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Background. Gastric cancer (GC) is one of the most common malignant tumors in the world. The potential functions and
mechanisms of long noncoding RNAs (lncRNAs) in GC development are still unclear. It is of great significance to explore the
prognostic value of LncRNA signatures for GC. Methods. LncRNAs differently expressed in GC and their prognostic value were
studied based on The Cancer Genome Atlas (TCGA) database. The functional regulatory network and immune infiltration of
RP11-357H14.17 were further studied using a variety of bioinformatics tools and databases. Results. We found that the high
expression of RP11-357H14.17 was closely associated with shortened overall survival (OS) and poor prognosis in gastric cancer
patients. We also found that its expression was related to clinical features including tumor volume, metastasis, and
differentiation. Functional enrichment analysis revealed that RP11-357H14.17 is closely related to enhanced DNA replication
and metabolism; ssGSEA analysis implied the oncogenic roles of RP11-357H14.17 was related to ATF2 signaling and Treg cell
differentiation. Furthermore, we verified such link by using real-time PCR and IHC staining in human GC samples. Conclusion.
We demonstrate that RP11-357H14.17 may play a crucial role in the occurrence, development, and malignant biological
behavior of gastric cancer as a potential prognostic marker for gastric cancer.

1. Introduction

Gastric cancer (GC) is an invasive disease that continues to
have a severe impact on global health [1]. Although its inci-
dence has declined overall over the past few decades, GC is
still ranked the fourth most common type of cancer and the
second cancer-related deaths globally [1, 2]. Although the
GC incidence has declined because of improved nutrition,
better food preservation, better prevention, and earlier diag-
nosis and treatment, the prognosis still remains poor [1].
GC is usually diagnosed at an advanced stage. Gastric cancer
is a heterogeneous disease, requiring continuous attention
and research in prevention, early detection, and new treat-
ment options.

Long noncoding RNAs (lncRNAs) are a group of non-
coding RNAs to be defined as more than 200 bp in length
with no protein-coding function [3]. LncRNAs were first dis-
covered in 2002 in mice lacking of specific and complete
open reading frames. After decades of researches, LncRNAs
were proved to be an important transcriptional and transla-
tional regulator, involving in not only physiological but also
pathological processes, including chromatin remodeling,
transcription, posttranscriptional translation, cell prolifera-
tion, differentiation, and metabolic reprogramming. Abnor-
mal expression of lncRNAs took part in the occurrence and
development of a variety of malignancies, including prostate
cancer [4], ovarian cancer [5], breast cancer [6], and gastric
cancer [7]. The high expression of H19 [8], TUSC7 [9],
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MEG3 [10], and MALAT1 [11] is closely related to the poor
prognosis of GC patients and promotes the proliferation,
metastasis, and EMT of GC cells. These studies showed that
lncRNA plays a crucial role in the prognosis and malignant
biological behavior of GC.

In this study, real-time polymerase chain reaction (RT-
PCR) was used to evaluate the expression level of RP11-
357H14.17 in GC problems. We also assessed the relationship
between RP11-357H14.17 levels and clinicopathological char-
acteristics. Through bioinformatics analysis and experimental
verification, its role in GC was predicted and analyzed. Our
findings may contribute to a better understanding of the role
of RP11-357H14.17 as a regulatory factor for GC and as a pos-
sible candidate target for new diagnosis and treatment.

2. Materials and Methods

2.1. Bioinformatics Analysis. The software R package limma
(V.3.40.6) was used to calculate the fold-change of transcripts
and to screen for differentially expressed genes (DEGs) in the
RNA-seq cohort. A fold-change larger than two and an
adjusted p value less than 0.05 were set as the cut-off values
for screening significant DEGs. Cluster analysis and heatmap
generation were performed using the R package clusterProfi-
ler (V.3.12.0) and pheatmap (V.1.0.12), respectively. 23 Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway analyses for the dysregulated
genes were performed by ClueGO25 (V.2.5.5), within Cytos-
cape (V.3.7.1). A false-discovery rate less than 0.05 was set as
the cut-off value.

2.2. The Prognosis of Dysregulated lncRNAs Analyzed with
GEPIA and Kaplan-Meier Plotter. GEPIA (http://gepia
.cancer-pku.cn/) [12] is a newly web-based tool that contains
sequencing expression data from 9736 tumor samples of 33
cancer types and 8587 normal samples. The database
includes a variety of analysis modules such as differential
gene expression analysis, survival and prognosis analysis,
correlation analysis, and dimensionality reduction analysis.
In this study, GEPIA database was employed to further ana-
lyze the expression and prognostic value of differentially
expressed lncRNAs in STAD. The expression analysis of
these genes performed by one-way ANOVA, and the filter
criteria were as follows: ∣Log2FC ∣ >1, p value < 0.05,
“median,” hazards ratio (HR), and 95% confidence interval.
The Kaplan-Meier (KM) Plotter (http://kmplot.com) is an
effective tool for detecting the prognosis of patients with
tumors. According to the expression of lncRNAs, patients
with EC were divided into two groups: high and low expres-
sion groups. The hazard ratio (HR) at a 95% confidence
interval and log-rank p values were also investigated online.
The filter conditions were as follows: cancer: pan-cancer
RNA-seq (Uterus corpus endometrial carcinoma); survival:
overall survival (OS); follow-up threshold: 120 months.

2.2.1. The Cellular Localization of lncRNAs. UCSC (https://
genome-asia.ucsc.eduk/index.html) provides a web-based
interface to help users browse the genetic information, view
the genome annotation assembly, and download gene

sequences. LNCipedia (https://lncipedia.org) is a free human
lncRNA transcription sequence and structure annotation
database. LncLocator (https://LncLocatorwww.csbio.sjtu.edu
.cn/bioinf/lncLocator/) is based on integrated classifier to pre-
dict lncrna subcellular localization of free public platform.
Only by using the sequence information of lncRNA, the distri-
bution ratio of lncRNA in cytoplasm, nucleus, ribosome, cyto-
plasm, and exosome can be obtained rapidly. In this study,
sequence information of lncRNAs was detected by UCSC
and LNCipedia, and cellular localization of lncRNAs was
determined by LncLocator.

2.2.2. Real-Time PCR. Total RNA in GC tissues was isolated
using TRIzol reagent. The expression of genes of interest
was detected using the syber-green-based real-time PCR.
The primers for genes used in the study were listed in Table 1.

2.2.3. Patients. The hospital-based case-control study con-
sists of 52 patients newly diagnosed with gastric cancer. All
the subjects were recruited from the 1st People’s Hospital of
Lianyungang and Suqian Hospital of Chinese traditional
medicine, between February 2016 and August 2019. Patients
with other hematological disorders, previous history of can-
cers, radiotherapy, and chemotherapy were excluded. The
cancer-free control subjects from the same geographic area
showed no evidence of a genetic relationship with the cases.
The patients were classified according to World Health
Organization classification. This study was approved by the
Institutional Review Board of the 1st People’s Hospital of
Lianyungang and Suqian Hospital of Chinese traditional
medicine (LL-16-12 and SCY-17-15), and every patient had
written informed consent. The clinical features of all the cases
and controls were presented in Table 2.

2.2.4. IHC Staining. Sections were stained according to the pre-
vious publication. The section was incubated within primary
mouse anti-human Ab for ATF2(ab239361), WT1(ab89901),
CD4(ab183685), Foxp3(ab215206), and TGF-β(ab215715);
the sections were stained with DAB according to manufac-
turer’s protocols and mounted and photographed using a
digitalized microscope camera (Nikon, Japan).

3. Results

3.1. RP11-357H14.17 Is Overexpressed in Human Stomach
Cancer. To fully screen the long noncoding RNA within
human stomach cancer, we analyzed total 18036 lncRNAs
within the Cancer Genome Atlas Stomach Adenocarcinoma
(TCGA-STAD) data collection; we found 375 GC patients
and 32 normal controls with the TCGA-STAD. All of the
18036 lncRNAs were compared within the GC patients and
normal controls by using Limma R package; the results
indicated that 3790 lncRNAs were significantly differently
expressed (adjusted p < 0:05) within these two groups,
including 1642 down-regulated and 2148 up-regulated
(Figure 1(a)). We then rearranged the up-regulated and
down-regulated lncRNAs by logFc in decreasing order;
we listed top 50 up- and down-regulated lncRNAs in
Figures 1(b) and 1(c). Within these 100 lncRNAs, RP11-
357H14.17 was the most up-regulated lncRNAs.
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RP11-357H14.17 is located in chromesome 17 with a
Ensembl ID of ENSG00000272763.1. We confirmed its
expression in human GC tissues by using an online tool,
Gepia [12]. By involving the samples from the Genotype-
Tissue Expression (GTEx) and TCGA-STAD (408 tumor
samples and 211 normal control), we found that RP11-
357H14.17 is overexpressed in human stomach cancer
(Figure 1(d)). However, there is no significant difference in
RP11-357H14.17 expression with different TMN stage
(Figure 1(e)). The effect of RP11-357H14.17 on overall sur-
vival (OR) of GC patients was also analyzed which implied
that high expression of RP11-357H14.17 was associated with
poor prognosis of GC patients (p = 0:044) (Figure 1(f)).
Furthermore, 52 paired human GC samples were collected
for our study; we found that RP11-357H14.17 was overex-
pressed in GC tissues compared to paired adjacent tissues
(Figure 1(g)). Moreover, we found that GC tissues with
higher TMN stage was associated with high expression of
RP11-357H14.17 (Figure 1(g)). The subcellular localization
of RP11-357H14.17 was predicted by using an online tool:
lncLocator; the result indicated that RP11-357H14.17 was
mainly located in cytosol (36%) and ribosome (30%)
(Figure 1(h)). The expression of RP11-357H14.17 was also
significantly associated with poor histological differentiation
(Table 2).

3.2. Increased Expression of RP11-357H14.17 Is Associated
with Increased DNA Replication and Metabolism in Human
Gastric Cancer. To further investigate the oncogenic roles
of RP11-357H14.17 in human GC, first, we performed
KEGG and GO enrichment analysis using up-regulated
DEGs obtained by two comparison patterns. One is the com-
parison between RP11-357H14.17 top-32 expression GC
samples and normal GC control samples (T vs. N), and the
other is the comparison between the GC samples with top
40 and bottom 40 RP11-357H14.17 expression (High40 vs.
Low40). We figured out shared GO enrichment terms
between two comparison described above including “DNA
replication,” “nuclear DNA replication” in Biological Pro-
cesses (BP) GO terms, “mitochondrial protein complex,”
“respiratory chain” in the Cell Components (CC) GO terms,
and “electron transfer activity” and “NADPH dehydrogenase
activity” in Molecular Functions (MF) GO terms (Figures 2(a)
and 2(b)). For KEGG enrichment, we found shared terms
including “cell cycle” and “DNA replication” which implied
similar events as GO enrichment (Figures 2(c) and 2(d)). These
results might suggested that the overexpression of RP11-
357H14.17 might seriously related to increased DNA replica-
tion and metabolism in human GC cells. In order to further
confirm the shared terms implied by GO and KEGG enrich-
ment, we selected a set of genes including “RECQL4, ATAD5,
GINS1, ORC6, ARD51, EME1, and CCND1” for the GO term
“DNA replication,” and “HMGCR, DHFR, FASN, DECR1,
DUS2, GRHPR, and MTRR” for the GO term “NADPH dehy-
drogenase activity” using 52 paired human GC samples. We
found that these genes were highest in those RP11-357H14.17
higher expression GC samples, significantly lower in the
RP11-357H14.17 lower expression GC samples, and lowest in
adjacent normal tissues (Figures 2(e) and 2(f)).

Table 1: Primer sequence for genes of interest.

Gene Primer (forward/reverse)

RP11-357H14.17
TCCGGCCATCTGGCGCT

CAAAGGCGACGTGCCGG

RECQL4
GCGCTCTACCGGGAATACC

CAGCCCGATTCAGATGGGG

ATAD5
GTGAAGGACTGCGAGATTGAG

TGTCTCTAGTCTTCCCTAGTGGT

GINS1
ACGAGGATGGACTCAGACAAG

TGCAGCGTCGATTTCTTAACA

ORC6
ACAAGGAGACATATCAGAGCTGT

AGTGGCCTGGATAAGTCAAGAT

RAD51
CCTCCTCTTTAACGCCTCCTG

GGGGACAACTCCCAGACTTTTT

EME1
TCTGAGGAGTTGCCAACATTTG

GGCTTCACAATCTGAGATGTCAA

CCND1
GCTGCGAAGTGGAAACCATC

CCTCCTTCTGCACACATTTGAA

DBF4
CCGGAAAGTCCTTTTACTTGGAT

AACCCTCAATTACCCCACCCA

CDC25C
TCTACGGAACTCTTCTCATCCAC

TCCAGGAGCAGGTTTAACATTTT

MCM2
ATGGCGGAATCATCGGAATCC

GGTGAGGGCATCAGTACGC

NASP
AGATTGGGAACCTAGAGCTTGC

ACTTCTCCGAGTTTAAGATGTGC

EZH2
AATCAGAGTACATGCGACTGAGA

GCTGTATCCTTCGCTGTTTCC

PCNA
CCTGCTGGGATATTAGCTCCA

CAGCGGTAGGTGTCGAAGC

CDC25A
GTGAAGGCGCTATTTGGCG

TGGTTGCTCATAATCACTGCC

KRT8
TGTGCCTACCTGCGGAAATC

CTATGACCGAGGTGTCTGAGA

PARD6B
TTGGAGCTGAATTTCGTCGGT

AGCCTACCAAAACGTCAACATT

THOC6
TCCCAGAGCGTCTCACCAT

CCACCGGCTTCTTACTTTCCT

WT1
ACCAAAAATCGGTTCTTCATCCC

TCACATCACTGGCAATCTTAGGA

ATF2
CACCAGCAGCACGAGTCTC

TGTGCGAGGCAAACAGGAG

FOXP3
GTGGCCCGGATGTGAGAAG

GGAGCCCTTGTCGGATGATG

HAT1
AAGCCATTCGGAACCTTACTTC

AGTGCCATCTTTCATCATCCAC

NUF2
GGAAGGCTTCTTACCATTCAGC

GACTTGTCCGTTTTGCTTTTGG

PLK1
CAGTCACTCTCCGCGACAC

GAGTAGCCGAATTGCTGCTG
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3.3. The Oncogenic Roles of RP11-357H14.17 Was Partially
via Promoting ATF2 Signaling in Human Gastric Cancer. In
order to further clarify the possible mechanism for RP11-
357H14.17-associated malignancy, we did single sample
GSEA (ssGSEA) analysis using oncogenic signatures (c6)
gene sets using “N vs. T” and “High 40 vs. Low40”. We found
that high expression of RP11-357H14.17 in stomach cancer
tissues were associated with ATF2-related gene sets including
“ATF2_s_UP v1_up,” “ATF2_up. V1_up,” and “ATF2_
up.V1_DN” (Figures 3(a) and 3(b)). We picked four genes
including KRT8, PARD6B, THOC6, and WT1 which were
involved in all three gene sets. Their expressions were con-
firmed in TCGA-STAD data indicating that RP11-
357H14.17 high expression samples have significantly higher
expression of these four genes compared to RP11-357H14.17
low expression samples and normal control samples
(Figures 3(c) and 3(d)). Next, we also investigated the expres-
sion of these four genes in 52 paired human GC samples; we
found that all these four genes were significantly overex-
pressed in RP11-357H14.17 high expression samples and sig-
nificantly lower in RP11-357H14.17 low expression samples
and paired normal control samples (Figure 3(e)). Lastly, we
analyzed the protein expression of ATF2 and WT1 in the
52 paired human GC samples; the result was consistent to
the results obtained from real-time PCR; WT1 and ATF2
were significantly higher in RP11-357H14.17 high expression
samples compared to RP11-357H14.17 low expression sam-
ples and paired normal control samples (Figure 3(f)).

3.4. RP11-357H14.17 Promotes GC Development by Inducing
Treg-Associated Immunosuppression. To study the role of
RP11-357H14.17 in tumor microenvironment (TME), we
analyzed the immune-related roles of RP11-357H14.17 by

ssGSEA analysis using immunologic signatures (c7)
including 4872 gene sets for two sample sets described above.
The results from both comparisons indicated that RP11-
357H14.17 was significantly associated with Treg cell
percentage within human GC by sharing gene sets
“GSE37532_TREG_VS_TCONV_CD4_TCELL_FROM_LN_
UP,” “GSE24634_TREG_VS_TCONV_POST_DAY5_IL4_
CONVERSION_UP,” “GSE18893_TCONV_VS_TREG_24
H_TNF_STIM_UP,” “GSE14415_TCONV_VS_FOXP3_KO_
INDUCED_TREG_DN,” and “GSE14415_NATURAL_TRE
G_VS_TCONV_DN” (Figures 4(a) and 4(b)). Next, we have
chosen one of the gene set “GSE37532_TREG_VS_TCONV_
CD4_TCELL_FROM_LN_UP” and grip its involving genes
from the TCGA-STAD database. The results were presented
in Figure 4(c); four genes including FOXP3, PLK1, and
HAT1NUF2which all reported to be related to Treg cell differ-
entiation were selected; their expression was analyzed in both
the TCGA-STAD database and 52 paired human GC samples.
We found the four Treg cell-related genes were highest in
RP11-357H14.17 high expression GC samples, lower in
RP11-357H14.17 low expression GC samples, and lowest in
normal control samples (Figures 4(c) and 4(d)). Last, we
detected Treg cells percentage as well as the immunosuppres-
sion effector, TGF-β in human GC samples by using
multiple-color IHC staining; we found that Treg cells were
most abundant in RP11-357H14.17 high expression tissues,
relatively lower in RP11-357H14.17 low expression tissues,
and lowest in adjacently normal tissues (Figure 4(e)).

4. Discussion

LncRNA significantly regulates gene expression in both
nucleus and cytoplasm [3]. In the nucleus, lncRNA binds to

Table 2: Frequency distributions of selected variables in gastric cancer patients.

Features
RP11-357H14.17High RP11-357H14.17High

p
N % N %

Age (years) 0.779

≤50 10 19.23% 12 23.08%

>50 16 30.77% 14 26.92%

Gender 0.999

Male 14 26.92% 13 25.00%

Female 12 23.08% 13 25.00%

Differentiation 0.0254

G1-G2 17 32.69% 8 15.38%

G3-G4 9 17.31% 18 34.62%

Tumor size (cm) 0.0145

≤5 cm 16 30.77% 7 13.46%

>5 cm 10 19.23% 19 36.54%

TMN stage 0.0118

I-II 18 34.62% 8 23.08%

III-IV 8 15.38% 18 26.92%

H. pylori infection 0.999

Positive 16 30.77% 15 28.85%

Negative 10 19.23% 11 21.15%
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the Polycomb Group protein (PcG) complex to induce his-
tone trimethylation and regulate mRNA expression of related
genes at the transcriptional level [13]. At the same time,
lncRNAs directly bind to promoters and regulate gene
expression [14]. In cytoplasm, lncRNA also binds directly
to mRNA, affecting its stability and expression at the tran-
scriptional level [3]. Meanwhile, cytoplasmic lncRNAs can
regulate gene expression in a posttranscriptional level. As
previously mentioned, lncRNAs, together with miRNAs, act
as sponges and induce a “ceRNA” to regulate gene expression
[3]. On the other hand, lncRNA also affects the stability of
proteins and inhibits their expression at the posttranscrip-
tional level [13]. In the present study, by analyzing the
TCGA-STAD data, we found that RP11-357H14.17 is the
most up-regulated within human gastric cancer. Also,
through an online predicting tool, lncLocator, we found that
RP11-357H14.17 was located in cytosol and ribosome, which
implied that most likely RP11-357H14.17 can be affected by
sponges miRNA to regulated certain gene. So far, only two
researches implied the role of RP11-357H14.17 in human
cancers [15, 16]. One of the researches is concerning its role
in diffuse-type gastric carcinoma (DGC). Overexpression of

RP11–357H14.17 was spotted in human DGC; its expression
were associated with increased tumor size, deeper depth of
invasion, lymphatic metastasis, and advanced pathological
stage [15]; this results was similar to our finding.

By using ssGSEA on c6 gene sets, we found that RP11-
357H14.17 was associated with enhanced ATF2 signaling.
Activated transcription factor 2 (ATF2) is a member of the
activated protein 1 (AP-1) transcription factor family that
contains DNA-binding proteins in basic Leucine Zipper
(bZIP) [17, 18]. The N-terminal zinc finger region and the
deactivation region activate the transcriptional activity of
ATF2, while the C-terminal tissue has homologous dimeriza-
tion and heterodimerization [19]. Its heterodimer partners
are JUN, FOS, CREB, and MAF, leading to the formation of
the AP-1 transcription factor [17]. ATF2 can also act as an
epigenetic regulator, acting as a histone acetyltransferase
(HAT), specifically acetylating histones H2B and H4, and
triggering its own DNA binding effect [17]. The transcrip-
tional functions of ATF2 show a wide range of target genes,
which can be grouped into the following categories including
cell cycle, immune and inflammatory responses, AP-1 bind-
ing partner, and apoptosis [19]. Our results also indicated

15% 16%

3%

30%36%

Cytoplasm

Ribosome
Nucleus

Cytosol
Exosome

(h)

Figure 1: RP11-357H14.17 is overexpressed in human stomach cancer. (a) Heatmap of the all significantly differently expression lncRNAs
(n = 3790, cancer vs. normal, adj:p < 0:05). (b, c) Heatmaps of TOP 50 up and down-regulated significantly differently expressed lncRNAs;
RP11-357H14.17 was highlighted with red font in (b). For (a–c), rows denote lncRNAs, and columns represent patients. Blue to red
indicates a trend from low to high expression. Boxplot of comparison between cancer and normal control tissues (d) and cancer tissues
with different TMN stages (e) in RP11-357H14.17 expression; the data is provided by TCGA-STAD. (f) Comparison of overall survival
between RP11-357H14.17 high expression and low expression group; the data is provided by TCGA-STAD. (g) Boxplot of comparison
between cancer and normal control tissues (left) and cancer tissues with different TMN stages for 52 paired human GC tissues (right).
∗∗∗∗p < 0:0001, for the left panel, unpaired t test, and for the right panel, one-way ANOVA. (h) Prediction of subcellular location of RP11-
357H14.17 provided by online tool lncLocator.
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that ATF downstream genes including KRT8, PARD6B,
THOC6, and WT1 were well correlated to RP11-357H14.17
expression. The detailed mechanism is worthy to be further
explored in the future. Besides the regulation by ATF2 on

the genes indicated above, a previous study revealed that ani-
somycin, a potent activator of ATF2, and JNK, induces
expression of FoxP3 in both normal and malignant mam-
mary epithelial cells [20]. This result might also implied that
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Figure 2: Increased expression of RP11-357H14.17 is associated with increased DNA replication and metabolism in human gastric cancer.
GO enrichment was performed using significantly up-regulated genes compared between cancer and normal controls (a) and RP11-
357H14.17 high and low expression sample sets (b). KEGG enrichment was performed using significantly up-regulated genes compared
between cancer and normal controls (c) and RP11-357H14.17 high and low expression samples from TCGA-STAD (d). Representative
genes expression stands for “DNA replication” (e) and “NADPH dehydrogenase activity” (f). GO terms was determined by real-time PCR.
∗∗∗∗p < 0:0001, one-way ANOVA.
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Figure 3: RP11-357H14.17 promotes the malignancy by promoting ATF2 signaling in human gastric cancer. Heatmap of all significantly
different gene sets of c6 ssGSEA analysis for comparison between cancer and normal control samples (a) and RP11-357H14.17 high and
low expression samples (b) from TCGA-STAD. ATF2-related gene sets were highlighted with red font (c). Heatmap of up-regulated genes
in “ATF2_up.v1_DN” gene set derived from comparison between cancer and normal control samples and RP11-357H14.17 high and low
expression samples from TCGA-STAD. The representative genes stand for “ATF2_up.v1_DN” gene set were highlighted in bold. (d)
Representative gene expression stands for “ATF2_up.v1_DN” gene set was compared between cancer and normal control samples, RP11-
357H14.17 high and low expression samples from TCGA-STAD, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗∗p < 0:0001, by unpaired t test, and 52
paired GC tissues categorized as RP11-357H14.17 high, low expression, and normal control, ∗∗∗∗p < 0:0001, one-way ANOVA (e). (f)
Representative IHC staining figures for ATF2 and WT1 protein and comparison between 52 paired GC tissues categorized as RP11-
357H14.17 high, low expression, and normal control, ∗∗∗∗p < 0:0001, one-way ANOVA.
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Figure 4: Continued.
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ATF2 activation in RP11-357H14.17 high expression GC tis-
sues might also be related to increased Treg cell percentage.

By using ssGSEA on c7 gene sets, we found the high
expression of RP11-357H14.17 was also associated with Treg
cell-related immunosuppression, which can also be the other
reason for RP11-357H14.17-related tumorigenesis. Regula-
tory T cells (Tregs) are a specific subset of T cells whose role
is to suppress the immune response, thereby maintaining
homeostasis and self-tolerance [21]. Studies have shown that
Treg can inhibit T cell proliferation and cytokine production
and play an important role in preventing autoimmunity [21].

In summary, by using bioinformatic analysis, we found
that RP11-357H14.17 was overexpressed within human gas-
tric cancer tissues. High expression of RP11-357H14.17 was
associated with higher TMN stage, poor prognosis, and poor
differentiation by promoting DNA replication. Deeper anal-
ysis revealed that RP11-357H14.17 was associated through
ATF2 signaling and enhanced immunosuppression by pro-
moting Treg cell percentage within human GC tissues.
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Figure 4: RP11-357H14.17 promotes the immunosuppression in human gastric cancer tissues by increasing Treg cell percentage. Heatmap of
all significantly different gene sets of c7 ssGSEA analysis for comparison between cancer and normal control samples (a) and RP11-
357H14.17 high and low expression samples (b) from TCGA-STAD. The “Treg” cell-related gene sets were highlighted in red font. (c)
Heatmap of up-regulated genes in “GSE37532_TREG_VS_TCONV_CD4_TCELL_FROM_UP” gene set derived from comparison
between cancer and normal control samples and RP11-357H14.17 high and low expression samples from TCGA-STAD, and the
representative genes were highlighted in bold. (d) Representative gene expression stands for “GSE37532_TREG_VS_TCONV_CD4_
TCELL_FROM_UP” gene set was compared between cancer and normal control samples, RP11-357H14.17 high and low expression
samples from TCGA-STAD, ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗∗p < 0:0001, by unpaired t test, and 52 paired GC tissues categorized as RP11-
357H14.17 high, low expression, and normal control, ∗∗∗∗p < 0:0001, one-way ANOVA (e). (f) Representative multiple-color IHC staining
figures for CD4, Foxp3, and TGF-β protein and comparison between 52 paired GC tissues categorized as RP11-357H14.17 high, low
expression, and normal control. ∗∗∗∗p < 0:0001, one-way ANOVA.
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