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Highlights
In some people, the aftermath of acute
coronavirus disease 2019 (COVID-19) is
a lingering illness with fatigue and cogni-
tive defects, known as post–COVID-19
syndrome or ‘long COVID.’

Post–COVID-19 syndrome is similar
to postinfectious fatigue syndromes
triggered by other infectious agents and
to myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS), a condition
that patients often report is preceded
by an infectious-like illness.
Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can cause
chronic and acute disease. Postacute sequelae of SARS-CoV-2 infection
(PASC) include injury to the lungs, heart, kidneys, and brain that may produce
a variety of symptoms. PASC also includes a post–coronavirus disease 2019
(COVID-19) syndrome (‘long COVID’) with features that can follow other acute
infectious diseases and myalgic encephalomyelitis/chronic fatigue syndrome
(ME/CFS). Here we summarize what is known about the pathogenesis of ME/CFS
and of ‘acute’ COVID-19, and we speculate that the pathogenesis of post–COVID-
19 syndrome in some people may be similar to that of ME/CFS. We propose
molecular mechanisms that might explain the fatigue and related symptoms in
both illnesses, and we suggest a research agenda for both ME/CFS and post–
COVID-19 syndrome.
ME/CFS is associated with underlying
abnormalities of the central and auto-
nomic nervous systems, immune
dysregulation, disordered energy
metabolism, and redox imbalance.
It is currently unclear if the same abnor-
malities will be identified in post–
COVID-19 syndrome.

The USA and other developed na-
tions have committed considerable
support for research on post–
COVID-19 illnesses.
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Post–COVID-19 syndrome and ME/CFS
At the time of the writing of this review, nearly 170 million people were estimated to have been
infected with SARS-CoV-2 worldwide, including nearly 35 million people in the USA alone
(https://www.worldometers.info/coronavirus/worldwide-graphs/#case-outcome). The majority
of those infected are asymptomatic or have only mild disease; however, 6.4% with documented
infection in the USA have required hospitalization, and the global estimatedmortality rate is 2.35%
(https://www.worldometers.info/coronavirus/worldwide-graphs/#case-outcome, https://www.
cdc.gov/coronavirus/2019-ncov/covid-data/covidview/index.html).

Most people recover completely from ‘acute’COVID-19. However, others develop a variety of dif-
ferent postacute sequelae of SARS-CoV-2 infection (PASC) (see Glossary). Some develop
chronic damage to the lungs [1], heart [2,3], kidneys [4], brain [5], or extremities through either
a cytopathic effect of viral replication an exuberant immune response or thromboembolism.
The attendant tissue injury can lead to organ dysfunction and resulting symptoms including but
not limited to fatigue, shortness of breath, and cognitive impairment.

In addition, up to 20%have a lingering illness that has not yet been associated with obvious organ
injury: post–COVID-19 syndrome, also known colloquially as ‘long COVID.’ People with the
syndrome are referred to as ‘long haulers.’ The symptoms of post–COVID-19 syndrome are
similar to those of postinfectious fatigue syndromes following other well-documented infec-
tious diseases. They also are similar to those of myalgic encephalomyelitis/chronic fatigue
syndrome (ME/CFS), an illness originally called just ‘chronic fatigue syndrome’ that is often
preceded by an infectious-like illness. Finally, the symptoms of post–COVID-19 syndrome also
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Glossary
Ageusia: loss of taste, which can be
due to damage to the tongue, to the
cranial nerves that carry taste sensations
from the tongue to the brain, or to the
parietal lobes in the brain where taste
sensations are received and interpreted.
Anosmia: loss of smell, which can be
due to damage to the olfactory nerve
that carries taste sensations from the
nose to the brain or to the parietal lobes
in the brain where smell sensations are
received and interpreted.
Angiotensin-converting enzyme 2
(ACE2) receptor: the receptor
originally described because of its role in
the renin-angiotensin-aldosterone
system, but which also is the receptor
for SARS-CoV-2, the virus that causes
COVID-19.
Brain fog: a term for the cognitive
difficulties experienced by patients with
both ME/CFS and postacute COVID-19
syndrome, characterized primarily by
difficulty with attention and concentration.
Microbiome: the collective genes of all
of those microbes (bacteria, viruses,
fungi) that live on or in the human body
and that produce molecules that affect
human physiology.
Myalgic encephalomyelitis/chronic
fatigue syndrome (ME/CFS): an
illness that can occur in sporadic or
epidemic form; is often preceded by an
infectious-like illness; and includes
fatigue, cognitive problems, a flare of
symptoms following physical, cognitive,
or emotional stressors (postexertional
malaise), disrupted sleep, and
orthostatic intolerance.
resemble those that develop in some people following a critical illness (severe injury or infection),
variably called post–critical illness syndrome or post–intensive care unit syndrome [6].

People with both mild/moderate and severe ‘acute’ COVID-19 can develop the symptoms of
post–COVID-19 syndrome. Although it is possible that the pathophysiology causing the chronic
symptoms following severe acute COVID-19 is different from the pathophysiology causing
symptoms following moderate acute illness, it also is possible that the pathophysiology following
severe and moderate illness is similar. In either case, it is likely that the pathophysiology of post–
COVID-19 syndrome overlaps with that of acute COVID-19, other postinfectious fatigue
syndromes, and ME/CFS.

ME/CFS
An illness consistent with ME/CFS (Box 1) has been described in the medical literature for
over 200 years. Many people with ME/CFS report that the illness began with an ‘infectious-like’
prodrome – typically respiratory and gastrointestinal symptoms, fever, lymphadenopathy, and
myalgias. In most instances, an infectious agent is neither sought nor identified. However,
postinfectious fatigue syndromes that resemble or meet criteria for ME/CFS have been reported
following well-documented infections. The precipitating infectious agents include herpesviruses
(Epstein-Barr virus [7], human cytomegalovirus [8], and human herpesviruses 6A and 6B [9]),
SARS-CoV-1 (the cause of SARS) [10], Ebola virus [11], West Nile virus [12], dengue virus [13],
Ross river virus [14], Borrelia burgdorferi [15], enteroviruses [16], human parvovirus B19 [17],
Mycoplasma pneumoniae [18], Giardia lamblia [19], Coxiella [14], and Candida species [20].
Claims that murine leukemia viruses, including a laboratory recombinant virus [XMRV (xenotropic
murine leukemia virus–related virus)], cause ME/CFS have been refuted [21,22], as have similar
claims for Borna disease virus [23]. Postinfectious fatigue syndromes can follow both sporadic
and apparently epidemic infections [24]. The observation that such a wide variety of infectious
agents are associated with ME/CFS suggests that an abnormal host response to infection may
be implicated.

Two physical stressors, exercise and prolonged upright position, as well as cognitive and emo-
tional stressors, typically produce a worsening of all of the symptoms of the illness, a condition
called ‘postexertional malaise.’
Box 1. National Academy of Medicine case definition of ME/CFS‡

(i) Substantial impairment in the ability to function at home or at work, lasting for more than 6 months, accompanied by
profound fatigue, of new or definite onset (not lifelong), not substantially alleviated by rest; AND

(ii) Postexertional malaise; AND
(iii) Unrefreshing sleep;

PLUS at least one of:

(iv) Cognitive impairment OR
(v) Orthostatic intolerance

Definitions:
Cognitive impairments: problems with thinking exacerbated by exertion, effort, or stress or time pressure.
Orthostatic intolerance: symptomsworsen upon assuming andmaintaining upright posture and are improved, though not
necessarily abolished, by lying back down or elevating feet.
Postexertional malaise (PEM): a prolonged exacerbation of a patient’s baseline symptoms after physical/cognitive/
orthostatic exertion or stress. It may be delayed relative to the trigger.
Unrefreshing sleep: feeling unrefreshed after sleeping many hours.

‡Adapted from the Institute of Medicine [89].
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Neurogenic respiratory failure: the
failure of the brain to appropriately
stimulate breathing when oxygen levels
fall too low or carbon dioxide levels rise
too high.
Paresthesias: sensations of burning,
prickling, tingling, numbness, or itching
that can occur in any part of the body,
most often the hands, arms, legs, and
feet, typically caused by damage to
peripheral nerve fibers or brain
hypersensitivity to signals from nerve
fibers.
Postacute COVID-19 syndrome, or
long COVID: lingering and debilitating
symptoms persisting weeks or months
following acute COVID-19, typically
including fatigue, cognitive problems,
impaired smell and taste,
breathlessness, and other symptoms.
Postacute sequelae of SARS-CoV-2
(PASC): lingering symptoms following
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infection with the virus that causes
COVID-19.
Post–critical illness syndrome:
lingering and debilitating symptoms
following severe injury and/or infection,
requiring intensive care initially.
Postinfectious fatigue syndromes:
lingering and debilitating symptoms
following a variety of well-documented,
specific viral, bacterial, fungal, and
protozoan infections.
Gastrointestinal microbiome
ME/CFS has been linked not only to exogenous infectious agents but also to endogenous agents.
Intestinal dysbiosis has been reported by several groups. Proinflammatory Proteobacteria species
tend to be increased in number, and anti-inflammatory Faecalibacterium and Bifidobacterium
species and other species that produce the anti-inflammatory compound butyrate are decreased
in number [25,26]. Whether the dysbiosis is a cause of the disease or an epiphenomenon secondary
tometabolic or immunologic changes or to reduced activity levels is unclear. However, these studies
have also found (i) evidence of increased gut wall permeability with bacterial products entering the
circulation, (ii) that the abundance of various bacterial taxa correlate significantly with the severity
of pain and fatigue [25,26], and (iii) that somemetabolomic findings (discussed later) appear to reflect
the expression of bacterial rather than human genes [25]. These findings suggest a linkage between
the microbiome, gut inflammation, and the symptoms of the illness in at least some people.

Dysregulated immune responses, immune activation, immune cell exhaustion
A variety of abnormal phenotypic and functional immune responses in blood and cerebrospinal
fluid (CSF), involving several arms of the immune system, have been independently reported by
several research groups. The abnormalities reported by a preponderance of studies, when
people with ME/CFS are compared with matched healthy control subjects, are summarized in
Box 2. Several of the abnormalities appear to be affected by the duration of the illness, with more
pronounced abnormalities seen in the first 3 years followed by a tendency for the abnormalities to
subside – a phenomenon that suggests an exuberant immune response at the onset of the illness
that may then become exhausted or attenuated by counter-regulatory mechanisms as the illness
becomes more chronic [27,28]. In addition, levels of several cytokines are correlated with symptom
severity [29]. Cytokinesmay contribute to fatigue and cognitive dysfunctionmay serve as biomarkers
for immune activation. Some patients with ME/CFS may also have autoantibodies to β-adrenergic
and muscarinic cholinergic receptors [30].

Metabolomic studies
Metabolomics – the simultaneous measurement of multiple small molecules (50–1500 Da) that
represent substrates or products of biological processes – is a relatively recent tool for gaining
insights into pathophysiology. As summarized in Box 3, studies have found evidence of three
phenomena: (i) a generalized impairment in energy production from fatty acids, glucose, amino
acids, and oxygen; (ii) a general hypometabolic state characterized by depressed levels of
most metabolites, as occurs in hibernating animals; and (iii) redox imbalance.
Box 2. Immunologic abnormalities in ME/CFS

Increased production of proinflammatory cytokines (e.g., IL-1A, IL-17a, tumor necrosis factor-α) and ‘anti-inflammatory’
cytokines (e.g., IL-1 receptor antagonist, IL-4, and IL-13) [28,29,91], particularly in the first 3 years of illness [28].

Levels of multiple cytokines correlate significantly with severity of symptoms [29].

Decreased cytotoxicity of natural killer cells, with diminished expression of cytolytic proteins and production of cytokines [92,93].

Increased numbers of CD8+ cytotoxic T cells bearing activation antigens (CD38+, human leukocyte antigen-DR isotype) [93].

T cell exhaustion [27,28], typically in illness of longer duration.

Decreased and increased numbers of regulatory T cells have been reported [93,94], although the studies did not consider
the current stage of the illness (e.g., flare versus relative remission).

Increased production of multiple autoantibodies, particularly against CNS and autonomic nervous system targets [71].

Antigen-driven clonal B cell expansion (proteomic studies) [95].
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Box 3. Metabolomic abnormalities in ME/CFS

Reduced generation of ATP from:

• Glucose via the tricarboxylic acid (TCA) cycle [96], reduced levels of fatty acids and of acyl-carnitine [97], and reduced
levels of amino acids via the urea cycle [96,98].

• Impaired oxidative phosphorylation [99,100].
• Glycolysis: either a compensatory increase [101] or a decrease [98].

Hypometabolic state: reduced levels of many molecules [102].

Redox imbalance [78,103]:

• Increased levels of pro-oxidants: peroxides and superoxides, correlating with severity of symptoms [104];
isoprostanes, both at rest and after exercise [105].

• Decreased levels of antioxidants: decreased levels of α-tocopherol [106]; thiobarbituric acid reactive substances, or
TBARS, that correlate with severity of symptoms [107].

• Increased nitrosative stress: increased levels of inducible nitric oxide synthase (iNOS), possibly secondary to increased
production of NFκB [108]; increased nitric oxide (NO), peroxynitrite, and nitrate, particularly following exercise [109].

• Brain magnetic resonance imaging (MRI) has shown elevated levels of ventricular lactic acid consistent with oxidative
stress [110,111].

Trends in Molecular Medicine
Nervous system abnormalities
A wide variety of objective central nervous system (CNS) and autonomic nervous system abnor-
malities have been reported in ME/CFS. Although the literature contains some contradictory
reports, the preponderance of the published evidence has identified the abnormalities summa-
rized in Box 4.

Because depression can cause fatigue, investigators have asked whether psychiatric disorders
may be cofactors in ME/CFS. Most studies have found concomitant psychiatric disorders in
50–80% of patients with ME/CFS. However, these disorders typically developed after the onset
Box 4. Neurologic abnormalities in ME/CFS

Cognitive deficits, primarily in attention and reaction time [112].

Increased pain in response to various stimuli [113–115].

White matter abnormalities on MRI [116,117].

Impaired response to cognitive, motor, visual, and auditory challenges on functional MRI testing [118].

Single-photon emission computed tomography (SPECT), positron emission tomography (PET), and magnetic resonance
spectroscopy reveal hypoperfusion and/or metabolic dysfunction of glial cells [119] and neuroinflammation characterized
by widespread activation of both astrocytes and microglia [67,68].

Downregulation of the hypothalamic–pituitary–adrenal (HPA) axis [120].

Impaired connectivity (response of one region of the brain to signals from another region) [121,122], also seen in other
fatigue states [123].

Disordered sympathetic and parasympathetic activity with reduced cerebral perfusion [70,124].

Proteomic studies of spinal fluid employing mass spectrometry, liquid chromatography, and peptide sequencing found
increased levels of proteins (e.g., α2-macroglobulin, keratin 16, orosomucoid) indicating tissue injury and repair [125].

Autoantibodies targeting adrenergic, muscarinic, and cholinergic receptors [30,71–73].

Postexertion neuromuscular studies reveal reduced anaerobic threshold and peak work, particularly after a second
exercise challenge 24 hours later [126], as well as increased lactic acid in muscle [127] and the need to recruit additional
brain regions to respond to cognitive challenges (as demonstrated by functional MRI), particularly following exertion [128].
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of ME/CFS. Psychiatric disorders that manifest before the onset of CFS appear to be no more
frequent than in the community at large [31]. Moreover, controlled studies of the antidepressant
fluoxetine in people with ME/CFS have demonstrated no benefit [32].

COVID-19
The multisystem pathology of COVID-19
Although it was initially thought to be primarily a pulmonary pathogen, SARS-CoV-2 can also
cause multiorgan pathology during acute illness involving many organ systems [4,33–39].

Chronic pulmonary, cardiac, and renal damage following COVID-19
Themajority of patients recover fromCOVID-19 and resume normal activities. Nonetheless, many
report persistent symptoms at least 6 months after acute infection [40]. Over 70 000 COVID-19
patients who remained alive 30 days after the onset of symptoms were compared with nearly
5 million matched non-COVID control subjects. Four months later, patients with COVID-19 had
persistent respiratory, cardiovascular, nervous system, metabolic, and gastrointestinal system
disorders significantly more often than the control subjects. The samewas true when hospitalized
COVID-19 patients were compared with hospitalized influenza patients [41].

Neurologic disease during and following acute COVID-19
Reports of neurological signs and symptoms in inpatients with acute COVID-19 vary: 36% of
patients in Wuhan, 57% of inpatients in Spain, and 82% of patients in Chicago [42–44]. The
most commonly reported manifestations are myalgia, headache, dysgeusia, anosmia, encepha-
lopathy, and neuropsychiatric disorders. Seizures and movement disorders are uncommon.
Acute ischemic events and intracranial hemorrhage have been reported in 1–4% of patients,
including young adults without known vascular disease [45,46]. Some observers have reported
neurogenic respiratory failure (‘Ondine’s curse’), although this is controversial. Demyelinating
events involving the brain and spinal cord have been reported, as have Guillain-Barré syndrome
and leukoencephalopathies [47,48].

Autopsy reports of COVID-19 patients with neurologic disease may vary in findings in accor-
dance with signs and symptoms of disease. Some report low levels of SARS-CoV-2 RNA
and protein in the brain as well as astrogliosis and microglial activation [49–51]. In others, the
primary pathology may reflect ischemia. One study found viral RNA, protein and particles in
olfactory epithelial cells, dendritic projections of olfactory neurons that extended into the
mucosa and the brainstem, and microthrombi and infarcts [52]. The distribution of virus in
olfactory mucosa and neural processes that extend into the nasopharynx provides a mecha-
nism for understanding anosmia and dysgeusia and for invasion of the CNS. However, in
another study, single-cell sequencing of the olfactory epithelium indicated that whereas
the requisite viral receptor, the angiotensin-converting enzyme 2 (ACE2) receptor, is
expressed in support cells, stem cells, and perivascular cells, it is not present in olfactory sensory
neurons [53]. It is unclear, therefore, whether COVID-associated anosmia reflects direct neuronal
damage due to infection, loss of some factor that is essential to olfactory signal transduction or
transmission, or a deleterious inflammatory response.

Footprints in CSF of active infection are uncommon. SARS-CoV-2 RNA was not detected in CSF
of 30 patients with a wide range of neurological complications [54]. In another study of 58 pa-
tients, 81% of whom had encephalopathy, the presence of virus RNA in CSF was also infrequent
(7%); however, 40% had elevated CSF albumin, a finding interpreted to represent trafficking of
proteins from the systemic circulation to the CSF due to a breakdown of the blood–brain barrier.
Seven (41%) of 17 had elevated CSF levels of the IL-6 cytokine [55].
Trends in Molecular Medicine, September 2021, Vol. 27, No. 9 899
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Taken in concert, autopsy and CSF studies suggest that at least some of the neuropathology of
COVID-19 is more likely to represent a host response to the virus andmicrovascular damage than
a direct cytopathic effect of SARS-CoV-2 [50]. Indeed, the vascular pathology – procoagulant,
proaggregatory, antifibrinolytic, proinflammatory, vasoconstrictive, and pro-oxidant – seen in
the lungs, heart, brain, and other organs may all indicate that primary endothelial dysfunction is
central to the pathology of both acute COVID-19 and its long-term consequences [56]. There
is ample precedent for infarcts resulting in dementia and cognitive dysfunction in the elderly
[57]. The wide distribution of microinfarcts in COVID-19 suggests they may be one cause of cog-
nitive dysfunction. Magnetic resonance imaging of the brain in 37 individuals with severe disease
revealed multifocal white matter hemorrhages [58].

Chronic fatigue, sensory, and cognitive deficits following COVID-19
The primary persistent symptoms following COVID-19 include chronic fatigue, impaired smell
(anosmia) and taste (ageusia), cognitive problems (e.g., difficulty with concentration and atten-
tion, and possibly memory), and breathlessness. These symptoms may occur in people who
have had only mild or no respiratory disease. A post–COVID-19 clinic reported that even
patients never hospitalized for pneumonia or hypoxemia reported neurologic complaints
persisting for more than 6 weeks that included cognitive dysfunction described as ‘brain
fog’ (81%), headache (68%), paresthesias (60%), dysgeusia (59%), anosmia (55%), and
myalgias (55%) [59]. Surveys conducted in the USA, Europe, and Scandinavia [40,60–66] reported
very different frequencies of persisting symptoms at 6 months after acute illness. This may be due
to differences in methods for ascertainment, differing patient populations (hospitalized versus not
hospitalized), different definitions of COVID-19 (confirmed by nucleic acid, antigen, or antibody
testing or not), and different methods for collecting symptoms (medical records, patient self-
report, formal surveys).

Pathogenesis of ME/CFS
The frequency of an infectious prodrome in patients with ME/CFS suggests that, in many
cases, infection triggers host responses that culminate in disease. It is plausible that SARS-
CoV-2 infection might induce a similar syndrome and that insights from ME/CFS research
may be helpful in developing a research agenda for postacute COVID-19 syndrome. Con-
versely, because ME/CFS by definition cannot be diagnosed until 6 months after symptom
onset, studies of PASC may yield insights into early manifestations and biomarkers for
ME/CFS.

Neuroinflammation
Several studies have reported widespread activation of both astrocytes and microglia in
people with ME/CFS [67,68]. Cognitive dysfunction (‘brain fog’) may reflect cytokines pro-
duced by immune activation (either peripherally or in the CNS) that are known to cause fatigue
and cognitive and mood disorders. For example, elevated peripheral levels of proinflammatory
cytokines such as IL-6 can have profound effects on mood, cognition, and behavior in
humans and in animal models [69]. Because this has been well documented for cytokines
detected in the circulation, it is at least as likely when cytokines are generated in the brain
by neuroinflammation.

Energy metabolism
The sensation of fatigue experienced by people with ME/CFS is not relieved by rest and becomes
more pronounced hours to days after physical or cognitive exertion. ME/CFS is characterized by
a generalized impairment in energy production, a general hypometabolic state, and redox
imbalance (Box 3) that may contribute to the pathogenesis of fatigue.
900 Trends in Molecular Medicine, September 2021, Vol. 27, No. 9
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Clinician’s corner
Although many subjects with ME/CFS
report a prodrome consistent with
infection, no single agent is consistently
implicated. A diagnosis of ME/CFS is
based on symptoms; no diagnostic
test with adequate sensitivity and speci-
ficity has yet been developed, althougha
number are being tested. Even though
the diagnosis is based just on symp-
toms, multiple underlying biological
abnormalities have been identified, as
summarized in this article.

There is no specific therapy for
ME/CFS, and few if any therapies
have yet been studied with large
randomized controlled trials.

Although respiratory tract infection
may be considered the sine qua non
of acute COVID-19, SARS-CoV-2 can
also cause injury to multiple organs,
including the heart, kidney, and brain,
through parenchymal infection as well
as the immune response and vascular
damage.

Following COVID-19, some individuals
have lingering illness with features
of ME/CFS that may not be explained
by obvious organ pathology: post–
COVID-19 syndrome.
Dysautonomia
Many patients report postural hypotension and tachycardia. Dysautonomia and cerebral
hypoperfusion have been documented in ME/CFS patients by various autonomic nervous
system tests [70].

Autoantibodies
Many ME/CFS patients have autoantibodies that target adrenergic and muscarinic cholinergic
receptors [30,71–73]. Autoantibodies against neural targets may contribute to cognitive dysfunc-
tion, depression, weakness, and autonomic instability.

Mechanisms that may link these abnormalities
ME/CFS may represent the unchecked persistence of a response that occurs when various
stressors (e.g., infection, injury, cold temperatures, lack of sufficient nutrients) threaten the viability
of a cell or of an organism. At the cellular level, it is called the ‘cell danger response’ (CDR) [74]. At
the level of the organism, such as in the extreme case of a hibernating animal, it has been called
the ‘integrated stress response’ (ISR) [75]. In both the CDR and the ISR, nonessential energy-
consuming processes are throttled down, allowing the available energy molecules to be used
for processes essential to maintaining viability. A hypothalamic ‘torpor’ nucleus (a group of
neurons dedicated to a particular function) has been identified in rodents [76]; we speculate
that such a nucleus also may mediate the ISR. We speculate that a similar nucleus of neurons
may be implicated in human sickness symptoms and associated physiologic phenomena,
such as fever. The nucleus may be triggered by neuroinflammation. Neuroinflammation can
occur directly through injury to or infection of the brain. It also can occur indirectly in response
to humoral and retrograde neural signals generated by inflammation elsewhere in the body [77]
or by autoantibodies against specific neural or immune system targets. The redox imbalance
that is a central feature of ME/CFS [78] may be a marker for systemic inflammation in response
to infection or injury.

Pathogenesis of post–COVID-19 syndrome
Studies are underway to identify the type and frequency of permanent organ injury caused by
COVID-19, to assess the impact of organ injury on the symptoms and functional status of that
injury, and to identify the frequency and underlying pathogenesis of post–COVID-19 syndrome.
Viruses can cause damage directly and indirectly [79]. They can invade and kill cells by diverting
resources and processes required for viability. They can also compromise cells without killing
them and reduce their capacity to express products such as hormones, neurotransmitters,
and other factors that are essential for the function of the infected organism [80]. Infection
can also induce immune responses that result in damage or dysfunction, even at sites where
the virus may not be replicating. Infection-induced cytokine expression can have profound
effects on energy metabolism and cognition [81,82]. Adaptive immune responses may result
in damage to adjacent, uninfected cells or a break in tolerance to self that culminates in
autoimmunity [83].

There is evidence that, as in ME/CFS, autoantibodies may be contributing to post-COVID illness
symptoms. Investigators looked for autoantibodies against 2770 extracellular and secreted
proteins in 194 acute COVID-19 patients. They found autoantibodies against cytokines,
chemokines, lymphocyte receptors, endothelial targets, and multiple CNS targets, including the
orexin receptor (important in fatigue and sleep) – autoantibody profiles that correlated with the
severity of illness [84].

There also is evidence that autonomic dysfunction may contribute to post-COVID illness [85] as it
does in ME/CFS [70,86,87]. Given the emotional, social, and financial trauma experienced by
Trends in Molecular Medicine, September 2021, Vol. 27, No. 9 901
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Outstanding questions
Will multicenter studies of people with
ME/CFS in different geographic areas,
including people with both early and
late disease, consistently confirm the
previously described immunologic,
neurologic, and metabolomic/redox
abnormalities?

Do the molecular, proteomic, and
metabolomic tests that discriminate
people with ME/CFS from healthy
control subjects also discriminate
ME/CFS from comparison groups of
people with other fatiguing illnesses,
such as post–COVID-19 syndrome,
multiple sclerosis, systemic lupus ery-
thematosus, and major depression?

Will abnormalities that distinguish people
with ME/CFS and post–COVID-19
syndrome at baseline become worse
after physical, cognitive, and emotional
stressors that typically worsen symp-
toms and thereby suggest that they
may be directly connected to the
disease process that generates the
symptoms?

Will larger studies using noninvasive
imaging techniques confirm the
presence of neuroinflammation in
people with ME/CFS and post–
COVID-19 syndrome?

Will newer anti-inflammatory therapies
targeting neuroinflammation specifi-
cally, such as therapies to suppress
inflammasome activation in glial cells,
ameliorate symptoms in people with
both ME/CFS and post–COVID-19
syndrome?

Because a redox imbalance has been
consistently documented in people
with ME/CFS, will trials of therapies to
restore redox balance ameliorate
symptoms in people with both ME/
CFS and post–COVID-19 syndrome?
many people with COVID-19, in some people, it is possible thatmood disorders also contribute to
the symptoms of post–COVID-19 syndrome. Much remains unknown about its pathogenesis.

A proposed research agenda for ME/CFS and post–COVID-19 syndrome
ME/CFS
In this review, we have summarized the preponderance of the evidence as reflected by multiple
prospective, controlled studies conducted bymultiple laboratories. As is often true in the literature
on most topics, some studies involve fewer patients than one would like. Whereas peer-reviewed
studies of ME/CFS patients typically include matched healthy control subjects, very few also
include comparison groups with other fatiguing illnesses. Despite this weakness in the literature,
inconsistencies in findings most commonly entail differences in the details rather than in general
conclusions.

For example, although virtually all reported studies find impairment in energy metabolism, they
differ regarding which mechanisms of energy production are most impaired and which metabo-
lites have the most aberrant levels. This is neither surprising nor disturbing: Metabolomics mea-
sures ‘dynamic’ processes rather than ‘fixed’ defects, such as polymorphic change in gene
structure. The moment in a dynamic process when a blood sample is obtained affects the results
of any measurement. The first movement and the third movement of the same symphony do not
sound the same.

In summary, although the findings we have summarized regarding the underlying pathology of
ME/CFS are robust, they also raise questions that require further investigation, as outlined later
in the Outstanding questions (see Outstanding questions).

In addition to defining individual components in the pathogenesis of ME/CFS – chronic inflamma-
tion, redox imbalance, defective energy metabolism – we also need to understand how these
components interact. Several are bidirectionally related. For example, inflammation can create
redox imbalance that, in turn, can damage mitochondrial DNA and membranes. Conversely,
mitochondrial dysfunction can generate inflammation, as can redox imbalance sufficient to
damage tissue. Thus, the precipitating event may be different in different individuals, but it may
lead to the same self-reinforcing vicious cycles that generate the symptoms of the illness.

Post–COVID-19 syndrome
Large, longitudinal studies of post–COVID-19 syndrome are underway around the world to
collect detailed data on the natural course of symptoms, functional status, and underlying biological
aberrations. In our opinion, the most important questions are the following: (i) How frequently do
debilitating symptoms and functional limitations occur following acute COVID-19, and what risk
factors make themmore likely? (ii) How often are such symptoms and limitations due to permanent
injury to the lungs, heart, kidneys, or other organs? (iii) In patients with symptoms and limitations
but without such permanent organ injury (i.e., those with post–COVID-19 syndrome), is there a
detectable pathophysiology? (iv) If the answer to question (iii) is yes, is that pathophysiology similar
to what has been found in ME/CFS?

Concluding remarks
Lingering symptoms after acute COVID-19 may be due in some patients to chronic damage to
the lungs, heart, and kidneys, and in other patients, they may be due to the psychosocial trauma
of the illness and the impact of the pandemic on family, friends, and the workplace. In other
patients without evidence of such chronic organ damage, such as those with post–COVID-19
syndrome, it seems likely that the underlying biology is similar to that of other postinfectious
902 Trends in Molecular Medicine, September 2021, Vol. 27, No. 9
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fatigue syndromes, to post–critical illness syndrome, and to that of ME/CFS. It also is likely that
the underlying pathology involves the CNS; the autonomic nervous system; and a persistent,
dysregulated immune and metabolic response to any of multiple infectious agents.

The COVID-19 pandemic is likely to greatly increase the number of people who develop ME/CFS
or a similar illness and other post-COVID illnesses (e.g., chronic hypoxia from impaired lung
function, congestive heart failure from post-COVID cardiomyopathy) [88]. Before the pandemic,
ME/CFS was estimated to impact 836 000 to 2.5 million Americans and to cost as much as
$24 billion annually [89]. An estimated 10 million people may be affected worldwide [88]. It is
too early to know the ultimate health impact of post-COVID chronic illnesses; however, senior
economists have estimated that the cumulative future costs in the USA may be as high as
$4.2 trillion [90].

These human and economic costs underscore the importance of investing in rigorous research
into the epidemiology and pathogenesis of ME/CFS and post-COVID chronic illnesses (see
Outstanding questions and Clinician's corner). The National Institutes of Health (NIH) announced
in early 2021 that it would invest $1.15 billion in studies of these illnesses. In addition, an NIH-
supported biorepository of plasma, serum, and cells fromwell-characterized patients, with detailed
clinical information on each patient, is available to investigators (https://searchmecfs.org/). We
anticipate that this investment will lead to fundamental answers about the underlying biology of
both post–COVID-19 syndrome andME/CFS, diagnostic and prognostic tests, and new strategies
for intervention that reduce the morbidity and the social and economic costs of these diseases.
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