
Shotgun: A Bayesian seamless phase I-II design to accelerate 
the development of targeted therapies and immunotherapy

Liyun Jiang1,2, Ruobing Li3, Fangrong Yan1, Timothy A. Yap4,5,6, Ying Yuan2

1Research Center of Biostatistics and Computational Pharmacy, China Pharmaceutical University, 
Nanjing, China.

2Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, 
Texas, 77030, U.S.A.

3The Center for Drug Evaluation, The National Medical Products Administration, Beijing, China

4Department of Investigational Cancer Therapeutics (Phase I Program), The University of Texas 
MD Anderson Cancer Center, Houston, Texas, 77030, U.S.A.

5Khalifa Institute for Personalized Cancer Therapy, The University of Texas MD Anderson Cancer 
Center, Houston, Texas, 77030, U.S.A.

6The Institute for Applied Cancer Science, The University of Texas MD Anderson Cancer Center, 
Houston, Texas, 77030, U.S.A.

Abstract

Drug development of novel antitumor agents is conventionally divided by phase and cancer 

indication. With the advent of new molecularly targeted therapies and immunotherapies, this 

approach has become inefficient and dysfunctional. We propose a Bayesian seamless phase I-II 

“shotgun” design to evaluate the safety and antitumor efficacy of a new drug in multiple cancer 

indications simultaneously. “Shotgun” is used to describe the design feature that the trial begins 

with an all-comer dose finding phase to identify the maximum tolerated dose (MTD) or 

recommended phase II dose (RP2D), and then is seamlessly split to multiple indication-specific 

cohort expansions. Patients treated during dose finding are rolled over to the cohort expansion for 

more efficient evaluation of efficacy, while patients enrolled in cohort expansion contribute to the 

continuous learning of the safety and tolerability of the new drug. During cohort expansion, 

interim analyses are performed to discontinue ineffective or unsafe expansion cohorts early. To 

improve the efficiency of such interim analyses, we propose a clustered Bayesian hierarchical 

model (CBHM) to adaptively borrow information across indications. A simulation study shows 

that compared to conventional approaches and the standard Bayesian hierarchical model, the 

shotgun design has substantially higher probabilities to discover indications that are responsive to 

the treatment in question, and is associated with a reasonable false discovery rate. The shotgun 

provides a phase I-II trial design for accelerating drug development and to build a more robust 
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foundation for subsequent phase III trials. The proposed CBHM methodology also provides an 

efficient design for basket trials.
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1 Introduction

Drug development of novel antitumor agents is conventionally divided by phase and cancer 

indication. Phase I trials typically evaluate the safety of a new drug and determine the 

maximum tolerated dose (MTD) or recommended phase 2 dose (RP2D), while tumor-

specific phase II trials evaluate the short-term efficacy (e.g., tumor response) of the drug at 

the MTD/RP2D. If the drug demonstrates sufficient safety and efficacy in that specific 

indication, a randomized phase III trial is initiated to evaluate the long-term efficacy (e.g., 

overall or progression free survival) of the drug. To expand the drug to another indication, a 

separate set of trials, typically phase II and III studies, are conducted.

In the era of precision medicine, including molecularly targeted therapies and 

immunotherapies, the conventional trial paradigm has been increasingly inefficient and 

dysfunctional. Targeted therapy treats cancer by modulating a specific biological pathway or 

molecular aberration. This may provide the scientific rationale to assess the new drug in 

tumor agnostic indications based on a common molecular aberration. For example, 

pembrolizumab, which targets programmed cell death protein 1 (PD-1), has been approved 

by the U.S. Food and Drug Administration (FDA) for the treatment of any unresectable or 

metastatic solid tumors with DNA mismatch repair deficiencies or a microsatellite 

instability-high state. Larotrectinib was recently approved by FDA for the treatment of 

patients with NTRK fusion cancers (Drilon et al., 2017).

To accelerate the development of novel targeted therapies and immunotherapies, we propose 

a Bayesian seamless phase I-II design to efficiently evaluate a new drug in multiple 

indications. In the phase I portion of the design, the trial enrolls all comers and pool all the 

toxicity information to evaluate safety and tolerability, and establish the MTD/RP2D. In 

phase II portion of the trial, separate cohorts are formed to evaluate the efficacy of the drug 

in different indications. We refer to the proposed design as a “shotgun” design to highlight 

its feature of seamlessly expanding from a single “all-comers” cohort to multiple indication-

specific cohorts (see Figure 1). Compared to conventional paradigms, the shotgun design is 

more efficient in that: (1) the efficacy data collected in the phase I portion of the trial are 

used for decision making in the phase II portion, and (2) in the phase II portion, information 

is adaptively borrowed across indications. This is achieved by first clustering the indications 

into responsive and non-responsive subgroups based on Bayesian posterior probability, and 

then using a Bayesian hierarchical model to borrow information within each subgroup to 

minimize the potential bias and inflated type I errors. The methodology developed for phase 

II portion can also be directly used to design basket trials.
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Our design is motivated by a phase I-II trial to evaluate the safety and clinical activity of a 

novel phosphatidylinositol 3-kinase (PI3K) inhibitor, combined with olaparib, in patients 

with advanced solid tumors. Due to confidentiality, a disguised version of the trial is 

described. Four doses of the PI3K inhibitor are to be investigated, and olaparib is 

administered at its monotherapy RP2D of 300 mg twice daily. The objective of the trial is to 

identify the combination maximum tolerated dose with a target toxicity rate of 30%, and to 

evaluate its safety and efficacy in five indications, including ovarian cancer, breast cancer, 

prostate cancer, cholangiocarcinoma, and other solid tumors. Toxicities will be assessed 

according to the National Cancer Institute-Common Terminology Criteria for Adverse 

Events (NCI-CTCAE) version 5.0. Tumor response will be assessed every 2 cycles (28 days 

per cycle) or 8 weeks (±7 days) by Response Evaluation Criteria in Solid Tumors (RECIST) 

version1.1 criteria. For all indications, the null response rate is 5%, and the alternative 

response rate is 30%. Because the drug may be effective only in some of the indications 

being tested, the design challenge is how to efficiently identify the indications that are 

responsive to the treatment.

Numerous phase I-II trial designs have been proposed to use toxicity and efficacy jointly to 

optimize the dose. Thall and Russell (1998) developed a phase I-II trial design that 

characterizes patient outcomes using a trinary ordinal variable to account for both toxicity 

and efficacy. Braun (2002) proposed the bivariate continual reassessment method, in which 

the MTD is based jointly on toxicity and disease progression. Thall and Cook (2004) 

described a Bayesian design based on tradeoffs between toxicity and efficacy probabilities. 

Yin et al. (2006) proposed a Bayesian phase I-II design based on the odds ratio of efficacy 

and toxicity. Yuan and Yin (2009) developed a phase I-II design for time-to-event endpoints. 

Jin et al. (2014) proposed a Bayesian design to accommodate late-onset efficacy and toxicity 

using data augmentation. Liu and Johnson (2016)developed a phase I-II design without 

assuming parametric dose-toxicity and dose-efficacy curves. Liu et al. (2018) proposed a 

Bayesian phase design for immunotherapy based on the utility of risk-benefit tradeoff. 

Comprehensive coverage of phase I-II designs is provided in the book written by Yuan et al. 

(2017). Most existing phase I-II designs focus on testing a drug in single indication at a 

time. In contrast, the shotgun design focuses on testing the drug in multiple indications.

The rest of this paper is organized as follows. In Section 2, we introduce the shotgun design, 

including its statistical model and adaptive decision rule. In Section 3, simulation studies are 

carried out to assess the performance of the proposed design. A brief discussion is presented 

in Section 4.

2 Methods

Consider a phase I-II trial with J prespecified doses, d1 <⋯< dJ, under investigation. Let YT 

and YE denote the toxicity and efficacy indicators, respectively, with YT = 1 indicating 

toxicity, and YE = 1 indicating response. The objective of the trial is to assess whether the 

drug is safe and effective in each of G indications to warrant randomized phase III trials. The 

shotgun design consists of two seamless connected parts. Phase I takes an all-comer 

approach. All G indications are eligible for enrollment, and the toxicity data are pooled over 

indications to guide dose escalation and identify the MTD or RP2D. The rationale for this 
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all-comers approach is that the toxicity profile of the drugs are likely to be similar across the 

indications being tested. This approach has been routinely used in phase I trials, but is not 

binding to the shotgun design. If different indications are expected to have different toxicity 

profiles, indication-specific dose finding (based on the data from that specific indication) 

may be employed to find indication-specific MTD or RP2D. Alternatively, we can take a 

hybrid approach: use the all-comers approach as a run-in to achieve fast dose escalation, and 

then switch to indication-specific dose finding once the dose escalation reaches a certain 

dose level (e.g., the middle dose level). In addition, when clinically appropriate, other 

indications that will be not investigated in phase II can also be enrolled during phase I to 

increase the accrual and speed up the trial.

2.1 Phase I dose escalation

The phase I dose escalation phase is carried out using the Bayesian optimal interval (BOIN) 

design because of its ease of implementation and competitive performance (Zhou et al., 

2018). Other designs, such as the continual reassessment method (O’Quigley et al., 1990) 

can also be used. At the current dose level j, let ϕT denote the target toxicity rate, nj denote 

the number of patients treated, and yj denote the number of patients who experienced 

toxicity. The dose escalation is carried out as follows:

1. Treat the first cohort of patients at the lowest dose or prespecified starting dose.

2. Let pj = yj ∕ nj denote the observed toxicity rate at the current dose, to assign a 

dose to the next cohort of patients:

• if pj ≤ λe, escalate the dose to level j+1,

• if pj > λd, de-escalate the dose to level j−1,

• otherwise, stay at the current dose level j,

where λe and λd are the optimal dose escalation and de-escalation 

boundaries that minimize the decision error of dose escalation and de-

escalation. Table 1 shows the values of λe and λd for commonly used 

ϕT.

3. Repeat Step 2 until reaching the maximum sample size N1. At that point, select 

the MTD as the dose whose isotonic estimate of toxicity probability is closest to 

ϕT, and then move forward to the phase II portion.

During the trial conduct, the BOIN design imposes a dose elimination (or overdose control) 

rule as follows: if Pr(pj > ϕT∣nj, yj) > 0.95 and nj ≥ 3, dose level j and higher are eliminated 

from the trial, and the trial is terminated if the lowest dose is eliminated, where Pr(pj > ϕT∣nj, 

yj) is evaluated based on the Beta-Binomial model yj∣pj ~ Binomial(pj) and pj ~ 

Uniform(0,1). Of note, although the dose escalation is based only on toxicity data, efficacy 

data will be collected and used in phase II. In addition, depending on the testing agents, the 

RP2D is not necessarily the MTD, and may be selected based on the totality of clinical 

evidence, including pharmacokinetics, pharmacodynamics and early efficacy biomarker 

data, from the doses that are not higher than the MTD.
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2.2 Phase II with multiple cohort expansions

2.2.1 Clustered Bayesian hierarchical model—After the RP2D/MTD is 

determined, indication-specific cohort expansions are initiated to assess the efficacy of the 

drug in each of the G indications. Suppose that at an interim time, ng patients from 

indication g are enrolled. Among them, xg patients responded to the treatment, and yg 

patients experienced toxicity. The ng patients include the patients who were treated at the 

RP2D/MTD in phase I, making the proposed design more efficient than the design with an 

independent phase I and phase II. Of note, the phase II part of the shotgun design can be 

viewed as a basket trial. Thus, the methodology introduced below is directly applicable to 

design basket trials, with performance comparable or better than existing basket trial designs 

as described later.

One well-known approach used to borrow information across indications is the Bayesian 

hierarchical model (BHM) proposed by Thall et al. (2003). One important assumption of 

BHM is an exchangeable treatment effect across indications. This assumption, however, is 

not always appropriate, and it is not uncommon that some indications are responsive to the 

treatment, while others are not. For example, BRAF-mutant melanoma and hairy-cell 

leukemia are associated with a high response rate to the BRAF inhibitor PLX4032 

(vemurafenib), whereas BRAF-mutant colon cancer is not (Flaherty ey al., 2010; Tiacci et 

al., 2011; Prahallad et al., 2012). Trastuzumab is effective for treating human epidermal 

growth factor receptor 2 (HER2)-positive breast cancer, but shows little clinical benefit for 

HER2-positive recurrent endometrial cancer (Fleming et al., 2010) or HER2-positive non-

small-cell lung cancer (Gatzemeier et al., 2004). In this case, as shown in our simulation 

study, using the BHM will lead to inflated type I errors. This issue is also noted by previous 

research (Freidlin and Korn, 2013; Chu and Yuan, 2018).

To address this issue, we propose a precision information-borrowing approach, called 

clustered BHM (CBHM). The basic idea is, based on the interim data, we first cluster the 

indications into responsive (sensitive) and non-responsive (insensitive) subgroups; and we 

then apply BHM to borrow information within each subgroup. We allow a subgroup to be 

empty to accommodate the homogeneous case that all indications are responsive or non-

responsive. We here focus on the two subgroups based on the practical consideration that 

targeted therapy is often either effective (i.e., hit the target) or ineffective (i.e., miss the 

target), and the number of indications is typically small (2 – 6), and thus it is not practical to 

form more than two subgroups. Nevertheless, our method can be readily extended to more 

than two subgroups. The idea of clustering indications and then borrowing information was 

investigated by Chu and Yuan (2018), Hobbs and Landin (2018), Liu et al. (2017) and Chen 

and Lee (2020) for basket trials, which are based on sophistically joint modeling or Bayesian 

nonparametric methodology. As shown in the simulation provided in Section 3.4, our 

proposed CBHM yields comparable performance as some of these methods, but is more 

intuitive, simple to implement, and easy to explain to non-statisticians.

Let qg denote the response rate in indication g, q0,g denote null response rate that is deemed 

futile, and q1,g denote the target response rate that is deemed promising. q0,g and q1,g can be 
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different across indications. We propose the following Bayesian rule to cluster indications: 

an indication is allocated to the responsive cluster ℛ if it satisfies

Pr(qg > q0, g + q1, g
2 ∣ xg, ng) > ψ( ng

Ng, 2
)ω, (1)

otherwise allocated to the non-responsive cluster ℛ, where Ng,2 is the prespecified 

maximum sample size of indication g for phase II, and ψ and w are positive tuning 

parameters. We recommend default values ψ = 0.5 and ω = 2 or 3, which can be further 

calibrated to fit a specific trial requirement in operating characteristics. One important 

feature of this clustering rule is that its probability cutoff is adaptive and depends on the 

subgroup interim sample size ng. At the early stage of the trial, where ng is small, we prefer 

to use a more relaxed (i.e., smaller) cutoff to keep an indication in the responsive subgroup 

to avoid inadvertent stopping due to sparse data and to encourage collecting more data on 

the indication. When a trial proceeds, we should use a more strict (i.e., larger) cutoff to avoid 

incorrectly classify non-responsive indications to a responsive subgroup. Through simulation 

study, we find that this adaptive cutoff improves the performance. In the above Bayesian 

clustering rule, the posterior probability Pr(qg >
q0, g + q1, g

2 ∣ xg, ng) is evaluated based on the 

Beta-Binomial model,

xg ∣ qg ∼ Binomial(qg),
qg ∼ Beta(a1, b1), (2)

where a1 and b1 are hyperparameters, typically set at a small value (e.g., a1 = b1 = 0.1) to 

obtain a vague prior. As a result, the posterior distribution of qg is given by Beta(xg + a1, ng 

− xg + b1). The proposed method is certainly not the only way to cluster the indications. 

Other clustering methods (e.g., K-means or hierarchical clustering methods) can also be 

entertained. However, because the number of indications is often small and the interim data 

are sparse, we found that using these alternative (often more complicated) methods often 

worsens, rather than improves performance.

After clustering, we apply the following BHM to subgroups ℛ and ℛ independently.

xg ∣ qg ∼ Binomial(qg),
θg = log( qg

1 − qg
) − log( q0, g

1 − q0, g
),

θg ∣ θ, σ2 ∼ N(θ, σ2),
θ ∼ N(μ0, τ0

2), σ2 ∼ IG(a0, b0),

(3)

where IG(·) denotes inverse-gamma distribution, μ0, τ0
2, a0 and b0 are hyperparameters. 

Typically, we set μ0 = 0 and τ0
2 at a large value (e.g, τ0

2 = 106), and a0 and b0 at a small value 

(e.g., a0 = b0 = 10−6), which is known to favor borrowing information (Chu and Yuan, 2018). 

In the BHM, we use log(
q0, g

1 − q0, g
) as the offset to account for the different baseline response 
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rates for different indications. Depending on the application, log(
q1, g

1 − q1, g
) can also be used as 

the offset.

If subgroup ℛ and ℛ only has one member, we replace the above BHM with the Beta-

Binomial model (2). As indications within subgroup ℛ and ℛ are relatively homogenous, 

the exchangeable assumption required by BHM is more likely to hold. As a result, CBHM 

yields better performance, as shown by simulation later. Because that the treatment effect θg 

in ℛ should be better than that in ℛ, one might consider imposing this order constraint when 

fitting the BHM for ℛ and ℛ. This, however, is not necessary and does not improve the 

estimation of θg (see simulation result Table A1 in Appendix). This is because the order on 

θg has been (implicitly) incorporated by the clustering procedure, that is, the indications 

showing high treatment effect (i.e., large θg) are clustered into the responsive cluster, 

whereas indications showing low treatment effect (i.e., low θg) are clustered into the non-

responsive cluster. During phase II, we continue collecting the toxicity data to evaluate the 

safety of the drug in each indication using a Beta-Binomial model similar to (2).

2.2.2 Interim go/no-go rule—The design for phase II is described as follows. There are 

Kg prespecified interims for each indication, occurring when the sample size of the 

indication reaches ng1, ⋯, ngKg , with ngKg ≡ Ng,2 . The shotgun design allows the total 

number of interims Kg and interim times varying from one indication to another. This is a 

particularly appealing feature, as the accrual rates for various indications are often different. 

Once an indication reaches its planned interim sample size, interim analysis can be 

immediately performed in that indication. Given the observed interim data D, we make the 

go/no-go decision based on the following rule: stop the accrual to indication g if

(Futility stopping rule) Pr(qg ≤ q0, g ∣ D) > C(ng) or (4)

(Toxicity stopping rule) Pr(pg > ϕT ∣ D) > CT , (5)

where CT and C(ng) are probability cutoffs calibrated by simulation. A reasonable range for 

CT is CT ∈ (0.7, 0.95). For C(ng), we adopt the optimal probability cutoff proposed by then 

Bayesian optimal phase II (BOP2) design (Zhou et al., 2017), that is C(ng) = 1 − λ(
ng

Ng, 2
)γ, 

where the positive tuning parameters λ and γ are calibrated to maximize the power while 

controlling type I error at a prespecified level α (e.g., α = 10%). The values of λ and γ can 

be easily obtained using the online BOP2 app available at www.trialdesign.org. Strictly 

speaking, the optimal values of λ and γ obtained under the BOP2 design are not necessarily 

optimal for the proposed design because of the information borrowing across indications, but 

our simulation shows that they lead to satisfactory operating characteristics. In principle, the 

optimal values of λ and γ can be obtained for our design using the same grid searching 

strategy as Zhou et al. (2017), but that is time consuming due to more complicated CBHM 

used here. In addition, due to the information borrowing induced by CBHM, when directly 

using the values of λ and γ from the BOP2 app, the type I error of each indication may 

deviate (typically slightly) from α under the global null (i.e., all indications are non-
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responsive). If it is desirable, we can slightly calibrate λ, while keeping γ fixed, to control 

type I error of each indication at α under the global null.

2.3 Bayesian model averaging approach

An alternative, statistically more sophisticated approach to do cluster-then-borrow is to use 

the Bayesian model averaging (BMA), along the line of Hobbs and Landin (2018). With G 
indications, there are a total of L = 2G ways to partition the indications into ℛ and ℛ. Let Mℓ 
denote the ℓ th partition, ℓ = 1,…,L. Given the interim data D, the posterior probability of Mℓ 
is given by

Pr(Mℓ ∣ D) =
L(D ∣ Mℓ)Pr(Mℓ)

∑ℓ = 1
L L(D ∣ Mℓ)Pr(Mℓ)

,

where Pr(Mℓ) is the prior of Mℓ. In general, we apply the non-informative prior, i.e., Pr(Mℓ) = 

1 / L, when there is no preference for any specific partition. L(D∣Mℓ) is the likelihood of Mℓ, 

given by

L(D ∣ Mℓ) = ∏
g = 1

G ng
xg

q[ℓ]g
xg (1 − q[ℓ]g)ng − xg,

where q[ℓ]g is the response rate for indication g given the ℓ th partition, i.e., q[ℓ]g = q1,g if 

g ∈ ℛ and q[ℓ]g = q0,g if g ∈ ℛ.

Given the ℓ th partition (i.e., Mℓ), the members of ℛ and ℛ are known, and we apply the 

BHM (3) to ℛ and ℛ independently to calculate Pr(qg ≤ q0,g ∣ D, Mℓ), g = 1,…,G and ℓ = 1,

…,L. Then, the futility go/no-go rule (4) can be calculated as follows:

Pr(qg ≤ q0, g ∣ D) = ∑
ℓ = 1

L
Pr(qg ≤ q0, g ∣ D, Mℓ)Pr(Mℓ ∣ D) .

The BMA approach is statistically sophisticated and computationally intensive, but the 

simulation (see Table A2 in Appendix) shows that it has similar performance as the CBHM 

with the simple Bayesian clustering rule (1) described above. The reason is that given the 

small number of indications and the limited interim (binary) data in each indication, the 

complicated BMA method introduces more noise (e.g., accounting for 2G possible partitions 

or models) and thus often fails to improve the performance. Hence, we recommend the 

Bayesian clustering rule (1) for practical use because it is much more transparent and easy to 

understand and implement, especially for non-statisticians.

2.4 Determine sample size N1 and Ng,2

To determine phase I sample size N1 and phase II sample size Ng,2, the general approach is 

to use simulation to calibrate N1 and Ng,2 such that desirable operating characteristics are 

obtained (e.g., correct selection of the MTD, power, and type I errors). We provide some 

rules of thumb to facilitate such calibration. For N1, we recommend N1 = 6×J (i.e., six 
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patients per dose). For Ng,2, we recommend using the BOP2 software to obtain an initial 

value Ng, 2, given a desirable type I error and power. As BOP2 does not borrow information 

(thus computationally is much faster), Ng,2 should be smaller than Ng, 2. We can use 

0.5 × Ng, 2 as the starting value to calibrate Ng,2.

3 Simulation studies

3.1 Simulation setting

We evaluated the operating characteristics of the shotgun design and compared it to the 

“conventional” design that first identifies the MTD using the 3+3 design, followed by 

multiple cohort expansions. In the latter, each cohort expansion is carried out independently 

using the Simon optimal two-stage design (Simon, 1989). For fair comparison, the same 

toxicity stopping rule (5) is used to monitor toxicity for each indication. To investigate the 

functionality of the proposed CBHM, we also considered the BHM design that is the same 

as the shotgun design, but replaced the CBHM with the standard BHM (i.e., directly apply 

the BHM to all indications without clustering).

We consider J = 4 doses and G = 5 indications. To reflect this in practice, accrual rates of 

indications may be different; we set the accrual rates for 5 indications at 3, 2.5, 2, 1.5, and 2 

patients per month, respectively. During the dose finding phase, the target toxicity rate ϕT = 

0.3, the cohort size is three, and the maximum sample size is N1 = 24. For conventional 

designs, the 3+3 design often terminates the trial early (e.g., when 2/3 patients experience 

toxicity) before reaching the maximum sample size N1. In that case, following common 

practice, an all-comers cohort expansion will be performed at the selected MTD so that the 

total sample size for the phase I portion is N1.

At the multiple cohorts expansion phase, we consider one interim analysis and one final 

analysis (e.g., K = 2). The null response rate q0,1 = ⋯ = q0,5 = 0.05, and target response rate 

q1,1 = ⋯ = q1,5 = 0.3. For conventional design, applying the Simon optimal two-stage design 

leads to the total sample size Ng,2 = 12 with an interim at 5 for each indication, assuming a 

type I error rate of 10% and 80% power. For the shotgun and BHM designs, we set Ng,2 = 12 

with an interim at 8. For fair comparison, the tuning parameters in the futility stopping rule 

(4) are calibrated to control the type I error rates at similar level of those in conventional 

design in the null case where all indications are ineffective at target dose (i.e., scenario 1 in 

Table 2).

We considered three toxicity profiles with the true MTD located at the middle, first, and last 

dose, respectively. Nested each toxicity profile, we considered three to four efficacy profiles 

where different numbers of indication were responsive to the treatment, resulting a total of 

10 scenarios, as shown in Table 2. Under each scenario, we conducted 10,000 simulations.

3.2 Performance metrics

The objective of the shotgun design is to discover promising indications to be further studied 

in phase III studies, where “promising indications” is defined as the indications for which 
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the treatment is both safe and effective. In what follows, we define several discovery-

centered metrics to summarize the overall performance of the design.

(I) Correct discovery rate (CDR), defined as

CDR = Number of correct discoveries
Number of promising indications,

where “Number of correct discoveries” is the number of promising indications identified by 

the design at the end of the trial. The CDR is closely related to power, but is more relevant 

here as the primary objective of the trial is to discover promising indications from multiple 

indications.

(II) False discovery rate (FDR), defined as

FDR = Number of false discoveries
Number of indications claimed as promising by the design,

where “Number of false discoveries” is the number of indications claimed as promising by 

the design, but actually are not. For example, in scenario 4, if a design claims that 

indications 1 and 2 are promising at the end of the trial, then the FDR = 1/2, because 

indication 2 actually is not promising (i.e., there is no dose that is safe and effective for 

treating indication 2).

(III) Adjusted discovery rate (ADR), defined as

ADR = Number of correct discoveries‐Number of false discoveries
Number of promising indications .

ADR is an overall performance measure that accounts for the tradeoff between correct 

discovery and false discovery.

3.3 Simulation results

Figure 2 and Table 3 show the simulation results of the three designs. Scenarios 1-4 consider 

that the true MTD is dose level 4, with various numbers of promising indications. Scenario 1 

is the global null where all indications are non-responsive. All designs control the type I 

error rate < 10%. Because of the safety stopping, the type I error is slightly lower than the 

normal value of 10%. As expected, CDR=ACDR=0 and FDR=100 for all designs. Scenario 

2 is the global alternative where all indications are responsive. The shotgun design and the 

BHM design outperform the conventional design with higher CDR. For example, the CDR 

of the shotgun design is 54.0%, more than doubling the CDR of the conventional design 

(i.e., 22.1%). The BHM design has higher CDR than the shotgun design, but it leads to 

substantially higher type I error and FDR when some indications are non-response, as 

described below. In scenario 3, there are three promising indications (indications 1, 2, and 

3). The CDR of the shotgun design is more than doubling that of the conventional design 

(57.5% versus 24.3%), indicating that the shotgun design is twice more likely to discover the 

promising indications than the conventional design. Because the shotgun design made 
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substantially more discoveries, its FDR is slightly higher (i.e., 2%) than the conventional 

design. After accounting for the tradeoff between correct discovery and false discovery, the 

shotgun design substantially outperforms the conventional design with 26.1% higher ADR. 

The BHM design has comparable CDR to the shotgun design, but has a 13.4% higher FDR, 

suggesting the ability of the proposed CBHM to reduce the false positive rate. In scenario 4, 

there is one promising indication (indication 1). The shotgun design outperforms the 

conventional design with 27.1% higher CDR and 11.1% higher ADR. Compared to the 

BHM design, the shotgun design has 4.7% higher CDR, and yields 36.7% higher ADR (after 

adjusting for the false discovery). Scenarios 5-7 consider that the true MTD is dose level 2 

with various numbers of promising indications. The results are generally consistent with 

scenarios 1-4 and support that the shotgun design outperforms the other two designs. For 

example, in scenario 5, there are four promising indications (indications 1, 2, 3, and 4). The 

CDR of the shotgun design is 25% higher than the conventional design. After adjusting for 

the false discovery, the ADR of the shotgun design is 21% higher than the conventional 

design. The BHM design yields good CDR, but it fails to control FDR and, as a result, its 

ADR is 5.5% lower than the shotgun design. Scenario 7 has two promising indications 

(indications 1 and 2). After adjusting for false discovery, the shotgun design ADR is 6.7% 

and 23.9% higher than the conventional and BHM designs, respectively. Scenarios 8-10 

simulate the cases that the lowest dose is the MTD with 3-5 promising indications. The 

shotgun design has the best performance. Compared to the conventional design, the CDR of 

the shotgun design is 25.4%, 23.4%, and 24.5% higher, respectively, and the ADR of the 

shotgun design is 15.1%, 19.3%, and 24.5% higher, in scenarios 8-10. Compared to the 

BHM design, the shotgun design has comparable CDR, but yields higher ADR (e.g., 13.5% 

higher in scenario 8), after adjusting for false discovery.

3.4 Using CBHM for basket trials

As described previously, the proposed CBHM methodology for the phase II part of the 

shotgun design can be used independently for designing basket trials. We evaluated the 

performance of the CBHM for basket trials, and compare it to the Bayesian nonparametric 

method (BNP) proposed by Chen and Lee (2020) and the method proposed by Liu et al. 

(2017). For each comparison, we used the simulation settings considered by these authors.

Specifically, for the comparison with the BNP, taking the simulation setting of Chen and Lee 

(2020), the null and target response rates are q0,g = 0.1 and q1,g = 0.3, respectively, for 10 

indications. No interim analysis was considered and the maximum sample size for each 

indication was 25. Five scenarios were considered: global null (the response rates of all 

indications are 0.1), global target (the response rates of all indications are 0.3), equal mixture 

(the response rates in half indications are 0.1 and in the other half are 0.3), mostly target (the 

response rates in 80% indications are 0.3 and in 20% are 0.1), mostly null (the response rates 

in 20% indications are 0.3 and in 80% are 0.1). The treatment is claimed to be effective in 

indication g , if Pr(qg > q0,g + δ ∣ D) > C, where δ = 0.1 and C is calibrated to control type I 

error at 5% in each indication in the global null case. Under each scenarios, we conducted 

2000 simulations. The simulation results are shown in Table 4. CBHM and BNP have 

comparable performance, and both have higher power than the independent approach, where 

no information is borrowed across the indications. BNP has slightly higher power in the 
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scenario of global target, whereas the CBHM has slightly higher power in the scenarios of 

equal mixture and mostly null. In addition, under the scenario of mostly target, the type I 

error of CBHM is lower than that of BNP. One important advantage of the CBHM is that it 

is substantially simpler than the BNP. The BNP involves complicated Dirichlet process and 

computation.

When comparing the CBHM to the method proposed by Liu et al. (2017), we used the 

simulation setting considered by these authors. There are 5 indications, with null response 

rates (0.15, 0.25, 0.2, 0.2, 0.15) and target response rates (0.4, 0.5, 0.4, 0.4, 0.4). Following 

Liu et al. (2017), we also include independent approach for comparison, which evaluates the 

treatment effect in each indication independently by using Simon two-stage design. 

Assuming power of 80% and type I error rate of 5%, Simon two-stage design requires total 

sample sizes of Ng = 25,24,43,43 and 25 for 5 indications, which are used as the total 

sample sizes in the CBHM with one interim at 12,12,21,21 and 12 , respectively. The accrual 

rate for each indication is set at 2 patients per month. Three scenarios were considered by 

Liu et al. (2017): null (treatment is ineffective in all indications), nugget (treatment is 

effective only in indications 1, 4, 5), and great (treatment is effective in all indications). 

Under each scenarios, we conduct 1000 simulations, and the simulation results are shown in 

Figure 3. In general, CBHM has better performance than other two designs. In “great” 

scenario, CBHM yields higher power than Liu’s design and Simon’s design in indications 

1-5 (especially in indications 3-4). In “nugget” scenario, CBHM has higher power in 

indications 1, 2 and 5, and slightly higher type I error rates in indications 3-4, than other two 

designs.

4 Discussion

We propose a Bayesian seamless phase I-II shotgun design to efficiently evaluate the 

treatment effects of a new drug in multiple indications simultaneously. By using the 

seamless phase I-II design framework, the shotgun design eliminates the white space 

between phase I and phase II, thus speeding up the trial. In addition, this framework also 

allows the use of efficacy data collected from phase I in phase II. The shotgun design is 

flexible, allowing the total number of interim analyses and interim times to vary from one 

indication to another. By classifying indications into responsive and non-responsive 

subgroups and borrowing information within the subgroups using the Bayesian hierarchical 

model, the shotgun design has a substantially higher probability of discovering promising 

indications, after adjusting for false discoveries, than the conventional approach.

The proposed CBHM methodology for the phase II portion of the shotgun design can be 

used independently to design basket trials. The simulation study shows that the CBHM 

yields comparable or better performance than some existing basket trial designs, e.g., 

Bayesian nonparametric method (Chen and Lee, 2020) and multisource exchangeability 

model with Bayesian model averaging (Hobbs and Landin, 2018), but the CBHM is 

substantially simpler and easy to implement. The reason that these complicated methods do 

not deliver better performance is that in typical basket trials, the number of indications is 

often small (e.g., < 6) and the interim data in each indication are limited. The data simply 
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cannot provide enough information to reliably estimate complicated models. Actually, the 

extra noise introduced by the complicated models often hurts the performance.

It is worth noting that for any information methods, there is intrinsic conflict between 

improving power and controlling type I error. This is because with a finite sample, even 

when the treatment effect is heterogeneous across indications (e.g., some indications are 

responsive and others are non-responsive), there is a non-zero probability that the observed 

response rate is similar across the indications, which triggers (inappropriate) information 

borrowing and thus the type I error inflation for non-responsive indications (e.g., scenario 3 

in Table 3). In other words, in finite samples, we cannot have power of 1 to distinguish if the 

treatment effect of any two indications is truly homogeneous or heterogeneous. One may 

attempt to calibrate the probability cutoff in the decision rule (4) to control type I error rate 

strictly at the nominal value. That, however, will prohibit any information borrowing in all 

cases (e.g., the homogeneous case, scenario 2 in Table 3). This phenomenon not only occurs 

in the CBHM, but any information-borrowing methods. In other words, as long as we intend 

to borrow information, the inflation of type I error is inevitable. Jiang et al. (2020) discussed 

this issue and proposed using the utility to account for the power-type-I-error tradeoff and 

then optimize the utility.

In this paper, we mainly consider a binary endpoint. Our proposed design can also be 

extended for ordinal, continual, and survival endpoints. In addition, with the advent of novel 

molecularly targeted therapies and immunotherapies, the endpoints become more 

complicated, such as those seen with nested endpoints, co-primary endpoints, etc. How to 

deal with these complicated endpoints, while adaptively borrowing information across 

different indications at multiple cohorts expansion phases warrants further research.

In addition, although we do not formally investigate it, the dose used in the cohort expansion 

may be modified based on accumulative data collected. For example, if the additional data 

collected during cohort expansion suggest that the RP2D/MTD identified in dose finding is 

overly toxic for some indications (e.g., the observed toxicity rate is higher than the de-

escalation boundary of the BOIN design), then we could de-escalate the dose for that 

indication. Conversely, if the additional data suggest that the dose is particularly safe (e.g., 

the observed toxicity rate is lower than the escalation boundary of the BOIN design), then 

we could escalate the dose. We may therefore continue to employ the BOIN dose 

escalation/de-escalation rule adaptively to modify the dose during cohort expansion. 

However, in practice, as the sample size of the cohort expansion is often limited and such 

dose modification inevitably increases the sample size and complicates clinical operations, 

such decisions are best made based on the totality of clinical evidence and logistical 

considerations, rather than statistical rule.
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Appendix

Table A1:

Power and type I error of CBHM and CBHM with order constraint, for five indications with 

null response rate qg = 0.1, target response rate qg = 0.3, and total sample size N = 25 

without interim analysis.

Scenario Method Power/type I error (%)for indication

1 2 3 4 5

1 Response rate 0.1 0.1 0.1 0.1 0.1

CBHM 10.54 10.46 9.94 10.36 9.52

CBHM with constraint 10.54 10.46 9.94 10.36 9.52

2 Response rate 0.3 0.3 0.3 0.3 0.3

CBHM 90.56 91.52 91.06 91.64 90.48

CBHM with constraint 90.56 91.52 91.06 91.64 90.48

3 Response rate 0.1 0.1 0.3 0.3 0.3

CBHM 10.54 10.46 91.06 91.64 90.48

CBHM with constraint 10.54 10.46 91.06 91.64 90.48

Table A2:

Power and type I error of CBHM using Bayesian model averaging (denoted as CBHM-

BMA) and CBHM using the proposed Bayesian clustering rule (denoted as CBHM), for 

three indications with null response rate qg = 0.1, target response rate qg = 0.3, and total 

sample size N = 20 without interim analysis.

Scenario Method Power/type I error (%) for indication

1 2 3

1 Response rate 0.1 0.1 0.1

CBHM-BMA 9.97 9.80 9.50

CBHM 10.37 9.33 9.47

2 Response rate 0.3 0.3 0.3

CBHM-BMA 89.17 90.27 89.83

CBHM 88.63 90.00 89.33

3 Response rate 0.1 0.3 0.3

CBHM-BMA 15.30 90.13 89.33

CBHM 14.13 89.63 88.97

4 Response rate 0.1 0.3 0.1

CBHM-BMA 14.67 83.97 13.50

CBHM 13.67 84.33 12.50
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Figure 1: 
Schema of the shotgun design, starting with all-comers dose finding and then splitting into J 
indication-specific cohort expansions. At each interim, indications are adaptively clustered 

into subgroups (shown in the boxes with broken lines), and information are borrowed within 

each subgroup based on the clustered Bayesian hierarchical model (CBHM) method.
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Figure 2: 
Simulation results, including (a) correct discovery rate (CDR), (b) false discovery rate 

(FDR) and (c) adjusted discovery rate (ADR) for the conventional design, Bayesian 

hierarchical model (BHM) design, and shotgun design.
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Figure 3: 
Power and type I error of the CBHM, the method of Liu et al. (2017), and the independent 

Simon two-stage design for basket trials.
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Table 1:

Optimal dose escalation boundary λe and de-escalation boundary λd of the BOIN design.

Target toxicity rate ϕT

Boundaries 0.15 0.2 0.25 0.3 0.35 0.4

λe 0.118 0.157 0.197 0.236 0.276 0.316

λd 0.179 0.238 0.298 0.358 0.419 0.479
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Table 2:

Ten toxicity-efficacy scenarios with different MTD locations and various numbers of promising indications. 

The MTD and promising indications are in bold.

Scenario Dose Pr(toxicity) Response rate of five indications

1 2 3 4 5

MTD is the last dose

1

1 0.05 0.01 0.01 0.01 0.01 0.01

2 0.09 0.02 0.02 0.03 0.02 0.03

3 0.16 0.04 0.04 0.05 0.03 0.05

4 0.30 0.05 0.05 0.05 0.05 0.05

2

1 0.04 0.01 0.01 0.01 0.01 0.01

2 0.13 0.05 0.09 0.06 0.10 0.12

3 0.18 0.18 0.20 0.18 0.16 0.19

4 0.30 0.30 0.30 0.30 0.30 0.30

3

1 0.06 0.01 0.01 0.01 0.01 0.01

2 0.10 0.05 0.05 0.05 0.02 0.05

3 0.16 0.14 0.16 0.20 0.04 0.05

4 0.30 0.30 0.30 0.30 0.05 0.05

4

1 0.05 0.01 0.01 0.01 0.01 0.01

2 0.12 0.05 0.02 0.03 0.05 0.03

3 0.18 0.13 0.04 0.05 0.05 0.04

4 0.30 0.30 0.05 0.05 0.05 0.05

MTD is the middle dose

5

1 0.14 0.01 0.01 0.01 0.01 0.01

2 0.30 0.30 0.30 0.30 0.30 0.05

3 0.47 0.40 0.43 0.40 0.48 0.26

4 0.65 0.49 0.52 0.47 0.48 0.35

6

1 0.12 0.01 0.01 0.01 0.01 0.01

2 0.30 0.30 0.30 0.30 0.05 0.05

3 0.48 0.40 0.43 0.40 0.30 0.22

4 0.62 0.45 0.50 0.40 0.46 0.35

7

1 0.10 0.01 0.01 0.01 0.01 0.01

2 0.30 0.30 0.30 0.05 0.05 0.05

3 0.48 0.45 0.48 0.20 0.21 0.16

4 0.60 0.54 0.57 0.36 0.24 0.30

MTD is the first dose

8

1 0.30 0.30 0.30 0.30 0.05 0.05

2 0.48 0.45 0.48 0.46 0.20 0.26

3 0.56 0.50 0.54 0.58 0.38 0.39

4 0.62 0.50 0.62 0.67 0.45 0.48
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Scenario Dose Pr(toxicity) Response rate of five indications

1 2 3 4 5

9

1 0.30 0.30 0.30 0.30 0.30 0.05

2 0.45 0.48 0.47 0.43 0.41 0.23

3 0.52 0.52 0.55 0.54 0.48 0.38

4 0.60 0.52 0.65 0.63 0.56 0.46

10

1 0.30 0.30 0.30 0.30 0.30 0.30

2 0.46 0.42 0.38 0.46 0.44 0.45

3 0.55 0.48 0.43 0.54 0.50 0.45

4 0.65 0.56 0.58 0.60 0.58 0.45
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Table 3:

Simulation results of conventional, BHM and shotgun designs.

Method Selection
(%) of
target
dose

Power/type I error (%) for indication CDR
(%)

FDR
(%)

ADR
(%)

1 2 3 4 5

Scenario 1 0.05 0.05 0.05 0.05 0.05

Conventional 31.8 8.1 9.0 7.9 7.9 8.7 0.0 100 0.0

BHM 69.0 8.1 8.9 8.0 8.0 8.7 0.0 100 0.0

Shotgun 69.0 7.9 8.7 7.8 8.1 8.5 0.0 100 0.0

Scenario 2 0.30 0.30 0.30 0.30 0.30

Conventional 28.2 77.5 79.6 77.2 78.6 78.7 22.1 0.0 22.1

BHM 62.4 91.6 92.6 93.6 95.5 93.7 58.3 0.00 58.3

Shotgun 62.4 85.6 85.6 86.6 88.6 86.4 54.0 0.00 54.0

Scenario 3 0.30 0.30 0.30 0.05 0.05

Conventional 31.0 78.3 79.0 77.3 8.2 9.3 24.3 8.3 20.1

BHM 67.8 87.5 88.1 89.2 50.1 51.3 59.8 23.7 29.3

Shotgun 67.8 85.0 84.8 84.7 18.0 16.5 57.5 10.3 46.2

Scenario 4 0.30 0.05 0.05 0.05 0.05

Conventional 28.6 78.0 8.7 8.0 8.1 9.2 22.3 34.4 −1.6

BHM 63.2 70.7 23.5 21.5 20.9 22.3 44.7 40.5 −27.2

Shotgun 63.2 78.1 11.8 10.4 10.3 11.5 49.4 26.9 9.5

Scenario 5 0.30 0.30 0.30 0.30 0.05

Conventional 31.9 79.0 78.2 79.5 79.4 8.2 25.2 4.3 23.8

BHM 58.2 90.5 91.0 91.5 92.2 73.1 53.1 16.7 39.3

Shotgun 58.2 85.7 85.6 86.7 86.9 18.2 50.2 7.5 44.8

Scenario 6 0.30 0.30 0.30 0.05 0.05

Conventional 33.2 79.1 78.4 79.2 8.2 8.3 26.2 9.6 22.4

BHM 61.7 87.7 88.7 88.9 50.0 52.3 54.6 27.3 25.5

Shotgun 61.7 85.1 85.0 85.2 18.2 17.3 52.5 15.6 38.2

Scenario 7 0.30 0.30 0.05 0.05 0.05

Conventional 34.6 79.3 78.5 9.4 7.9 8.0 27.3 15.8 19.3

BHM 63.5 81.8 83.3 33.9 34.8 37.1 52.4 36.2 2.1

Shotgun 63.5 83.4 83.2 13.0 14.2 14.7 52.8 22.2 26.0

Scenario 8 0.30 0.30 0.30 0.05 0.05

Conventional 38.9 78.9 79.2 78.8 8.3 8.3 30.8 7.9 26.9

BHM 64.9 90.5 90.9 88.7 50.4 52.1 58.4 26.4 28.5

Shotgun 64.9 87.5 87.6 84.8 18.8 16.6 56.2 14.6 42.0

Scenario 9 0.30 0.30 0.30 0.30 0.05

Conventional 37.2 78.7 79.4 78.4 80.3 8.4 29.5 4.2 27.7
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Method Selection
(%) of
target
dose

Power/type I error (%) for indication CDR
(%)

FDR
(%)

ADR
(%)

1 2 3 4 5

BHM 60.5 92.2 93.3 91.1 92.8 73.9 55.9 16.5 40.8

Shotgun 60.5 88.0 88.1 86.0 87.5 17.7 52.9 7.2 47.0

Scenario 10 0.30 0.30 0.30 0.30 0.30

Conventional 38.0 78.5 79.2 78.6 79.8 78.8 30.0 0.0 30.0

BHM 62.1 94.8 95.2 93.5 95.1 94.3 58.7 0.0 58.7

Shotgun 62.1 88.2 88.3 86.5 88.7 87.8 54.5 0.0 54.5
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Table 4:

Average power and average type I error of BCHM, BNP and independent methods for basket trials.

Scenario Method Average power (%) Average type I error (%)

Global null Independent 4.8 NA

BCHM 4.5 NA

CBHM 4.8 NA

Global target Independent NA 77.8

BCHM NA 95.0

CBHM NA 90.8

Equal mixture Independent 4.8 77.8

BCHM 9.6 88.2

CBHM 9.5 90.8

Mostly target Independent 4.8 77.8

BCHM 14.4 92.2

CBHM 10.2 90.8

Mostly null Independent 4.8 77.8

BCHM 7.0 86.6

CBHM 9.5 89.1
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