug discovery and clini-
cal development will largely depend on the underlying 
data, and its intrinsic limitations. AI-based analysis of 
both multi-omics as well as EHRs depends critically on 
the quality and quantity of the provided molecular and 

clinical datasets, key limitations and challenges that need 
to be overcome in the future.

The near future will show whether and how these 
emerging AI algorithms will help scientists to (i) identify 
novel targets or new indications for existing drugs, (ii) 
uncover latent factors that can inform on disease patho-
genesis or drug response, (iii) discover predictive bio-
markers enabling patient stratification strategies that can 
optimize clinical trial designs, and (iv) ultimately impact 
the drug development value chain. For more detailed 
overviews of AI in drug discovery and development, we 
refer the reader to dedicated reviews in this field [87, 101, 
111, 118].

Digital biomarkers
The recent evolution of sensor technologies and the 
widespread use of smartphones and other connected 
digital products are enabling the comprehensive col-
lection and analysis of health-related data [119–121]. 
Progress in algorithms and analytical methodologies to 
transform sensor data into clinical insights have facili-
tated the rapid development of digital biomarkers [122, 
123]. Digital biomarkers are defined as physiological and 
behavioral measures collected via digital devices (such 
as portables, wearables, implantables and digestables) 
that characterize, influence or predict health-related 
outcomes [124, 125]. Digital biomarkers offer several 
potential advantages compared to traditional clinical 
assessments. Objective data can be collected in real-life 
settings, in a quantitative and unbiased way and on a 
frequent or continuous basis, resulting in increased sta-
tistical power, and enhanced sensitivity and specificity 
[122, 126]. In clinical trials, these characteristics allow for 
lower sample size, fewer study visits, shorter study dura-
tion and real-time feedback for early decision-making 
[120, 122, 126, 127]. Longitudinal digital patient data can 
be leveraged to advance precision/personalized medicine 
approaches. Furthermore, the use of digital biomarkers 
in drug development enables patient centricity, integra-
tion of real-world evidence, reduced patient burden of 
trial participation, increased inclusivity in patient enroll-
ment [121], decentralized trials [128] and better prod-
uct differentiation [129]. Despite being a promising new 
technology, a major requirement and challenge for digital 
biomarkers is to ensure protection of relevant sensitive 
patient data in the whole process.

Successful examples of digital biomarkers are in the 
field of neurodegenerative diseases, where traditional 
clinical outcome measures are sparse, highly variable 
and rater-dependent [130]. Smartphone-based meas-
urements have been developed and deployed in clini-
cal trials to monitor signs of Parkinson’s disease [131, 
132]; while features from inertial measurement unit 
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features have been recently benchmarked to predict 
Parkinson’s disease severity [133]. Susceptibility/risk 
biomarkers from computerized cognitive testing are 
in use to classify adults at high risk of late-onset of 
Alzheimer’s disease [134, 135]. Clinically relevant gait 
parameters from inertial wearable sensor were identi-
fied to assess gait impairment in Huntington disease 
[136].

While the number of studies involving digital tech-
nologies is growing and extending to more technolo-
gies, biomarker categories and therapeutic areas [119, 
121], the use of digital biomarkers as clinical endpoints 
is today still in an early research phase due to several 
layers of complexity. Digital biomarker products are 
usually the result of the combination of multiple indi-
vidual hardware (sensors) and software (operating 
systems and algorithms) components [123]. Hence is 
it vital to thoroughly verify technology and analyti-
cal solutions and clinically validate digital biomark-
ers in the desired cohorts and context of use, prior to 
their adoption as clinical endpoints [123, 127, 137]. 
The majority of current efforts still have an engineer-
ing focus and address algorithm development and sen-
sor performance [120]. So far, very limited solutions are 
undergoing clinical validation.

Transforming digital device data into validated clini-
cal endpoints is a lengthy process, which involves the 
collaboration of multiple disciplines, from engineering, 
machine learning, data science, clinical research and 
regulatory interactions. An open validation framework 
based on transparency, metadata standards, external 
validation and data sharing is necessary to harmonize 
approaches and evaluate and improve digital biomark-
ers in clinical settings [123]. Recently, multiple concrete 
efforts have emerged and are shaping and accelerating 
the development of validated digital biomarkers: (i) 
guidelines from the Clinical Trials Transformation Ini-
tiative (CTTI) [138], the Digital Medicine Society [139] 
and the EMA [140]; (ii) pragmatic fit-for-purpose vali-
dation frameworks [137, 141]; (iii) open-source plat-
forms such as the Digital Biomarker Discovery Pipeline 
[142]; (iv) open benchmarking challenges [143]; (v) and 
several Innovative Medicine Initiative (IMI) programs, 
such as MOBILISE-D [144], IDEA-FAST [145] and 
RADAR-AD [146].

Future opportunities for digital biomarkers towards 
patient-centric precision medicine are (i) algorithms 
based on longitudinal/real-time composite biomarkers 
from multiple connected technologies and contextual 
information in real-world settings [123], (ii) integra-
tion of molecular/multi-omics and digital biomarkers, 
and (iii) digital phenotyping for patient stratification 
[147–149].

Patient engagement
Since the AIDS pandemic in the 1980s, the way indus-
try interacts with patients has changed fundamentally, 
from passive recipients to active contributors along the 
whole drug development value chain. This has been par-
ticularly evident in the last decade, where most phar-
maceutical companies have started patient engagement 
groups to actively listen to the patient voice [150, 151]. 
Industry has finally realized that patient engagement is 
not an additional burden, but can improve and actually 
accelerate drug development. Similarly, health authorities 
increasingly incorporate the patient voice into their regu-
latory guidance [152]. For example, The FDA’s Patient-
Focused Drug Development initiative led to the guidance 
for industry on how to best identify what is important to 
patients. In Europe, the EMA formed its Patients’ and 
Consumers’ Working Party. Engagement with patients, 
their caregivers, patient experts and patient advocacy 
groups have been shown to yield benefit for both patients 
and the industry [153, 154]. Increased patient involve-
ment in the process ensures that industry focuses on 
the real medical needs, that study protocols are patient-
centric and that new treatments become available faster. 
Conversely, industry benefits from a more robust identifi-
cation of patients` needs, faster conduct of clinical trials, 
a quicker path to market and overall higher credibility 
and sustainability [155]. Patients not only have increased 
their involvement with industry, but likewise with regula-
tory authorities and sit in governing bodies. Major mile-
stones are the foundation of the International Alliance 
of Patient’s Organizations, the Patient-Centered Out-
comes Research Institute [156] and the Patient-focused 
Medicines Development [157] among several other 
patient-centric initiatives. In fact, the impact of patient 
engagement throughout the healthcare ecosystem is driv-
ing change at various levels: becoming a credible source 
for patients themselves, improving access and care, driv-
ing R&D and advocating for policy changes in collabora-
tion with governments.

Traditionally, patient engagement has been mainly con-
sidered once a new drug is already on the market. The 
majority of decisions about the molecule and its clini-
cal development path, including unmet medical needs, 
have then already been taken by the company. Studies, 
however, demonstrated that the early integration of the 
patient perspective, particularly in preclinical research 
and early development, has the biggest impact on value 
creation for patients, business and society [158]. As 
preclinical research is a discipline that usually does not 
collaborate directly with patients, a change of mind-
set to include the patient voice already at this stage can 
be challenging, yet represents the clear future towards 
patient-led research [159]. A recent paper identified 
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key challenges of implementing patient engagement 
in preclinical research and provided possible solutions 
to overcome current barriers [160]. In interviews with 
patient groups, industry and academia conducted by 
the CTTI, patient representatives identified engagement 
with research partners as having particularly great ben-
efit. Patient-led organizations are keen to learn more 
about their diseases and are highly interested to collabo-
rate in research projects and willing to provide their data 
(anonymized and under strict data protection policies) 
for research and clinical development [161]. A key rec-
ommendation for industry is to engage the patient voice 
as early as possible from the beginning of the R&D pro-
gram to improve trial design and clinical execution [162].

Personalised healthcare (PHC), precision medicine 
and stratified medicine have been used interchangeably 
to describe the concept of tailoring treatment to patients 
based on their individual pathology. With the rise of new 
diagnostic and data-driven approaches that deepen our 
understanding of the molecular basis of disease, this cen-
turies-old dream has come closer to reality. Nowadays, 
the awareness of the potential of PHC is also emerging in 
the patient community and its meaning goes far beyond 
precision medicine. PHC comprises everything that 
allows to tailor treatment and medical care by combining 
conventional clinical datasets, molecular signatures (such 
as genetics), environment, lifestyle and personal needs. 
Some of the key innovations in that area include digital 
healthcare solutions with technologies connecting digital 
patient information/EHRs with wearable devices, mobile 
Apps, telehealth and digital assistants using AI [163], see 
also the respective chapters above. A major requirement 
and challenge for that field is to protect relevant sensi-
tive patient data and patient rights in that whole pro-
cess. Patients, caregivers and healthcare providers are 
acknowledging the utility and advancement offered by 
these approaches in key domains, such as patient edu-
cation, accurate diagnosis, patient outcomes, quality of 
life, disease prevention and health care value [164], more 
recently underscored by different initiatives, such as the 
EU Health Data Space race [165] or the US Precision 
Medicine initiative [166]. The overall goal in all of this 
is to make healthcare decisions jointly together with the 
patient as an integrated R&D partner.

Conclusions
Translational Precision Medicine comes with a para-
digm shift from a one-size-fits-all to a biomarker-guided 
patient-centric medicine. Key success factors for adop-
tion of this principle in pharmaceutical drug develop-
ment include the combination of forward and reverse 
translation, the classification of disease conditions 
as multi-omics-defined endotypes, the integration of 

AI- and algorithm-based R&D concepts, the implemen-
tation of digital biomarkers as clinical endpoints and the 
development of companion diagnostics. The rise of data-
driven and algorithm-based R&D necessitates the estab-
lishment of a new mindset of how data mining and AI 
tools can be used effectively to discover and develop new 
drugs [111]. The near future will show whether and how 
these emerging AI-based digital tools will reveal new 
targets, pathogenic disease signatures, optimize clinical 
trial designs and overall impact drug development across 
pharmaceutical industries. Convergence of patient-cen-
tric real-world evidence (RWE) tools, EHRs, multi-omics 
profiling, digital biomarkers and AI-based data analysis 
will pave the way towards biomarker-enabled algorithm-
based precision R&D.

Outlook
The Translational Precision Medicine evolution comes 
with distinct challenges: (i) multi-omics data are mainly 
useful to drug discovery and development if they reveal 
new drug targets or biomarker signatures that correlate 
with disease outcome and/or treatment response [61]; 
(ii) multi-omics-based patient and disease stratification 
requires accurate diagnoses and detailed clinical annota-
tions/EHRs; (iii) digital biomarkers as clinical endpoints 
provide objective and quantitative measures yet still 
require broader clinical use and health authority accept-
ance; (iv) biomarker-guided trial designs and precision 
medicine approaches are already widely implemented in 
oncology and rare diseases, while other non-oncology 
areas have just started to pursue these concepts and (v) 
precision medicine/companion diagnostics approaches 
come with substantial development costs and reimburse-
ment hurdles. One important question is how these novel 
technologies and assessments are perceived by patients, 
as acceptance and adherence to clinical read-outs is key 
for patient trial recruitment and long-term engagement. 
Novel patient-centric interaction approaches are cur-
rently implemented to engage patients more pro-actively 
in R&D, RWE networks and clinical trials. New cloud-
based data systems and platforms for interactions with 
regulatory agencies [167], for sharing datasets between 
industry and academia, for public–private partnerships 
or for managing cross-industry partnerships and multi-
disciplinary initiatives like the Information Exchange and 
Data Transformation (INFORMED) initiative of the FDA 
[168] will further shape the way towards data-driven 
medicine.

The COVID-19 era substantially disrupted the tradi-
tional pharmaceutical R&D approach at several layers 
[169–172]: (i) virtual, data-based, data-sharing (includ-
ing open repositories such as bioRxiv and medRxiv) 
and collaborative research and drug discovery/
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development concepts are getting higher traction; (ii) 
large longitudinal datasets collected from COVID-
19 patients are systematically analyzed and offer great 
potential for multi-omics [173–175] and AI-based 
analyses [169, 176–178], supporting diagnosis, basic 
disease understanding, endotyping, image analysis, 
drug target identification and drug repurposing [169, 
179]; (iii) clinical trials are accelerated, decentralized 
and increasingly include digital endpoints, biosensors, 
home nursing, patient-centric sampling and remote 
clinical trial recruitment and monitoring strategies 
[171, 180], accompanied by a FDA guidance on conduct 
of clinical crials during COVID-19 [181]. In combina-
tion, these emerging concepts rapidly and successfully 
implemented during the COVID-19 outbreak hold 
promise to make drug discovery and development more 
efficient and less burdensome to patients also beyond 
the pandemic era.

Emerging therapeutic modalities, including CAR 
T-cells [182], gene therapy [183, 184], induced protein 
degradation [185] or mRNA-based principles [186, 
187], and patient-derived organoids for ex  vivo drug 
response testing to guide personalized treatments 
[188] add further levels of complexity to biomarker-
guided translational precision. Finally, the core future 
challenge for Translational Precision Medicine as for 
drug development overall remains how to leverage and 
embrace new molecular and digital technologies in a 
way that is feasible for larger clinical trials, accepted by 
regulators and, most importantly, by patients.
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