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Microglia-mediated neuroinflammation is one of the most remarkable hallmarks of neurodegenerative diseases (NDDs), including
AD, PD, and ALS. Accumulating evidence indicates that microglia play both neuroprotective and detrimental roles in the onset and
progression of NDDs. Yet, the specific mechanisms of action surrounding microglia are not clear. Modulation of microglia function
and phenotypes appears to be a potential strategy to reverse NDDs. Until recently, research into the epigenetic mechanisms of
diseases has been gradually developed, making it possible to elucidate the molecular mechanisms underlying the epigenetic
regulation of microglia in NDDs. This review highlights the function and phenotypes of microglia, elucidates the relationship
between microglia, epigenetic modifications, and NDDs, as well as the possible mechanisms underlying the epigenetic
modulation of microglia in NDDs with a focus on potential intervention strategies.

1. Introduction

Neurodegenerative diseases (NDDs) are common chronic
neurological disorders with features of progressive neuronal
loss within the central nervous system (CNS) resulting in
gradual deterioration of motor symptoms and/or cognitive
function. Of these, Parkinson’s disease (PD), Alzheimer’s dis-
ease (AD), and Amyotrophic lateral sclerosis (ALS) are the
main typical diseases [1–3]. AD is one of the most common
NDDs, characterized by amyloid-β (Aβ) plaques and neuro-
fibrillary tangles (NFTs), leading to cognitive deficits [4]. PD
is distinguished by progressive and selective loss of dopami-
nergic (DA) neurons in the substantia nigra pars compacta
(SNpc) [5], while ALS manifests as degeneration and loss of
motor neurons (MNs) [6]. These pathologies are mostly
correlated with protein misfolding and aggregation, such
as Aβ and tau in AD, α-synuclein (SNCA) in PD, and

TAR DNA-binding protein 43 (TDP-43) in ALS [7]. NDDs
are affecting a massive and ever-increasing population
worldwide, resulting in severe inconvenience to patients in
their daily lifespan and imposing a heavy burden on public
health and society [8]. Unfortunately, the mechanisms of
NDDs are still poorly understood, and no ideal drugs are
available to slow down the onset and progression of NDDs.
It is thus essential to gain insight into the pathogenesis of
NDDs and to seek effective treatments.

In recent studies, accumulating evidence has underlined
the core role of the immune system in the onset and progres-
sion of NDDs [9, 10]. Existing and emerging data highlight
the importance of microglia in health and diseases [11].
Microglia are the predominant type of glial cells, constituting
approximately 5-12% of the total population of CNS cells,
which are mostly expressed in brain areas such as the cortex
and hippocampus [12, 13]. As the crucial immune cells of the
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brain, microglia originate from myeloid precursors and
migrate to the brain in the early state of embryonic develop-
ment, with an essential role in maintaining normal develop-
ment of the brain and environmental homeostasis of the CNS
[14]. Conversely, uncontrolled or aberrantly activated
microglia potentially trigger brain diseases. Accumulating
evidence has suggested that microglia are implicated in the
onset and exacerbation of NDDs [15, 16]. Moreover, the role
of microglia in NDDs depends on its phenotypes. Consistent
with this, microglia play a “double-edged sword” role in
NDDs [17]. In the pathological process of NDDs, there are
both activated microglia and increased release of inflamma-
tory mediators [18, 19]. Neuroinflammation has become a
common pathological hallmark of NDDs, and microglia are
the prime effectors in the regulation of inflammatory
response [20]. Yet, the specific mechanisms of action sur-
rounding microglia are far from clarified. Therefore, modu-
lating the activation or phenotypes of microglia to attenuate
inflammatory response is recognized as an attractive target
in the therapeutic of NDDs.

Epigenetic modifications are closely associated with
various diseases, including NDDs, tumors, and autoim-
mune diseases, which mainly affect complex processes
such as memory, motor, and cognitive function in the
brain [21–24]. Recent efforts have focused on elucidating
the effects of epigenetic modifications in regulating microglia
under physiological and pathological states, which have been
proven to be feasible [25, 26]. A study has revealed the possi-
ble molecular pathways for regulating the function and phe-
notypes of microglia from the perspective of transcriptome
and epigenetic, which provides basis for the treatment of
NDDs [26]. The investigation of epigenetic modifications
regulating the function and phenotypes of microglia still
needs to be further validated.

Given the reversibility of epigenetic and the role of
microglia in NDDs, this review mainly focuses on the func-
tion and phenotypes of microglia, elucidates the relationship
between microglia, epigenetic modifications, and NDDs, as
well as the possible mechanisms underlying the epigenetic
modulation of microglia in NDDs.

2. Microglia: Function and Phenotypes

2.1. Microglia and Its Function. Microglia, the antigen-
presenting phagocytes of CNS, with their continuous surveil-
lance of the intracerebral microenvironment in highly motile
processes and their plasticity and transcriptional potency
enable them to exert their major roles as sentinels and early
responders when the brain is invaded by pathogens [27].
Under normal physiological circumstances, microglia
respond to noxious stimuli and are involved in tissue repair,
injury healing, clearance of necrotic neurons, and engulfment
of cellular debris, as well as mediating synaptic pruning,
emerging as key players in the formation of mature neuronal
circuits and maintenance of homeostasis in the cerebrum
[20, 28–30], while injury, infection, NDDs, or other situa-
tions linked to imbalances in the homeostatic state of the
brain trigger alterations in microglia morphology, function,
and gene expression ocurred, which is generally termed as

“activation” [31–33]. In resting conditions, microglia are
seemingly ramified in morphology, characterized by active
protrusions and dynamic exploration of the circumambi-
ent microenvironment. Once activated, aberrant microglia
gradually transform into a motile amoeboid form accom-
panied by the release of variable cellular products, includ-
ing chemokines, proinflammatory cytokines, and lipid
mediators [34, 35]. Microglia can promote the expression
of anti-inflammatory and neurotrophic factors, scavenging
cellular debris and facilitating nerve repair. However,
microglia also secrete proinflammatory cytokines and cyto-
toxic mediators, triggering a cascade of inflammatory
responses [20]. Due to their heterogeneity and perception
of changes in the intracerebral microenvironment, microg-
lia are activated and polarized into two distinct pheno-
types, namely, M1 and M2 phenotypes.

2.2. Different Polarization Phenotypes of Microglia. The “clas-
sically activated” M1 phenotype, also known as the proin-
flammatory M1 phenotype, is activated primarily by
lipopolysaccharides (LPS) or interferon-γ (INF-γ), releasing
a series of proinflammatory cytokines or mediators, such as
TNF-α, IL-1β, IL-6, and iNOS, and secreting large amounts
of neurotoxic factors, resulting in synaptic loss and neuro-
toxic injury, together with the induction of inflammatory
response [36]. Of these, CD86 and iNOS are the main surface
markers of this phenotype [37, 38]. Meanwhile, the “alterna-
tively activated” M2 phenotype, also termed as the anti-
inflammatory M2 phenotype, is activated under the stimula-
tion of IL-4 or IL-13 and secretes neurotrophic factors such
as BDNF, VEGF, and IGF-1, as well as anti-inflammatory
cytokines including TGF-β and IL-10, which exerts neuro-
protective effect via facilitating tissue repair and resolving
inflammation [36, 39]. Meanwhile, the M2 microglia pheno-
type induces the expression of key specific markers such as
CD206 and arginase-1 (Arg1) [40].

Activated microglia exerting both detrimental and bene-
ficial effects on neurons which may be attributed to the func-
tion and polarization status of microglia after neuronal injury
[41]. It has been shown that there is a potential interconver-
sion between distinct phenotypes of microglia in the complex
intracerebral microenvironment, which indicates that
M1/M2 phenotypes are in a dynamic state [42, 43]. Microglia
are extremely plastic and capable of switching their pheno-
types in accordance with their role. Further research is being
carried out on the regulation mechanisms of microglia phe-
notypes and function in diseases.

3. Microglia-Mediated Neuroinflammation in
the Neurodegenerative Diseases

The wide-ranging pathogenic mechanisms of NDDs are
poorly understood, which pose tremendous challenges for
drug development. Neuroinflammation, a fundamental
immune response within the CNS caused by a variety of
pathological injuries, is regarded as the most prominent hall-
mark of NDDs, including AD, PD, and ALS [44, 45]. With
progressive studies in recent years, there is a revolutionary
understanding of microglia, including their role in the
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physiology and pathology of NDDs. Mounting evidence sug-
gests that microglia-mediated neuroinflammation contrib-
utes to the onset and progression of NDDs [20, 46].

As the major source of proinflammatory factors, microg-
lia represent pivotal mediators of neuroinflammation, are
involved in various aspects of neuroinflammation, and trig-
ger or mediate multiple cellular responses [47–49]. It has
been well established that microglia are activated and trigger
persistently inflammatory response, leading to progressive
neuronal loss or damage in NDDs [20, 50]. For instance, in
the early pathology of AD, microglia activation is implicated
in the clearance of Aβ. With the progression of AD, the aber-
rantly activated microglia enhance the expression of proin-
flammatory cytokines such as IL-1β, IL-6, and TNF-α,
triggering increased Aβ accumulation and neuroinflamma-
tion [51]. Studies have confirmed that curcumin can suppress
the TLR4/NF-κB pathway and downregulate the expression
of TREM2 in BV-2 cells, thereby significantly regulating
microglia M1/M2 polarization and reducing inflammatory
response [48]. Meanwhile, aberrantly activated microglia
and prolonged neuroinflammation contribute to the progres-
sive death of DA neurons in PD [52, 53]. Yao et al. [54] have
reported that FTY720 reduces the expression of ROS by inhi-
biting the PI3K/AKT/GSK-3β signaling pathway and
decreasing phosphorylation of p65, effectively inhibiting the
activation of NLRP3, ultimately reducing neuronal injuries
induced by microglia activation, thus ameliorating progres-
sion of PD. NLRP3 inflammasome serves as a key mediator
of the deleterious action of microglia, while its deletion
blocks alterations of microglia morphology and protects the
brain from toxic substances [55]. In addition, studies have
shown that there exist activated microglia and inflammation
in the ALS [56, 57]. Collectively, microglia-mediated neuro-
inflammation is emerging as a key player in the pathological
progression of NDDs. Certainly, identifying the pathways or
molecular mechanisms of microglia-mediated neuroinflam-
mation is of utmost importance, and future exploratory stud-
ies in this area warrant validation.

Taken together, microglia may exert dual actions in
NDDs, depending largely on its function and phenotypes.
Indeed, inappropriate or aberrant activation of microglia
induces a series of deleterious effects, exacerbating the pro-
gression of NDDs pathologies. Microglia-mediated neuroin-
flammation constitutes the possible mechanisms for the
onset or deterioration of NDDs. Therefore, modulation of
microglia function and phenotypes for homeostasis may be
an effective therapeutic method to alleviate the deterioration
of NDDs. Multiomic technologies, such as proteomics, meta-
bolomics, and epigenetics, have made it possible to identify
the signature of microglia and modulate their phenotypes.

4. Epigenetic in Neurodegenerative Disorders

Recent years have witnessed a rapid development in epige-
netic. In the last decade, epigenetic has embarked on tremen-
dous implications in the fields of cognitive function, stem cell
aging, neuroplasticity, and psychopathology [58–61]. Epige-
netic is the process of regulating gene expression via altering
their transcriptional activity other than the genome, with the

main mechanisms including DNA methylation and histone
modifications, as well as noncoding RNAs [62]. Epigenetic
modifications are of great significance to human health, and
its dysfunctions play a causative role in various NDDs,
including AD, PD, and ALS [23, 63, 64].

Not surprisingly, alterations in DNA methylation are
closely associated with aging, particularly in AD and PD
[65–67]. Intriguingly, in the postmortem cortex of AD
patients, the remarkable increase in the expression of PSEN1
is linked to reduced methylation both at CpG and non-CpG
sites, contributing to the worsening of AD pathological fea-
tures [68]. DNMT1 and DNMT3A are important DNA
methyltransferases that have major roles in brain function
during adulthood. In the targeted double knockout mice of
DNMT1 and DNMT3A, synapses in the CA1 region of the
hippocampus exhibit loss of long-term potentiation (LTP),
along with deficits in learning and memory [69]. A subse-
quent study also revealed that the hippocampal region of
postmortem AD samples exhibited global DNA hypomethy-
lation along with a decline in the expression of DNMT1 and
DNMT3A [70]. Moreover, studies have confirmed that levels
of DNA methylation are inversely correlated with Aβ and
NFTs in the hippocampus, implying the pivotal role for
DNA methylation in the pathological progression of AD
[71, 72]. The aggregation of SNCA is well established as a
contribution to the pathogenesis of PD [73]. Current studies
have showed marked hypomethylation in postmortem brain
tissue and blood samples from PD patients, which is corre-
lated with the risk gene of SNCA variability [74, 75]. Con-
sistent with this, it was observed that reduced levels of
DNMT1 were involved in SNCA, resulting in DNA hypo-
methylation in PD models [76]. Genome-wide methylation
analysis of PD patients has revealed that DNA methylation
is closely correlated with the progression of PD [77]. Fur-
thermore, aberrant DNA methylation may also be a new
direction in the pathogenesis of ALS [78, 79]. Taken in
all, it is clear that DNA methylation plays a crucial role
in the pathogenesis of NDDs, and studies on pharmaco-
logical interventions in NDDs from the perspective of
DNA methylation are yet to be validated.

There is an evidence that histone modifications play a
critical role in NDDs, and histone acetylation represents
one of the most studies [80]. Dysregulated histone acetyla-
tion is implicated in multiple pathways of NDDs, including
apoptosis [81], inflammatory response [82], neuronal plastic-
ity, and cognition [83, 84]. It is increasingly clear that histone
acetylation is involved in the etiology of AD. Subsequent
studies have shown that histone acetylation levels are
remarkably reduced in both animal models and postmortem
brains of AD [85, 86]. These alterations in histone acetylation
contribute to cognitive impairment [87], while selective inhi-
bition of histone deacetylase 2 (HDAC2) is potent in main-
taining the homeostasis of histone acetylation and reversing
cognitive deficits [88]. Furthermore, a genome-wide analysis
has identified 4162 differential acetylated variant peaks
between AD cases and controls, and these differences are rel-
evant to the pathology of Aβ and tau [89]. In addition, stud-
ies have shown that histone acetylation also has a major role
in the pathogenesis of PD [90, 91]. Park et al. [91] have
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shown that histone acetylation levels of midbrain DA neu-
rons are distinctly higher in PD patients than those in the
control individuals. Several studies have also shown that
HDAC inhibitors can inhibit the neurotoxicity induced
by 1-methyl-4-phenylpyridinium (MPP+) and SNCA in
PD [90, 92]. Meanwhile, various inhibitors of HDACs
have been proven to exert neuroprotective actions in
NDDs [93, 94]. Overall, dysregulation of histone acetyla-
tion plays a causative role in the progression of PD, and
maintaining homeostasis of histone acetylation may have
therapeutic potential in NDDs.

Moreover, dysregulation of noncoding RNAs is associ-
ated with the pathogenesis of NDDs, of which microRNAs
are the most broadly studied. Several lines of evidence link
AD to microRNA dysregulation. For instance, BACE1 is
known as one of the APP-cleaving enzymes of Aβ produc-
tion, and its expression is increased in sporadic AD [95]. By
exploring changes in microRNA expression profiles, Hébert
et al. discovered that the miR-29a/b-1 cluster inhibited the
expression of endogenous BACE1 and was markedly reduced
in sporadic AD [96]. Meanwhile, a recent study has revealed
that addition of microRNA-34a-5p or microRNA-125b-5p
attenuates Aβ-induced neurotoxicity via targeting BACE1
[97]. Additionally, Li et al. have unveiled that overexpression
of microRNA-219-5p contributes to tau phosphorylation in
brain tissue from AD patients [98]. These findings highlight
the paramount role of microRNAs in the production of Aβ
and the formation of NFTs. Similarly, microRNAs are also
implicated in the etiology of PD. Doxakis has shown that
miR-7 and miR-153 modulate levels of SNCA and are
involved in the pathophysiological process of PD [99]. More
recently, miR-155 exerts a major role in inflammation trig-
gered by SNCA, and blockade of miR-155 reduces SNCA-
induced neurotoxicity in PD mice [100]. Also, microRNAs
appear to have a significant role in the pathophysiology of
ALS [101]. These studies support the concept that noncoding
RNAs play a vital role in NDDs, and therefore identifying
specific types of noncoding RNAs or targeting pathways
may be a potential solution.

Overall, epigenetic plays a crucial role in the occurrence
and progression of NDDs via multiple signalling pathways
or molecular mechanisms. Additional studies should be con-
ducted with the aim of grasping the specific pathological
mechanisms of epigenetic in these diseases and providing
targeted therapeutic strategies.

5. Epigenetic Regulation of Microglia Function
and Phenotypes in
Neurodegenerative Diseases

Genetic correlation research has unveiled a tight link between
microglia genes and NDDs [102]. Indeed, microglia will
exhibit different transcriptional signatures in accordance
with their phenotypes, confirming the plasticity and com-
plexity of microglia [103]. There is an increasing evidence
now linking epigenetic to the regulation of microglia func-
tion and phenotypes in NDDs [26, 104]. Meanwhile, RNA
sequencing has revealed distinct transcriptome signatures

within microglia that facilitate the homeostasis of intracere-
bral environment and regulation of immune responses
[105]. Although studies have confirmed the actions of epige-
netic in microglia, the definite molecular mechanisms under-
lying epigenetic regulation of microglia in NDDs remain to
be elucidated [106, 107]. Therefore, it is imperative to delve
into the molecular mechanisms underlying the epigenetic
regulation of microglia function and phenotypes in NDDs,
from DNA methylation to diverse histone modifications, as
well as non-coding RNAs, so as to seek potential targets for
the treatment of NDDs.

5.1. DNAMethylation.DNAmethylation is a knownmode of
epigenetic modifications. The process involves the C5 posi-
tion of cytosine-guanine dinucleotide (CpG) being cova-
lently linked to a methyl group in the presence of DNA
methylation transferases, culminating in the formation of
5-methylcytosine [108]. These methyl groups are added
to gene promoters by a family of DNA methyltransferases
(DNMTs), including DNMT1, DNMT3A, and DNMT3B
[108]. CpG is the dominant site of DNA methylation.
And the CpG-rich regions, known as the CpG islands, are
mainly situated upstream of the gene promoter region/tran-
scription initiation site and are usually unmethylated, allow-
ing the expression of genes [109]. DNA methylation may
block the binding of polymerases or transcription factors
(TFs), both of which inhibit gene expression, generally
described as silent gene expression [71]. There is a substantial
evidence that DNA methylation has a significant role in the
aberrant expression of genes linked to NDDs [67, 68, 74,
75, 78]. In addition, aberrant DNA methylation facilitates
the activation of microglia and the secretion of proinflamma-
tory cytokines, leading to deterioration in the pathological
process of NDDs [110].

The triggering receptor expressed on myeloid cells 2
(TREM2) is predominantly expressed on the membranes of
microglia in the CNS, and its variants have been recognized
as risk factors for NDDs [111]. Several studies have demon-
strated the regulation of gene expression by DNA methyla-
tion in microglia, including TREM2 and BACE1 [112, 113].
Indeed, BACE1 inhibitors may reduce the production of
Aβ and facilitate the neuroprotective action of microglia in
AD [95, 114]. Likewise, it was shown that SAH (DMNT
inhibitor) induced hypomethylation of the presenilin 1
(PSEN1) promoter regions, along with an increase in Aβ
aggregation in BV-2 microglia [115]. IL-1β, one of the vital
cytokines secreted by activated microglia, is a crucial media-
tor of the inflammatory response, and its elevated expression
is correlated with aging or tau-induced cognitive decline
[116]. Sirtuin 1 (SIRT1), a histone deacetylase, is implicated
in senescence and inflammation [117, 118]. Cho et al. [119]
have reported that targeted activation of IL-1β transcription
by microglia SIRT1 deletion is probably modulated by hypo-
methylation of specific CpG sites within the proximal pro-
moter of IL-1β, resulting in cognitive deficits in two
separate models of aging, indicating that altered methylation
of IL-1β may be associated with cognition. Matt et al. [120]
have shown that reduced methylation of the IL-1β gene pro-
moter in primary microglia is implicated in elevated IL-1β
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mRNA and long-lasting sickness behavior in aged mice, indi-
cating that DNAmethylation facilitates activation of microg-
lia. Furthermore, particularly in PD [121] and ALS [122],
altered DNA methylation has been shown to have a major
impact on the phenotypes and function of microglia.

Taken together, DNA methylation in microglia seems to
be altered in various NDDs, which has vast implications for
the regulation of microglia function and phenotypes. The
available DNA methylation studies provide preliminary
insights into microglia, with more specific gene transcription
or molecular mechanisms remaining to be refined.

5.2. Histone Modifications.Histones and nuclear proteins are
the main protein components of chromatin that are wrapped
by DNA to form the structure of the nucleosome. They are
classified into five main categories, including H1/H5, H2A,
H2B, H3, and H4. H2A, H2B, H3, and H4 are the core his-
tones, which exist as dimers and constitute the octamer that
the DNA strand enwraps. Histones may exhibit modifica-
tions such as acetylation, methylation, ubiquitination, phos-
phorylation, sumoylation, adenylation, and glycosylation
[123]. According to distinct types or sites of modifications,
histones can modify the structure of DNA, arranging it into
heterochromatin or euchromatin and ultimately inhibiting
or activating the expression of that gene. Studies have shown
that histone modifications are closely interrelated with the
pathology of NDDs [101, 124]. Of these, the action of histone
acetylation in NDDs has been extensively studied [67].

5.2.1. Histone Acetylation. Histone acetylation consists of
acetylation and deacetylation. Acetylation of histone tails
with lysine can neutralize the positive electrical charges on
these residues, causing a reduction in the affinity between
local DNA and histones, as well as loosening chromatin
structure, facilitating the binding of TFs to DNA, thus
activating gene transcription. Conversely, histone deacety-
lation is the removal of acetyl groups from histone tails
followed by tight chromatin structure and inhibition of
gene transcription [125]. The state of histone acetylation
is mainly determined by 2 opposing types of enzymes
and their activities, namely, histone acetyltransferases
(HATs) and histone deacetylases (HDACs). Both HATs
and HDACs are of paramount significance in maintaining
homeostasis of histone acetylation.

A handful of recent studies has shown that histone mod-
ifications have an essential role in the onset and progression
of NDDs. The role of HDACs in the regulation of microglia
has come into focus. Datta et al. [126] have shown that dele-
tion of HDAC1and HDAC2 promotes microglia phagocyto-
sis of Aβ and improves cognition in a mouse model of AD,
implying the vital role of HDAC1 and HDAC2 in the main-
tenance of microglia function. A subsequent study has
revealed that microglia activation mediates overexpression
of HDAC2, reduces levels of histone acetylation, and sup-
presses transcription and expression of BDNF and c-fos,
leading to memory impairment. Then, injection of the ade-
noassociated virus (ShHDAC2) in the dorsal hippocampus
attenuates microglia activation and effectively reversed these
pathological processes [127]. Zhu et al. [128] have shown that

overexpression of HDAC3 promotes Aβ levels and microglia
activation, as well as reduces the density of dendritic spine in
the hippocampus of APP/PS1 mice, while lentivirus-
mediated inhibition of HDAC3 attenuates microglia activa-
tion and ameliorates cognition, as well as improves AD-
related neuropathogenesis. These results indicate that inhibi-
tion of HDAC2 and HDAC3 can attenuate microglia activa-
tion and thus reverse the pathogenesis of AD. Correction of
transcriptional dysregulation or inhibition of HDACs has
been widely studied as a therapeutic strategy to reverse NDDs
[129–132]. For instance, trichostatin A (TSA), one of the
most recognized HDAC inhibitors, has been shown to
exhibit effects of anti-inflammation and neuroprotection.
Hsing et al. [129] have reported that TSA pretreatment atten-
uates microglia activation, reduces the production of inflam-
matory cytokines (e.g., TNF-α, MCP-1, and IL-1β), and
improves cognitive function in mice and BV-2 cells. Mean-
while, TSA reduces Aβ plaques and oligomers by enhancing
the phagocytosis of microglia and ameliorates cognitive func-
tion in APP/PS1 mice [131]. Comparably, suberoylanilide
hydroxamic acid (SAHA), another pan-HDAC inhibitor,
suppresses HDAC activity in microglia and reduces
rotenone-induced inflammation and oxidative stress [133].
Additionally, valproic acid (VPA), a pan-HDAC inhibitor,
is documented to exert neuroprotective actions in the rote-
none rat model, paving the way for histone acetylation mod-
ifications of NDDs [134].

Simultaneously, other HDAC inhibitors have also exhib-
ited therapeutic potential. Jiao et al. [135] have confirmed
that CAY10683 (the HDAC2 inhibitor) also reduces levels
of TNF-α and IL-1β in microglia via inhibiting the
TLR4/NF-κB signalling pathway. A recent study has demon-
strated that WK2-16 (HDAC8 inhibitor) exerts neuroprotec-
tive effects by suppressing the expression of COX-2 and
TNF-α, attenuating inflammatory response and microglia
activation in vivo and in vitro [136]. In addition, it is demon-
strated that MS-275 (HDAC inhibitor) ameliorates microglia
activation and Aβ deposition in the APP/PS1 mice [137].
The sigma-1 receptor (Sig1R) plays an anti-inflammatory
role in microglia, and its expression is reduced in the brains
of NDD patients. A study by Iwamoto et al. [138] has
shown that the HDAC6 inhibitor increases the expression
Sig1R in primary microglia, implying that upregulation of
Sig1R in microglia may be a strategy for the treatment of
NDDs. Moreover, a subsequent study has shown that
AGK2 (SIRT2 inhibitor) inhibits the expression of SIRT2,
reduces microglia activation, corrects the imbalance of
HATs/HDACs, and maintains DA neurons, playing a neu-
roprotective role in the prevention and treatment of PD
[139]. A ChIP assay has shown that NaBu (HDAC inhibi-
tor) enhances the expression of H3K9ac and promotes
the transcription of PI3K, as well as facilitates AKT and
CREB phosphorylation, which in turn upregulates the
expression of BDNF and contributes to synaptic plasticity
in BV-2 microglia [140].

Altogether, dysregulation of histone acetylations may be
involved in the microglia-mediated neuroinflammation in
NDDs, and thus, modulating the homeostasis of histone
acetylation may be a novel promising approach for the
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treatment of NDDs. Most current studies have focused on the
development of pan-HDAC inhibitors, while targeting spe-
cific HDAC isoforms or specific TFs correlated with NDDs
is poorly understood. Additional studies are needed to iden-
tify the targeting drugs for histone acetylation.

5.2.2. Histone Methylation.Methylation of histones is a cova-
lent modification that occurs on arginine and lysine, result-
ing in the activation or repression of the gene expression,
mainly by histone methyltransferases (HMTs). Generally,
H3K4 trimethylation (H3K4me3) is implicated in the facili-
tation of transcription, whereas H3K9me3 leads to transcrip-
tional repression. For instance, Ezh2 is an enzyme involved
in the trimethylation of histone 3 lysine 27 (H3K27me3).
Ezh2-mediated targeting of H3K27me3 inhibited the expres-
sion of Socs3, while Ezh2 deletion induced the upregulation
of Socs3 and mediated ubiquitination of TRAF6, inhibiting
the TLR/NF-κB signalling pathway, which in turn attenuated
microglia activation and inflammatory response [141]. In
addition, a study by Matsuda et al. has revealed that [142]
NeuroD1 (ND1) increases H3K27me3 levels and decreases
H3K4me3 levels in specific promoter regions, as well as
increases DNA methylation in microglia enhancer regions,
suggesting that ND1 may attenuate microglia activation;
the exact mechanism remains to be validated. Furthermore,
Yang et al. [143] have confirmed that dextromethorphan
(DM) treatment attenuates H3K4me3 modification of the
TNF-α promoter gene locus in microglia and exerts anti-
inflammatory effects, whereas the specific pathways or TFs
involved remains to be verified. Jumonji domain containing
3 (Jmjd3), a histone H3K27me3 demethylase, and its sup-
pression leads to aberrant activation of microglia and ampli-
fication of M1 phenotype, as well as exacerbating DA neuron
loss in a mouse model of PD. It is possible that imbalance of
M1/M2 microglia is responsible for accelerated neuronal
death. Tang et al. [144] have disclosed reduced levels of
Jmjd3, along with the elevated expression of H3K27me3
and higher ratios of microglia M1/M2 in aged mice, suggest-
ing that upregulation of the Jmjd3 level may be able to facil-
itate the polarization of M2 phenotype by modifying
H3K27me3, which may be an effective therapeutic method
for the treatment of PD. Overall, histone methylation is
implicated in the regulation of microglia and may involve
multiple molecular mechanisms, with additional pathways
or molecular mechanisms remaining to be clarified.

5.2.3. Histone Phosphorylation and Sumoylation. There are
fewer investigations into targeting histone sumoylation or
phosphorylation in microglia, but the available evidence
suggests that histone phosphorylation and sumoylation
may be important factors in the progression of NDDs.
Elevated histone H3 phospho(Ser10)-acetylation(Lys14)
(H3S10phK14ac) may trigger the transcription of some
inflammatory genes such as c-Fos, IL-6, and iNOS [145].
Sumoylation is a common protein translational modifica-
tion that plays a role in mediating inflammatory response
[146]. Phosphatidylinositol 3-kinase (PI3K) exerts an
essential role in neuronal synaptic plasticity and inflamma-
tory response via microglia and has been demonstrated to

be phosphorylated [147]. Saw et al. [140] have revealed
that expression of BDNF in microglia is subject to the
sumoylation of PI3K as well as the PI3K/AKT pathway,
highlighting that PI3K is an important upstream target
involved in the epigenetic regulation of microglia and the
enhancement of synaptic plasticity.

Taken together, aberrant activation of microglia induced
by imbalance in histone modification homeostasis may con-
tribute to the onset and progression of NDDs. Of these, stud-
ies of histone acetylation in NDDs have been widely reported.
Regulation of histone acetylation homeostasis may facilitate
physiological function of microglia and attenuate their aber-
rant activation or even reverse the pathological process of
NDDs. HDACs play pivotal roles in the regulation of microg-
lia function and dynamic homeostasis, and drug develop-
ment for HDACs has achieved progress in NDDs [126].
Drug development targeting specific isoforms of HDACs
may emerge as a therapeutic strategy to reverse NDDs.

5.3. Noncoding RNAs. Noncoding RNAs (ncRNAs) are types
of a nonprotein-coding transcription factor that modulates
cellular function with the aid of regulating gene expression,
including microRNAs, circulating RNAs, and long ncRNAs
[148]. MicroRNAs primarily drive the degradation of target
mRNA, resulting in the transcriptional repression of genes
[149]. Currently, dysregulation of microRNAs are exten-
sively investigated in NDDs [150]. Cumulative evidence sug-
gests that dysregulation of certain microRNAs contributes to
excessive activation of microglia and chronic neuroinflam-
mation [151]. As such, identification and modulation of spe-
cific microRNAs in NDDs may provide new perspectives for
the treatment of NDDs.

Periyasamy et al. [152] have reported that the mechanism
of HIV-1 Tat-mediated microglia activation is probably via
downregulation of miR-124, and thus regulating the
MECP2-STAT3 signaling axis, which may also be associated
with DNA methylation of the miR-124 promoter. And pro-
moting the expression miR-124 may be a way to suppress
microglia hyperactivation. Consistent with this, studies by
Yao et al. [153, 154] have revealed that exogenous delivery
of miR-124 inhibits the expression of proinflammatory
cytokines and attenuates microglia activation via the
MEKK3/NF-κB signalling pathway or suppresses the expres-
sion of p62/p38 in MPTP-induced PD mice. In addition,
research on miR-124 has also been conducted in the N9
microglia cell line in vitro. The murine N9 microglia cell line,
an immortalised cell line, is generated from microglia via
retroviral-mediated transfection, which exhibits similar fea-
tures to the primary cultured microglia, including phagocy-
tosis and inflammation [155]. A study showing that
translocation of miR-124 from mSOD1 MNs to exosomes
may alter phenotypes of N9 microglia [156]. These results
support that upregulation of miR-124 may attenuate microg-
lia activation, ameliorate inflammation, and ultimately
reverse the pathogenesis of NDDs. Meanwhile, miR-34a
may damage phagocytosis by mediating the decreased
expression of TREM2, leading to neuroinflammation and
Aβ deposition [157]. Fenn et al. [158] have disclosed that ele-
vated expression of age-related miR-29b is inversely
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correlated with the microglia regulators such as IGF-1 and
CX3CL1. Notably, miR146 plays a negative regulatory role
in innate immunity, while miR155 has the opposite role
[100, 159]. Gupta et al. [160] have shown that miR-142-3p
in microglia plays a key role in synaptic plasticity which
may involve the CAMK2A-CREB-BDNF pathway. Further-
more, a study by Zhang et al. [161] has demonstrated that
miR-711 inhibits the expression of Itpkb and tau phosphory-
lation, as well as increases the M2/M1 ratio, and ultimately
improves cognitive function, suggesting that miR-711 may
be an effective approach to alleviate NDDs.

Additionally, long ncRNAs (lncRNAs) have major roles
in NDDs. Cai et al. [162] have demonstrated that long non-
coding RNA metastasis-associated lung adenocarcinoma
transcript 1(lncRNA MALAT1) epigenetically suppresses
the expression of Nrf2 and triggers inflammatory response
in PD mice and BV-2 cells. A novel lncRNA termed Nostrill
is highly expressed in LPS-stimulated microglia cells with
concomitant increased expression of iNOS. Silencing of Nos-
trill markedly decreased the expression of NF-κB p65 and
reduced activation of H3K4me3 at the iNOS site, as well as
decreased neurotoxicity in mice and BV-2 cells [163].
LncRNA GAS5 acts as a regulator of microglia polarization,
possibly by recruiting polycomb repressive complex 2
(PRC2), which represses transcription of the key factor
TRF4 and thus promotes the conversion of microglia to M2
phenotype [164].

Taken together, accumulating evidence suggests that
ncRNAs are closely linked to microglia and play an
important role in the pathological process of NDDs.
ncRNAs modulate a wide range of gene networks and

are implicated in complex molecular mechanisms. Further
studies on specific targets or molecular mechanisms of
microRNAs are warranted in order to seek a potential
strategy for the treatment of NDDs.

6. Conclusions

The pathogenesis of NDDs is complicated, with multiple
pathological factors interspersed, leading to a vicious circle
of pathological processes. Increasing evidence suggests that
microglia have both favorable and detrimental roles in
the occurrence and progression of NDDs [165]. With a
better understanding of microglia, their involvement in
NDDs has become a hot topic in this field. Neuroinflam-
mation triggered by the abnormal activation of microglia
is a distinctive hallmark of NDDs, and its potential mech-
anisms in these diseases remain to be elucidated. Hence,
modulating function and phenotypes of microglia so as
to reduce the production of pathogenic features may be
a potential strategy to reverse NDDs.

With the rapid advances in modern technology, there has
increasing evidence that microglia are epigenetically regu-
lated, yet little is known about how epigenetic modulates
microglia in NDDs. This updated review sheds light on dif-
ferent epigenetic mechanisms underlying the modulation of
microglia in NDDs (Figure 1). It is clear that multiple epige-
netic modifications are involved in the regulation of microg-
lia function and phenotypes, yet several issues remain. Many
of these epigenetic modifications are not directly linked to
dynamic changes in microglia or phenotypes but rather focus
more on the modulation of microglia function in NDDs.
Additional studies on the epigenetic regulation of microglia
phenotypes and function remain to be verified. In addition,
the molecular mechanisms of epigenetic are complex and
may involve integration between multiple epigenetic modifi-
cations. It is therefore particularly important to develop pre-
cisely targeted drugs for a specific locus. Last but not least,
current studies are mostly focused on animal models, and
extending research from animal models to humans remains
a challenge, which requires high costs and advanced analyti-
cal techniques.
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