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Antibiotic resistance has been highlighted by international organizations, including World Health
Organization, World Bank and United Nations, as one of the most relevant global health problems.
Classical approaches to study this problem have focused in infected humans, mainly at hospitals.
Nevertheless, antibiotic resistance can expand through different ecosystems and geographical allocations,
hence constituting a One-Health, Global-Health problem, requiring specific integrative analytic tools.
Antibiotic resistance evolution and transmission are multilayer, hierarchically organized processes with
several elements (from genes to thewholemicrobiome) involved. However, their study has been tradition-
allygene-centric, eachelement independently studied. Thedevelopmentof robust-economically affordable
whole genome sequencing approaches, as well as other -omic techniques as transcriptomics and pro-
teomics, is changing this panorama. These technologies allow the description of a system, either a cell or
a microbiome as a whole, overcoming the problems associated with gene-centric approaches. We are cur-
rently at the time of combining the information derived from -omic studies to have a more holistic view of
the evolution and spread of antibiotic resistance. This synthesis process requires the accurate integration of
-omic information into computational models that serve to analyse the causes and the consequences of
acquiring AR, fed by curated databases capable of identifying the elements involved in the acquisition of
resistance. In this review, we analyse the capacities and drawbacks of the tools that are currently in use
for the global analysis of AR, aiming to identify themore useful targets for effective corrective interventions.
� 2021 The Author(s). Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-

commons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Infections had been historically the most important cause of
human death. In this regard, the discovery and further use of
antibiotics, and later on antifungal, antiviral and antiparasitic com-
pounds, has been one of the major pharmacotherapeutic contribu-
tions to human welfare. The increasing prevalence of antibiotic
resistant organisms is hence a relevant problem that has been rec-
ognized by several international agencies including, among others,
the World Health Organization [1–4], United Nations (https://
www.un.org/pga/71/wp-content/uploads/sites/40/2016/09/
DGACM_GAEAD_ESCAB-AMR-Draft-Political-Declaration-1616108E.
pdf) and the World Bank (https://www.worldbank.org/en/topic/
health/publication/drug-resistant-infections-a-threat-to-our-eco-
nomic-future). Studies on antibiotic resistance (AR) had tradition-
ally focused on hospitals and health care centres. Further, they
had been mainly based on phenotypic tests directed to identify
the most appropriate antibiotics for treating the infection suffered
by a given patient. Actually, AR is defined at clinical setting using
breakpoints of minimal inhibitory concentrations (MICs), which
are established based on the likelihood of the success of the treat-
ment [5], no matter the resistance mechanisms involved. Despite
its fundamental utility for treating individual patients, it has been
revealed that this type of phenotypic tests is not potent enough
for advanced epidemiological studies, including the analysis of
outbreaks at hospitals. Molecular-based approaches as Multi
Locus Sequence Typing (MLST) [6] or typing based on Pulse Field
Gel Electrophoresis [7] demonstrated to be useful in the molecu-
lar epidemiology analysis or organism causing infections, while
the implementation of PCR techniques was a breakthrough for
tracking the dissemination of resistance genes and the mobile ele-
ments involved in their dispersal [8–11]. However, each of these
techniques allowed to study just a limited aspect of the AR prob-
lem. In this regard, it is worth mentioning that AR is an evolution-
ary process in which different hierarchically interconnected
elements participate [12,13]. An AR gene (ARG) can be acquired
by an integron that is further included into a plasmid present in
a given bacterium, that can transfer the plasmid to other organ-
isms, each one capable of infecting a different host, which can also
transmit the resistant organism to other hosts (Fig. 1) [14,15].
Analysing each of these levels of complexity and integrating the
information to get a clear picture of the roads for the emergence
Fig. 1. AR Transmission as a multi-layered and hierarchical evolutionary process. ARGs a
elements as plasmids, which may be in turn acquired by a given bacterium. These clones
infect different hosts and then can spread among different hosts and environments
interconnected levels.
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and transmission of AR is not an easy task [16,17]. Nevertheless,
holistic tools, capable of analysing all complexity levels ideally
without the need of isolating the resistant organisms, are making
this difficult task more feasible.

Once the first genome was sequenced, Haemophilus influenzae in
1995, the advances in new technologies, both experimental and
computational, for studying biological systems have been enor-
mous [18], ending up in the development of systems biology
approaches [19]. Instead of dividing a biological process into pieces
as classical molecular biology approaches do, the aim of systems
biology is to understand the functioning of a biological system as
a whole. In the specific case of AR, the ‘‘selfish gene” concept of
Dawkins [20] is generally applied; gene-centric (or mutation-
centric) approaches are the current rule in the field. However, it
is important to recall that the introduction of a new ARG or the
selection of AR mutations can produce deep effects in bacterial
physiology, altering sometimes the expression of hundreds of
genes [21–23] and hence modifying the bacterial proteome and
its metabolism. Besides, it is also relevant to state that the effect
of one ARG (or AR mutation) on AR and on bacterial physiology
is context-dependent; different in different organisms [24,25].
Therefore, in order to have a complete understanding of AR mech-
anisms and the consequences of acquiring resistance for bacterial
physiology, bioinformatics tools and techniques able to analyse
the increasing data generated in molecular biology through
multi-omics technologies - including transcriptomics, proteomics
and metabolomics - have become essential. The main objective
of the information acquired through ‘‘-omics” is to create knowl-
edge from data, providing simultaneous information on the pres-
ence and identification of alleles of thousands of genes, analysis
of their genetic linkage with other genes, and measurements of
their levels of expression as well as of the proteins they encode
and cell metabolites [26]. To get this goal, system-scale models
able to collect the huge amount of experimental information into
mathematical models have been developed to further understand
the bacterial cell as a whole [27,28].

Besides their contribution for analysing the causes and conse-
quences of the acquisition of AR [29], the emergence of easy and
non-expensive whole-genome sequencing (WGS) tools (also
including transcriptomics studies) had been a hallmark for the
study of the phylogenomics of bacterial pathogens [30,31] and
AR [32–34]. These approaches are currently fundamental in
re recruited by gene-capture elements such as integrons that are included in mobile
can transfer the plasmid to other bacteria through HGT; these resistant bacteria may
. Thus, the process of transmission facilitates the evolution of AR at multiple,
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advanced molecular epidemiology studies (including the analysis
of human-linked and environmental microbiomes) and had been
also proposed as useful diagnostic tools. In the present review,
we discuss current information on the advances and limitations
of the use of these techniques for studying AR, under the umbrella
of One-Health, Global-Health approaches [14,35,36].
2. Emergence and spread of antibiotic resistance in a multilevel
selection space

By definition, many human bacterial pathogens were suscepti-
ble to the antibiotics used in therapy when these antibiotics
started to be used (otherwise, the antibiotics would had not been
developed by pharma companies). However, resistant variants
began to emerge soon after antibiotics were introduced in clinical
practice, either due to mutations [37] or as a consequence of the
acquisition of ARGs [38]. With few exceptions [39–41], AR muta-
tions are transferred only vertically; they are relevant just for the
clones harbouring the mutation. In this case, clonal selection, and
the associated clonal expansion, is the main element involved in
AR spread. One aspect to address here is knowing if the acquisition
of resistance favours specifically the enrichment of AR clones over
the susceptible ones, hence altering the bacterial population struc-
ture, or if the most abundant clones are those more prone to
acquire AR just by chance, in which case resistance will not neces-
sarily alter the structure of the population. The situation in the case
of ARGs acquired by Horizontal Gene Transfer (HGT) is different
than in the case of mutational events since, as above stated, their
selection implies multiple layers of organization (Fig. 1). Each layer
is a unit of selection and, as a matter of fact, the properties of
reproduction, inheritance, variation and interaction actually define
an individual [42]. Each one of these individuals are the subject of
Darwinian evolution. However, since they are hierarchically linked,
selection-driven changes [43] in one of them will influence top-
down (from microbiomes to genes) or bottom-up (from ARGs to
clonal complexes) any one of the others, forming what has been
dubbed as a nested living system [44]. Eventually, abundant clones
that can acquire ARGs more easily might contribute to the home-
ostasis of the clonal structure of the species by giving access to
minority clones to this ‘‘common ARG pool” by means of HGT.

Mutation driven resistance is a problem for the patient infected
by bacteria presenting such mutations. Hence, it can become a glo-
bal public health problem as a consequence of the clonal expansion
of such mutants. While this is an obviously dangerous situation,
the acquisition, through HGT, of AR determinants can be even more
problematic. In addition to clonal expansion, the presence of ARGs
in transferable elements allows their spread among different
clones and even among different (frequently phylogenetically
related) bacterial species [45–47]. One important aspect of the
field of AR applied to human health is risk analysis. The risk of find-
ing a given ARG in non-pathogenic bacteria is not as high as if the
same gene is found in a virulent organism [5,48]. While the detec-
tion of gene-host association is easy in the case of isolated bacteria,
the situation is not the same when microbiomes are analysed (see
below).

Nevertheless, even when isolated bacteria are studied, the
impact on human health of AR might be different according to
the clone harbouring the ARG and the location of this gene (non-
mobile or within a mobile element). Different bacterial isolates
from the same species may have different niches and different
properties. One example of this situation is Escherichia coli that,
despite being a regular human commensal, presents some virulent
clones, due to the incorporation in their genome of virulence deter-
minants acquired by HGT. Further, the host range of pathogenic
variants can vary; there are clonal complexes able to colonize/in-
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fect humans and other animals and there are clones that are
animal-specific [49,50]. When the problem for human health of
selection of AR at farms is studied, this feature and the identifica-
tion of shuttle clones or mobile elements capable of moving from
animals to humans has to be taken into consideration [14]. It is
important to highlight that the number of genes shared by all
members of a given species (the core genome) is much lower than
the total number of genes (the pangenome) that the species pre-
sents as a whole [51,52]. Knowing that different clones may behave
differently concerning human health, different methodologies have
been applied to identify those that most frequently cause infec-
tions and/or are involved in the dissemination of ARGs [53,54].
Currently, the most popular method for phylogenetic analysis is
MLST [55], which is based on the identification of specific alleles
with phylogenetic value in a relatively low number (typically 7–
8) of housekeeping, highly conserved, genes [6]. MLST allows to
define sequence types (ST), which are currently used to compare
the phylogeny of isolates from different bacterial species all around
the word [56,57]. Comparability of the results among different lab-
oratories is based on the standardization of the methods and loci
used for defining STs and in the existence of broad databases as
PubMLST (https://pubmlst.org), which contains hundreds of thou-
sands of genomes and millions of alleles. Despite its utility for
inferring core-genome based phylogenies, the contribution of the
accessory genome, which is critical for the bacterial adaptation to
different habitats, cannot be assessed with this technology. In fact,
while genome trees based on core genome are consistent with the
species ontology, the phylogenetic relationships derived from the
analysis of all genes (both core and accessory ones) are better rep-
resented as networks [58,59]. This does not mean that classical
MLST analysis is lacking usefulness in a whole WGS era. When
linked to PCR-based detection of ARGs, as well as to plasmid typing
[8,60], these studies allow the multilevel analysis of the epidemiol-
ogy of AR. Note that AR tends to spread and evolve in closely
related bacteria lineages, eventually composed by assemblies of
particular clones within [61]. In pathogenic bacteria, these clonal
complexes frequently constitute the ‘‘high-risk” populations for
human and animal health, and can be identified by MLST proce-
dures. These types of analyses, mainly based on PCR approaches
and Sanger-sequencing of the amplicons, still remain as the golden
standard for analysing outbreaks and in regular molecular epi-
demiology studies dealing with the dissemination of AR. However,
as will be discussed later on, WGS price reduction and the develop-
ment of user-friendly bioinformatic tools for analysing sequencing
results in a short time-lapse is changing this panorama.
3. Genomic approaches for the study of antibiotic resistance

The appearance of genomics, proteomics and transcriptomics
has revolutionized the study of microorganisms. One of the fields
that has benefited the most is the study of bacterial pathogens
and their resistance to antimicrobials. Nowadays, the sequencing
of a bacterial genome (or a metagenome) is affordable and the
main constrains for applying this approach to the clinical field
are the speed of sequencing (most laboratories outsource WGS)
and the time and the skills required for the analysis of the obtained
sequence. Although several of the analytical tools require some
expertise in informatics, user-friendly bioinformatic approaches
are increasingly implemented, which will favour these studies.
However, while they are already useful for fundamental studies
on AR and for epidemiological purposes [62], WGS-based
approaches still have some limitations (see below) regarding their
application in fast diagnostic procedures.

The main benefit of WGS-based approaches in the study of AR is
that they can address simultaneously all the elements involved in

https://pubmlst.org


Table 1
Tools for analysing antibiotic resistance from genomes and metagenomes.

Tool Tool type Database-link Access Approach Status Input description Requirements References

AMRFinderPlus Detection-
database-
based

Reference
Gene Catalog

Web and
standalone

NA; EA;
Assembly-
based and
read based
tool

Active Protein search,
protein.fa and
nucleotide

HMMER, BLAST+, Linux, and
Perl

[78]

ResFinder Detection-
database-
based

resfinder_db Web and
standalone

NA; EA;
Assembly-
based and
read based
tool

Active Whole genome
sequencing, isolate
or annotated
genome,
preassembled
partial, complete
genomes, reads

[79]

PointFinder Detection-
database-
based

Pointfinder_db Web and
standalone

NA; EA;
Assembly-
based and
read based
tool

Active Sequence file in
FASTA

BioEdit platform (http://
www.mbio.ncsu.edu/
bioedit/

[80]

Antibiotic Resistance
Gene-ANNOTation
(ARG-ANNOT)

Detection-
database-
based

ARG-ANNOT Standalone NA; EA;
Assembly-
based and
read based
tool

Active Analysing genomes,
genomes
assemblies,
metagenomic
contigs or
proteomes

Prodigal, DIAMON [81]

The Resistance Gene
Identifier (RGI)

Detection-
database-
based

CARD Web and
standalone

NA; EA;
Assembly-
based and
read based
tool

Active Metagenomic R [82]

Online Analysis
Pipeline for Anti-
biotic Resistance
Genes Detection
(ARGs-OAP v2)

Detection-
database-
based

Web and
standalone

NA; EA;
Assembly-
based and
read based
tool

Active Sequence reads,
allele db, gene db

python (v2.7.5) [83]

Short Read Sequence
Typing for Bacterial
Pathogens (SRST2)

Detection-
database-
based

Standalone NA; EA
Read-based
tool

Active Metagenomic and
db

Unix server with ~2 GB of
disk space for reference data
2X the input FASTQ file size
in both RAM and disk space
for temporary file storage :
Perl , r, usearch, bwa, tophat
incl., bam2fastx, samtools
incl. bcftools and vcfutils.pl,
ncbi blast, seqtk

[84]

Search Engine for
Antimicrobial
Resistance (SEAR)

Detection-
database-
based

Web and
standalone

NA; EA
Read-based
tool

Last
update
2017

Sequence reads Linux [85]

Antimicrobial
Resistance
Identification By
Assembly (ARIBA)

Detection-
database-
based

ARG-ANNOT,
CARD,
MEGAres and
ResFinder

Standalone NA; EA;
Assembly-
based and
read based
tool

Active Sequence reads Linux [86]

SSTAR Detection-
database-
based

SEED
(annotator),
AMR-related
proteins that
have been
curated at
ARDB and
CARD

Standalone NA; EA
assembly-
based and
read based
tool

Active Two sequence files
in FASTA format,
one containing the
bacterial genome
assembly and the
other the AR gene
collection

NS [73]

AdaBoost (PATRIC) Detection
and
classification

Web ML; EA
Read-based
tool

Active Whole genome
sequencing reads

NA [87]

PARGT Detection-
database-
based

Standalone NA Active Protein sequences R and Python [88]

Resfams Databased
and AMR
protein
predictor

Resfams Web and
standalone

NA Last
update
2018

NA None [89]

Antibiotic Resistance
Genes Database
(ARDB)

Database ARDB Web and
standalone

NA Available NA None [90]

NCBI Bacterial
Antimicrobial
Resistance

Database PRJNA313047 Web NA Active NA None

(continued on next page)
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Table 1 (continued)

Tool Tool type Database-link Access Approach Status Input description Requirements References

Reference Gene
Database (BARRGD)

NCBI Pathogen
Detection

Database Pathogens Web NA Active NA None

National Database of
Antibiotic Resistant
Organisms (NDARO)

Database NDARO Web NA Active NA None

Isolates Browser Database Insolates
Browser

Web NA Active NA None

RefSeq Database refseq Web NA Active NA None [91]
How to Request New

Alleles for Beta-
Lactamase, MCR,
and Qnr Gene

Database Home page Web NA Active NA None

Microbial Browser for
Identification of
Genetic and
Genomic Elements
(MicroBIG-E)

Database microbigge Web NA Active NA None

HMDARG Database HMDARG Web Assembly-
based tool
and
hierarchical
classification

Active Raw sequence
encoding

None [120]

NA: Not applicable EA: Exploratory approaches.
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the acquisition of the phenotype and can establish the linkage of
each ARG with the element harbouring it, either mobile or non-
mobile. Further, WGS allows to develop genome-wide studies
based on the analysis of several genes/mutations [63–70]. Further-
more, WGS is fundamental for performing phylogenomic studies
including the accessory genome that go beyond classical MLST
analyses, which as stated above, take into consideration just the
core genome. Since bacterial evolution, and specifically the
evolution of virulence and of AR, largely relies on the acquisition
of virulence determinants/ARGs [71,72], the availability of WGS
tools is particularly relevant for understanding the elements driv-
ing the evolution of virulence and AR. Besides the aspects dealing
with epidemiology, which will be discussed later on, WGS
approaches are useful tools not only to describe novel mechanisms
of resistance but also to predict how resistance (even to drugs not
present yet in the market yet) can emerge. To note here, epidemi-
ological studies must necessarily rely on what is known. The iden-
tification of novel resistance mechanisms is frequently
cumbersome and WGS approaches are helping to solve this prob-
lem. Indeed, these technologies are increasingly being used for
the identification of genes associated with AR [73]; allowing the
development of genome collections and the annotation of genes
from clinically relevant strains [74]. Bioinformatics approaches to
study antimicrobial resistance include computing programs able
to predict, detect, infer and analyse ARGs from isolated culture
data. These programs are used jointly with the systematic compi-
lations of previous knowledge taken from databases (Table 1).
Unlike other prediction methods, new detection methods employ
rule-based inference, which takes advantage of already known
AR phenotypes features. There are other methods that combine
knowledge-based detection with machine-learning and mathe-
matical inference approaches (hybrid methods) [75]. Specifically,
Resfams addresses this remote homology detection problem
employing hidden Markov models for AR protein identification
[76]. Despite the potency of these methods, it is important to point
out that predictions require validations.

When current methods for predicting AR are compared [76],
they differ in aspects as their link to previous knowledge sources
(database-based methods), tool access (standalone or web service)
and the range of data used for the analysis (from gene or protein
3114
sequences to whole genome or proteome data). Several database-
based prediction methods are assembly-based; however, some
applications admit raw sequences or protein sequences as input
data. While for analysing the structure of the genetic elements har-
bouring ARGs contig generation is needed, the use of raw
sequences can be more appropriate for quantification purposes.
Standardization of methodologies and databases is still ongoing,
although regulatory agencies as FDA have raised initiatives in this
direction [77].

As stated in [33] and credited to Gerry Wright from McMaster
University, ARGs can be classified in known knowns (those already
analysed), known unknowns (those that have not been analysed
yet, but are homologous to the knowns) and unknown unknowns.
Although AR can be context-dependent [24], we have the tools
needed to link genotype with phenotype for the first category, at
least in most cases. Reads-based methods use different strategies
for detecting ARGs from raw reads. For example, SRST2 [84] and
GeneFinder [92] use efficient read alignment; and Mykrobe [93]
creates Bruijn graphs of contigs from raw data and matches them
against known ARGs; however, it omits the generation of a consen-
sus sequence. Regarding the second category of known unknowns,
machine-learning approaches enable strong predictions since
these algorithms work by finding the relevant features in complex
datasets. This approach uses a ‘‘rules-based” classification based on
the presence of one or more known ARGs or mutations [76].

The PATRIC annotation system links bacterial genomes with AR
metadata, which favours genotype/phenotype linkage. This project
has also implemented a prediction method called AdaBoost, a
machine learning classifier that identifies specific ARGs using
whole-genome sequences. A balanced dataset between susceptible
and resistant genomes influences the algorithm accuracy. Unfortu-
nately, there are insufficient numbers of genomes from clearly sus-
ceptible bacteria to build these classifiers because several
sequenced organisms are resistant to antibiotics, due to their epi-
demiological relevance [94].

PARGT is another machine learning prediction method. It uses
protein characteristics to identify ARGs in Gram-negative and
Gram-positive bacteria. Results obtained from a simulation carried
out by the authors showed that PARGT could predict AMR
sequences in Gram-positive bacteria with 87 to 90% accuracy. Since
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not all AR determinants contribute equally to the final AR pheno-
type, noise in phenotype predictions can often be reduced and
accuracy increased by weighting each locus using a machine-
learning model. These models can also be trained to consider
potential interactions between loci. It is worth noting that there
is compensation between the accuracy and the computational time
when large-scale reference databases are used to generate the
models [88]. Despite these advances in predictive methods, we
must be aware that a single mutation can change the activity
profile of an ARG, as it happens in the case of extended spectrum
beta-lactamases [95]. Besides, synonymous mutations might have
cryptic effects on the evolution of a global phenotype (resistance,
fitness cost, and compensatory evolution), hence forming part of
the ‘‘whisper mutations” set [96,97]. Altogether, this implies that
a phenotype cannot be always directly inferred from a consensus
sequence. However, once the novel mutational variant is detected,
analysing the associated phenotype, and incorporate this informa-
tion in the analysis of AR, is an easier task. The main problem lies in
the unknown unknowns category and, despite advances in the
field, novel ARGs that may emerge always require experimental
validation of their activity. Examples of this situation are qnr [98]
or mcr-1 [99] conferring resistance to quinolones and polymyxin
respectively and presenting sequences that did not resemble, at
the time of their discovery, any previously known ARG.

Before WGS approaches were available, the identification of AR
mutations relied on mechanisms-knowledge-driven approaches.
Mutations in antibiotic transporters, targets or elements involved
in the regulation of the expression of resistance determinants (as
antibiotic inactivating enzymes or efflux pumps) had been
searched under the idea that they should be the main cause of
resistance. Based on this knowledge, specific applications such as
the web tool PointFinder [80] able to identify known point muta-
tions after mapping reads against reference genomes, as well as
dedicated databases focusing on SNPs known to be involved in
the acquisition of resistance in specific organisms have been devel-
oped [100]. However, efficient blind analysis of novel elements
involved in the acquisition of resistance has been feasible just
when WGS has become available. Massively parallel sequencing
combined with traditional transposon mutagenesis [101], as well
as high-throughput screening of transposon insertion libraries,
have been used to track genes whose inactivation modifies the sus-
ceptibility to antibiotics [102,103]. This method has been used to
analyse the resistome of different pathogens, including Pseu-
domonas aeruginosa [104–119], E. coli [110], Staphylococcus aureus
[111,112] or Klebsiella pneumoniae [113], among other bacteria
[114,115].

It is worth mentioning that the aforementioned studies only
allow the identification of inactivating mutations that alter the
susceptibility to antibiotics. However, AR is frequently achieved
by mutations that do not inactivate the protein but just modify
its activity. The use of adaptive laboratory evolution (ALE) experi-
ments (Fig. 2) followed by WGS has allowed to describe AR muta-
tions even before they are found in clinical settings. A major
concern of these approaches is the differences between in vivo
and in vitro growing conditions; it might be possible that in vitro-
selected antibiotic resistant mutants are not selected in vivo,
because fitness costs associated to the acquisition of resistance
might be habitat-dependent. However, on several occasions, the
same genetic events involved in the acquisition of AR in vitro have
been also encountered in clinical isolates [116–119], validating the
efficacy of these approaches.

Besides genomic studies, transcriptomic, proteomic and, even-
tually, metabolomic analyses have been implemented with the
aim of deciphering novel mechanisms of resistance [122–125], or
to detect the substrates, besides antibiotics, of known resistance
determinants as multidrug efflux pumps [126]. The main drawback
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of these approaches is that, although the acquisition of AR usually
implies changes in the level of expression of several genes/pro-
teins, most of these changes are not associated with the mecha-
nism of resistance, but with the fitness costs due associated with
such resistance (see below). In this respect, unless the expression
of an already known resistance determinant changes, expression-
based approaches alone do not always provide accurate informa-
tion on the mechanisms of resistance; experimental validation is
needed to distinguish between correlation and causality
[127,128]. Further, it has been shown that antibiotics may induce
an uncoordinated response in which transcriptionally and pheno-
typically important genes are not linked [129]. Nevertheless, this
decoupling does not mean that transcriptomic/proteomic data
are irrelevant for analysing AR, and there are different examples
of their application [130–134]. Indeed, these methods have been
used to describe new mechanisms of resistance, which have been
experimentally validated [135], and it has been proposed that tran-
scriptome profiling can be a useful tool in the analysis of AR in
organisms such as P. aeruginosa [136].

In addition to the study of antibiotic resistant mutants, holistic
expression-based studies (proteomics and transcriptomics), based
on the analysis of the differential expression of some genes in pres-
ence of antibiotics, have been performedwith the aim of describing
novel mechanisms of resistance [137]. It is important to note that
while it is true that transient resistance can be achieved via
changes in gene expression, not all genes whose expression
changes upon antibiotic stress are involved in the response to this
injury [138–141]. Careful analyses, taking into consideration avail-
able information and experimental validation of predictions based
on changes in gene expression, are needed in order to establish the
relevance of the findings derived from these studies. Besides its
potential application for discovering novel mechanisms of resis-
tance, transcriptomic-based assays in the presence of antibiotics
have been proposed as a useful approach for the fast diagnosis of
AR. In a first step, conserved differences of gene expression
between susceptible and resistant strains are searched. Afterward,
a small set of genes (around 10) are chosen and their expression in
presence of antibiotics measured using fast hybridization tech-
niques that allow to determine resistance in just a few hours [142].
4. Whole-genome based diagnosis and epidemiology of
antibiotic resistance

The use of -omic techniques has been certainly a milestone in
any area of biology, AR included. Besides their contribution in basic
laboratory-based analysis, they are revolutionizing clinical micro-
biology studies [143] in two different areas: molecular epidemiol-
ogy and diagnostic procedures.

Concerning the first, the full understanding of all the elements
driving the emergence of resistance requires global approaches
so that WGS is increasingly replacing current PCR-based tech-
niques (see above). Nowadays, WGS studies that include hundreds
or even thousands of strains are not uncommon. Whole-genome
MLST (wgMLST) or core genome MLST (cgMLST) approaches have
allowed, without the need of a reference genome, the taxonomical
classification of isolates based on more than 1000 genes instead of
the few ones analysed in classical MLST studies [63–70]. Although
the fundamentals of MLST and wgMLST are the same, wgMLST
(and cgMLST) have a much higher discrimination power, allowing
a much detailed, fine grained, description of the phylogenetic
structures of bacterial populations ’from domain to strain’ [69].
The linkage of this information with specific databases containing
controlled reference genomes for diagnostic use and regulation as
FDA-ARGOS [77], can help for studying in more detail the popula-
tion structures of microorganisms with relevance for human health



Fig. 2. Integrated research of AR by multi-omics data and pathogen-specific genome-scale metabolic models. Multi-omics data are collected from a parental wild-type strain
and a derived and antibiotic-resistant bacterium. After that, pairwise comparison between both strains is performed. Resistance can be selected during infection upon in vivo
evolution (a), from adaptive laboratory evolution linages, which can be explored at different time points along evolution (b), or through the introduction of an ARG in the
wild-type strain (c). The comparison of isogenic bacteria, with different levels of resistance, and isolated from the same patient provides the most accurate information on the
evolution of AR during treatment [120,121]. High throughput -omics data obtained from the analysis can be computationally integrated onto genome-scale metabolic models.
Analyses of metabolic changes and mechanisms of AR allow the discovery of potential drug targets and treatment strategies against antibiotic-resistant pathogens. Fitness
landscapes show the fitness cost of the AR, that influences the rate of development, stability and transmission of resistance, and the rate of resistance loss in the absence of the
selecting antibiotic.
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Concerning AR determinants, several approaches for finding ARGs
and resistance mutations have been implemented (see above)
and are in use for epidemiological studies. However, besides find-
ing the resistance genes, it is also relevant to describe the mobile
elements carrying them. It is important to note that, among all
genomes deposited in databases, only a minor part of them is fully
assembled; most are found as a variable number of different
contigs, making in occasions difficult to distinguish if an ARG is
present in a plasmid or in a chromosome. However, methods that
allow getting long reads are helping to solve this problem; together
with assemblers as SPAdes that include pipelines (plasmidSPAdes)
for assembling plasmids [144] and informatic tools as PLACNET
that allow the reconstruction of plasmids sequences obtained de
novo or already present at WGS databases [145]. These tools can
be used in order to analyse the genome/mobilome integration as
well as to reconstruct the history of plasmid evolution and spread
among different bacterial lineages [145]. More recently, a Perl
application (Accessory genome Constellation Network-AcCNET)
has been developed to compare the accessory genome (eventually
containing ARGs) of several organisms, using the proteomes
deduced from the analysed genomes [146]. Novel developments
along this line as Pangenome Analysis Toolkit (PATO) allow to cre-
ate, using conventional computers, clusters of thousands of gen-
omes (pan-genome) using a list of pre-defined clusters,
eventually from external sources as MLST; in addition, pan-
genomes can be filtered by genome frequency (i.e. the number of
genomes that belong to the pangenome), and the frequency of
ARGs [147].

While the methodologies for genome-basedmolecular epidemi-
ology studies are already robust, a problem exists in databases,
particularly in their reutilization for meta-analysis purposes. This
problem consists of the general weakness (eventually absence) of
metadata associated with the deposited sequences. Information
regarding inclusion criteria, point of isolation, treatment, disease
or age in the case of patients; chemical composition or potential
pollution of the habitat in the case of isolates from natural ecosys-
tems; and any other information that might influence emergence,
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evolution and spread of AR is nearly absent and should be included
in databases. In addition, databases are biased by the overrepre-
sentation of strains derived from epidemic events. Although there
are some databases that incorporate these metadata [148,149],
their development is still in its infancy.

WGS has also been proposed as a good tool for simultaneously
determine the phenotype of resistance and the mechanisms
involved in this resistance. For this purpose, WGS databases that
include in their metadata phenotypic information are valuable
tools [150,151]. The use of machine-learning approaches able to
predict AR based on sequence and expression data has been as well
explored [152]. However, phenotypic tests are still superior to
genome-based approaches, despite the utility of the latter in the
case of slow-growing, non-cultivable or difficult-to-sample bacte-
ria. One of these microorganisms is Mycobacterium tuberculosis,
WGS has been proposed as a diagnostic tool that may be useful
to analyse AR [153,154] and the in vivo evolution of resistance even
prior to tuberculosis diagnosis [155], and dedicated databases
comprising hundreds of AR mutations have been implemented.
Although they are becoming affordable, time and resources
required for genome analysis are still a problem for their use at
clinical setting. An important drawback to the general application
of these approaches as diagnostic tools is that they just provide
predictions. Although genotypic-phenotypic linkage seems to be
strong in the case of mutation driven resistance [156] and stand-
alone informatic tools have been developed to link genotypic-
phenotypic information [157], in the case of resistance genes the
phenotype of resistance depends not only on the ARG, but also
on its genomic context [24]. Further, sequence-based approaches
cannot identify as yet unknown mechanisms of resistance that
may contribute to the phenotype. Another drawback of
WGS-based approaches is that they usually require the isolation
of the organism. To avoid this problem, metagenomic analysis
using techniques as Nanopore, which is portable, fast and renders
long sequence reads, can be implemented at least in low-
complexity microbiomes, as those involved in infections at ortho-
paedic implants [158]. Whole genome enriching methods targeting
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specific organisms might be also applied in the case that the most
probable causal agent of the disease is known. Indeed, these meth-
ods have been used for improving the recovery of M. tuberculosis
DNA from sputum [159] in tuberculosis patients.
5. Antibiotic resistance beyond boundaries

The problem of AR goes beyond a single resistant bacterium or
an infected patient. It is a global problem that involves the transfer
of ARGs among bacteria forming part of gene-exchange communi-
ties [160], which are present in different ecosystems, including not
only human-associated microbiomes, but also animal and environ-
mental microbiomes [14,35,36,118,161–166]. Culture-based
approaches just allow studying a minority of the populations pre-
sent in a microbiome. Consequently, the implementation of
metagenomic techniques, which do not require culture, as well
as the development of tools for the analysis of metagenomes such
as MEGAN [167] have been fundamental for a deep understanding
of the taxonomic composition and the overall genetic capacities
(including AR) of any microbiome.

AR is a global problem, in which any ecosystem (from natural
environments to human hosts) may participate [168–170]. The
socioeconomic issues that modulate this transmission [171], and
the mathematical models addressing this aspect of the problem
[172–175] will not be reviewed here. However, tools for tracking
the transmission of ARGs among different ecosystems and geo-
graphical allocations [176], as well as detailed analyses of the
effect of the selection of AR in a given microbiome are needed. In
this regard, comparison of the resistomes of interconnected micro-
biomes [177] can provide clues of the transmission routes of resis-
tance genes [35], and of the presence of these genes in bacteria
colonizing ecological distinct niches as soil or human host [178].
Extremely randomized tree algorithm, optimized with Bayesian
approaches, have been used to determine the variability of ARGs
in different ecosystems and to track the ones that are discrimina-
tory [179]. Besides, the analysis of the transmission of ARGs among
ecosystems under strong selective pressure will certainly provide
information on AR transmission. The microbiomes that are under
stronger antibiotic selection are those from hospitalized humans
and farms’ animals. Accordingly, it has been stated that the use
of antibiotics in farming may have important consequences for
the spread of resistance in human populations [180–182]. ARGs
selected in farms might be transferred to human pathogens or,
eventually, the same pathogen can infect humans and other ani-
mals [183]. While this is generally true, there are some aspects
of the problem that still require fine-tuning studies. Although,
the species that infect humans and other animals, particularly in
the case of mammals, can be the same, for some of them, the clonal
lineages infecting each of the hosts are different [184]. Linking
ARGs with the host is hence of relevance for estimating the risk
to human health of such genes found in non-human-linked micro-
biomes. Besides, specific studies focusing on the mobilome shared
by humans and other animals, may also help to analyse animal/hu-
man ARGs transmission [46,185,186].

Despite tools such as SqueezeMeta [187], a pipeline that inte-
grates a set of programs required for metagenomic analysis, as well
as the implementation of different AR databases (Table 1), are cer-
tainly helping in metagenomic studies on AR, some basic issues
must be afforded when these studies are performed. The bioinfor-
matic categorization of ARGs is one of them. This definition is usu-
ally carried out using DNA-based Blast searches oriented to already
known resistance genes present in databases. In this regard, it is
worth mentioning that existing ARG databases are skewed and
biased towards beta-lactams resistance and aerobic/facultative
aerobic bacteria, mainly those causing human infections. This bias
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has to be taken into consideration when studies of the global resis-
tome of a given habitat -particularly environmental ones- is per-
formed [36]. In addition to in-house Blast search approaches,
tools linked to specific databases as ARIBA [86], ARG-ANNOT
[81], AMRFinder [188], MEGARes [189], CARD [82] or Resfinder
[190] have been fruitfully used for finding putative resistance
genes, and AR mutations, in a variety of genomes and metagen-
omes. Besides classical pairwise comparison approaches, proba-
bilistic annotation algorithms, such as hidden Markov models,
have demonstrated to be useful for detecting ARGs [79,191].
Although the predictive potential of these tools has largely
improved, there are some issues that need to be taken into consid-
eration when interpreting the results of the analyses of resistomes;
in terms of the risk that detecting these putative resistance genes
may have for human health [5,48]. The strength of the constraints
used for in silico searches is one of them. In order to get a compre-
hensive view of the resistome, some authors use relaxed parame-
ters for ARGs search. While this can be valid for creating a
picture of the whole potential resistome, the results can be confus-
ing to specifically track the resistance genes acquired by human
pathogens after the discovery of antibiotics, which are the ones
currently being a risk for human health [5].

The use of the above-mentioned approaches leads to the
description of several ARGs in any studied metagenome [192–
199]. However, most of them are unlikely to be a problem for
human health because they are not present in human pathogens.
Further, as discussed in [200], ARGs abundance does not necessar-
ily correlates with risks to human health. Even more; the genomic
context, which may drive the expression levels of a given ARG is
fundamental for its contribution to the AR phenotype in its host
[24]. It is true that all genes acquired by human pathogens were
previously present in the genome of another microorganism
[201], but the fact that the number of resistance genes present in
the so far studied microbiomes is orders of magnitude above those
currently moving among pathogenic bacteria, indicates that the
probability of each of the detected genes to jump inside a human
pathogen is low, unless it is already present in a mobile element
[5]. In this regard, it has been shown that the resistome is linked
to both ecology and phylogeny [202,203]. This is an indication that
most detected ARGs belong to the intrinsic resistome, formed by
the ensemble of genes present in all (or most) members of a given
bacterial species, which contribute to its characteristic phenotype
of antibiotic susceptibility and had not been recently acquired by
HGT [103,104,204–207]. As discussed in [5], these genes have to
be considered as phylogenetic markers, more than a risk of for
human health. Specific databases on mobile elements as ACLAME
[208], INTEGRALL [207], or mMGE (specifically focusing on human
metagenomic mobile genetic elements) [209] are certainly helping
in distinguishing between intrinsic and mobile ARGs.

While DNA-based approaches are useful for detecting already
known ARGs, functional metagenomics [178,199,203,210,211] or
structural based approaches can be used for predicting fully novel
resistance genes [212]. Using the later, it has been established that
most ARGs present in the human gut microbiome belong to the
intrinsic resistome. Hence, more than being a risk for the acquisi-
tion of resistance by bacterial pathogens, they are resilience genes,
able to reduce the perturbations due to antibiotic use and help to
keep the homeostasis of human gut microbiome [213].

For the sake of comprehensibility, most AR databases contain
intrinsic and acquired ARGs and, on several occasions, ARmutations
arealso included.Whenautomaticanalysis of thesedatabases isper-
formed,manual curation of the results is needed [204]. For instance,
the finding of intrinsic resistance genes as acrAB, which encode an
enterobacterial efflux pump [214], in ametagenome justmeans that
Enterobacteriaceae are present in the microbiome. Similarly, the
finding of genes asmarA (encoding a global regulator) [215] or gyrA
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(coding for the target of quinolones) [216,217] is not a sign of AR
unless the mutant allele (that confers resistance) is found. Informa-
tion on whether the cause of resistance is a mutation in the gene
included in the database and not just to the presence of the gene, if
the gene can confer by itself resistanceor is a regulator of the expres-
sion of the actual ARG, aswell as if the genehas been found inmobile
elements or is just an intrinsic ARG,must be included in annotations
to allowan accurate analysis of resistomes. Hierarchically organized
databases, based on well-curated data, including information on
resistance antibiotic class, resistancemechanism and genemobility
[218] can help solve this problem.

In the case of metagenomic samples, a particular problem con-
cerns the identification of allelic forms of a resistance gene that dif-
fer just in a few nucleotides, as TEM-1-derived extended spectrum
beta-lactamases [96]. Most metagenomic works are based in Illu-
mina, short-reads, technologies. The assemble of these short reads
may produce chimeric genes, not really present in an organism
within the microbiome. The application of sequencing technologies
allowing long reads seems to be a better approach to solve this
problem [219]. While PacBio [220] is accurate enough to distin-
guish among alleles, Nanopore [221], and associated analytic tools
as NanoGalaxy, which can be extremely useful to analyse arranges
of ARGs, mobile elements [222,223], or the presence of acquired
ARGs in a given microorganism (see below), are not accurate
enough for the analysis of alleles presenting few differences in
their sequences. Nevertheless, the portability and the fast genera-
tion of results of Nanopore devices make this technology an excel-
lent choice for in situ metagenomic studies [224].

The risk for human health of an ARG depends on the organism
in which this gene is present, ranging from environmental (lower)
to commensals or pathogenic (higher). Binning approaches, based
either on abundance or on nucleotide composition, are then
needed for linking gene/bacterial host. [225,226], even rescuing
potential novel species from metagenomic data (metagenomic
species, see [227]). Applications such as GroopM [228], CONCOCT
[229], SCIMM [230], Metawatt [231], MetaBAT [232], MaxBin
[233], and others have been used for this purpose. However,
although whole genome reconstruction from metagenomic data
is feasible in low-complexity microbiomes, when a large number
of sequence reads is available [234] or when the purpose is to anal-
yse the pangenome of a given microorganism [235], these
approaches present some limitations, particularly when commen-
sal and pathogenic sublineages of the same species (as it happens
in the case of E. coli) may co-exist in the same microbiome. The sit-
uation is even more difficult for analysing genomic islands and
plasmids, presenting different copy numbers, with a nucleotide
composition different to the one of the chromosome of the bacte-
rial host, and eventually harboured by different hosts. In these
cases, it has been reported that the percentage of mobile elements
that are reconstructed and rightly binned to the chromosome of
their bacterial host from metagenomic data is low [236]. Despite
these problems, it has been recently stated that advanced sequenc-
ing techniques able to detect bacterium-specific methylation pat-
terns allow a more accurate binning of chromosomes and
plasmid sequences Further, non-bioinformatic, laboratory-based
techniques, as EPIC-PCR [237]or Hi-C [238], may help to solve
the problem of plasmid-chromosome binning.

A final concern refers to the abundance of ARGs reads in
metagenomic data, since these reads can fall below the detection
limits using regular metagenomic sequence depth. This is particu-
larly relevant in the case of complex and/or environmental micro-
biomes, in which the resistant bacteria carrying the mobile ARGs
constituting a risk for human health represent a very low fraction.
Gene-capture systems, which allow targeted metagenomic studies,
have been developed to enrich ARGs sequences in metagenomic
analysis of complex microbiomes [239].
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6. Natural computing applied to study hierarchically organized
systems

As stated before, AR develops in the whole biosphere as a hier-
archically organized complex system with several layers of organi-
zation, each one affecting the others. Its performance is based on
homeostatic rules able to digest and integrate entropy (random-
ness) to keep identity, while allowing variation and evolution
[240]. In Platonic terms, a cell is model of Nature; a biological
microcosm reflecting the natural macrocosm. This has inspired
the development of natural computing, nature-inspiring computa-
tional methods [241]. Among them, cellular computing includes
approaches as artificial neuronal networks, or cellular automata,
where ensembles of cells produce emergent qualities using com-
munication strategies (‘‘bacterial computing”), and bioinspired
processors [242]. The latter includes network evolutionary proces-
sors transducers to simulate chemical transformations of sub-
stances or network genetic processors.

If the progress of genomic techniques has provided a powerful
analytic tool to understand the biological complexity of the micro-
biosphere, new methods of synthesis are required to understand
evolutionary functioning, including AR. Synthesis has benefited
from the concept ‘‘cells as teachers”, giving rise to new computa-
tional engineering methods that can be applied at higher levels
[205,206].

One of the branches of cellular computing is membrane com-
puting, taking advantage of the knowledge of the cellular organiza-
tion to approach modelling of hierarchically structured biological
systems. A cell is a space delimited by a membrane, which allows
interaction with the environment while providing cellular individ-
ualization and identity; in fact, death essentially consists in the
loss of individuality by membrane disruption [243]. Inside this
space, there is a set of independent ‘‘objects”, surrounded by mem-
branes in the case of eukaryotic cells -as nucleus, mitochondria, or
chloroplasts- or discrete self-assembled (in a sense, compartmen-
talized by a virtual membrane) entities -as ribosomes, or efflux
pumps-; and in bacteria, independent self-replicative genetic ele-
ments as plasmids. This nested (tree-like) ontology of individuals
inside individuals, membranes inside membranes, can be
expanded downwards to other independent discrete units, as
genes themselves, or associated ensembles of genes (operons).
However, it can be also expanded upwards, as cells are individuals
forming part (‘‘inside”) of individual supra-structures -as tissues,
organs, species, microbiotas or holobionts- and finally ecosystems,
which can be also treated as surrounded by functional membranes.
Many of these intracellular or supracellular objects are indepen-
dent units of selection [42,244,245].

The problem to address is how the evolution of a lower rank
object influences the evolution of a higher rank object in the hier-
archy, and vice versa. Indeed, the analytic (reductionistic)
approach to study the complexity of natural systems and to ascer-
tain the risks of their variation for human health has evident exper-
imental boundaries. Empirical science is limited by the number of
testable variables and by the practical impossibility of combining
different ranges of them at various levels of the natural world.
Mathematical modelling of AR has been limited until recently to
‘‘between-hosts” or ‘‘within-treated host” studies, but unfre-
quently using both dimensions [175]. Nevertheless, cellular com-
puting allows the combination of both dimensions, at the same
time that adds the ‘‘between-cells” and ‘‘within cells” dynamics
of ARGs [246].

The series of ‘‘objects” defined by physical or virtual mem-
branes in membrane computing models have interactive rules,
integrating their action to sustain life. This view constitutes the
basis of P-systems, one of the computational models used in mem-
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brane computing, developed by Gheorghe Păun [247]. Membranes
(including whole cells, or higher structures as microbiota) have
rules by which they can replicate, propagate, dissolve, exchange
information according to flexible rules, mutate, be selected by
external agents, or be transferred into other membranes. For
instance, an ARGs-containing plasmid moves from one cell to
another, or a resistant clone moves from one microbiota to
another, based on probabilistic events. Alterations in an object, as
those derived from different mutation rates, are quantitatively
reflected by differences in membrane fitness. Another kind of ‘‘ob-
jects” can be introduced (or excluded) from the system to influence
the rules of the membrane-contained objects; for instance, certain
concentrations of antibiotic might reduce the rate of replication or
the rate of plasmid transfer between cells.
7. Membrane computing and the dynamics of plasmid-
mediated lateral transfer of antibiotic resistance genes

The full analysis of the emergence, spread and evolution of AR
requires to consider a highly complex multi-parametric and multi-
hierarchical landscape [248]. Membrane computing allows not
only to study the effect of changing each one of these parameters
in the model and observe the effects this change causes, but also
to combine, in a single computational run, the associate effects of
changes in multiple parameters [249,250]. Tools as ARES [250]
have been developed to analyse the trans-hierarchical evolution
dynamics of AR in nested ecological compartments. Despite the
intention of such tools is being user-friendly, their utilization still
requires some bioinformatic knowledge, particularly on basic prin-
ciples of membrane computing. The main advantages of these
studies are: 1) the possibility of performing modelling à la carte,
using the real data from a hospital, communities, or regions; 2)
to use ‘‘range of possible parametric values” when some data are
unavailable; 3) to evaluate the influence of a wide range of proba-
bilities in the events influencing AR; 4) to assess the possible effi-
ciency of interventions directed to reduce the burden of AR. In fact,
membrane computing offers not only a way of representing pro-
cesses but also a way to virtually reproduce (as a microworld)
the process in a system.

Several factors influence the dynamics of AR plasmids transfer
among bacterial populations. These factors have been analysed
under in vitro conditions, but determining their relative weight in
the dissemination and maintenance of AR in the real world is an
impossible task using classical tools. Membrane computing is an
appropriate method to cast light in this question, because of the
nested nature of the biological units involved: genes into plasmids,
plasmids into cells, bacterial cells among bacterial populations and
microbiotas in a hospital or community (Fig. 3). The problem of
plasmid-driven dissemination of AR has been addressed investigat-
ing the independent effect of these factors in the evolution of resis-
tance, using the landscape described in the former paragraph
[251].

This study has shown that plasmid conjugation frequencies sig-
nificantly influence the spread of AR strains whose resistance
determinants are encoded by the element only at transfer rates
of 10-3. Coexistence or exclusion (incompatibility) between plas-
mids with similar replication mechanisms was tested, and it has
been described that coexistence might occur if the host strain con-
tains two copies of these plasmids. Spontaneous plasmid loss has
been found to have a small influence, being only of certain rele-
vance at frequencies of loss of 10-4-10-5. Harbouring a plasmid
might produce a reduction in fitness for thebacterial host; how-
ever, the model indicates that only reductions in growth rate above
6% influences the prevalence of plasmid carrying strains in a com-
plex reality-like scenario. Plasmid fitness cost can be alleviated by
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‘‘compensatory mutations”, but the effect of such compensation is
extremely low under the analysed conditions, except in strong
hypermutable strains (10–5 of mutation frequency). All in all, this
study [251] indicates that changes in evolutionary units located
at sub-cellular scale might have some consequences in the ‘‘big-
real” world constituted by higher hierarchical level units.
8. Membrane computing and the epidemiology of antibiotic
resistance

Membrane computing models have been applied to understand
the multilevel dynamics of antimicrobial resistance within a hospi-
tal [252]. The evolution of several different bacterial species and
clones introduced at the beginning of the process at different abun-
dances and presenting different AR phenotypes was studied. Given
the time-lapse (see below) and the involvement of patients, this
type of study cannot be experimentally addressed.

To get this goal, different species and strains were included in
the model. E. coli was included with four initial phenotypes: fully
susceptible, plasmid-mediated aminopenicillin-resistance,
ciprofloxacin-resistance, and both aminopenicillin and
ciprofloxacin-resistance; K. pneumoniae, which is intrinsically
resistant to aminopenicillins, was plasmid-mediated cefotaxime-
resistance and ciprofloxacin-resistance; Enterococcus faecium (in-
trinsically resistant to cefotaxime) was included with two pheno-
types: aminopenicillin-susceptible and aminopenicillin-resistance
(encoded in a conjugative, transmissible element); and P. aerugi-
nosa (intrinsically resistant). The model allows to treat modelled
individual patients with different antibiotics at different dosages
and was implemented for mimicking 20,000 steps (one hour each),
representing a total of around 2.3 years. New resistance pheno-
types emerged during the modelization process, due to the trans-
mission of ampicillin and cefotaxime from resistant to
susceptible populations, and/or mutational events leading to
ciprofloxacin-resistance. Notably, these resistance phenotypes are
more frequent in hospital patients than in community ones, and
the evolution of resistance depends on the basal R situation.

The study shows the importance of hospital admission-
discharge rates in hospital; if this parameter decreases, resistance
increases in the hospital. The reduction in hospital bacterial trans-
mission (measured as the proportion of individuals that acquired
any kind of bacteria from another individual per hour), also
reduces the evolution of AR even though less than expected, prob-
ably because of the transmission of susceptible bacteria. The trans-
mitted bacterial load was shown to facilitate colonization. More
important than hospital transmission was the proportion of hospi-
tal patients treated with antibiotics, enhancing the proportion and
complexity of AR. The effect of rapid or slow bactericidal effect of
antibiotics was tested and it was shown that slow killing facilitates
resistance. The importance of the intensity of the ‘‘ecological
effect” of different antibiotics in decreasing susceptible popula-
tions of the gut, and therefore the colonization-resistance of the
microbiota (favouring colonization, abundance, and transmission
of resistant organisms), was also supported by the study. Finally,
the strength of antibiotic selection on resistance traits was investi-
gated; for instance, the possibility that ampicillin selects for clones
harbouring ESBLs, even though this antibiotic is not the most
clinically-relevant substrate of these antibiotic inactivating
enzymes, was approached. This summary of results is just an
example of the possibilities of membrane computing in predicting
the evolution of AR at different levels and under disparate
situations.



Fig. 3. Thought scheme of a membrane computing model to simulate the evolution of AR. The main factors influencing evolution of resistance are shown in the figure.
Numbered parts inside the cell: 1) bacterial chromosome; 2) mutational event leading to AR; 3) ARGs; 4) mobile genetic element (plasmid); 5) compensatory mutation
decreasing plasmid fitness cost for the cell. In the lower part, rounded squares represented different human hosts containing species (ovals) in the microbiota; bacteria are
transmitted between hosts (green and red arrows, transmission of red or green strains). A given antibiotic can eliminate (lower, left) some types of bacterial cells (green, red)
and their contents (broken lines) in host 1, and another one might also eliminate members of the microbiota in host 3 (lower, right), favouring the multiplication of resistant
cells to this antibiotic (green), increasing the possibilities of being transmitted to untreated host 2. AR depends on ‘‘within and between cells” and ‘‘within and between hosts”
evolution, in a complex nested system. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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9. Data integration for tackling antibiotic resistance

It has been generally assumed that the acquisition of AR pro-
duces a fitness cost that is mainly associated with an impaired bac-
terial growth. However, the situation is by far more complex; it is
known that AR may alter the expression of several genes, not
always associated with the acquisition of the resistance phenotype
[23,253–256]. Besides altering the expression of virulence factors
or signalling networks, the acquisition of AR may alter bacterial
metabolism. These changes could be the Achilles’ heel to specifi-
cally fight AR. Examples of metabolic rewiring associated with
the acquisition of resistance are, among others, the anaerobic res-
piratory chain increased expression of P. aeruginosa multidrug
resistant mutants [22,23], or the increasing expression of an rRNA
3120
methylase in capreomycin resistant mycobacteria [257]. Knowing
the effects of the acquisition of AR can hence provide evolution-
based information for tackling this problem [258]. Conversely,
the understanding of the bacterial metabolism can provide clues
about the mechanisms and the effects of AR acquisition.

All the above-mentioned multi-omics technologies are increas-
ingly used for the global analysis of AR. They simultaneously pro-
vide measurements of the expression of genes, proteins and
metabolites that can be used to compare the physiology of suscep-
tible and resistant pathogens at different time points [26]. How-
ever, information from these types of analysis is frequently
disconnected, and the integration of this information may benefit
from the establishment of cell models. The availability of an
increasing amount of sequenced genomes and transcriptomes,
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together with experimental work on the associated phenotypes,
metabolic fluxes and biochemical studies, has allowed the recon-
struction of genome-scale metabolic models (GSMMs) to elucidate
the organisms’ metabolisms and thus deduce metabolic capabili-
ties for different species, several of them causing infections [26]
(Fig. 2).

GSMMs interconnect metabolic reactions, their metabolites,
genes and enzymes into mathematical models to study cellular
mechanisms. Thereby, they predict metabolic responses linking
gaps between transcriptional and phenotypic responses, a feature
particularly relevant to understand the bacterial response to
antibiotics [259–266]. In this regard, GSMMs together with
multi-omics data are the first step to a quantitative analysis of
pathogens physiology, including their metabolism, resistance and
virulence mechanisms, hence constituting novel approaches for
metabolism-based drug target studies [26].

An example of how -omic data can be used to determine meta-
bolic changes in response to antibiotics is provided by the analysis
of P. aeruginosa biochemical pathways perturbed by polymyxin
treatment [260]. To get this information, the P. aeruginosa iPAO1
metabolic model together with RNA-Seq data was used. Apart from
the known lipid A modifications associated with the response to
polymyxin injury, numerous biochemical pathways involved in
central, amino acid and fatty acid metabolism were perturbed,
which enhances oxygen uptake and decreases growth rate
[260,267]. Another example is the in-silico analysis of S. aureus
small colony variants (SCVs). A GSMM of this organism showed
that an in silico-generated hemB SCV mutant should have an essen-
tially fermentative behaviour, should secrete lactate and its growth
would be, at least partially, recovered in presence of glutamate,
glutamine or arginine [28]. It remains to be established if this
growth recovery means a reduction in AR of SCVs, in which case,
these amino acids might be used as antibiotic adjuvants. Within
the same study, the effect of in silico deletions of different genes
on bacterial metabolism was analysed. Notably, all lethal gene
deletions that had been identified experimentally were correctly
predicted by the model, supporting its reliability, and allowing to
propose enzymes from glycan biosynthesis and lipid metabolism
as promising targets for the search of S. aureus inhibitors.

The construction of GSMMs is a tedious labour, in which four
main stages – draft reconstruction, manual curation, conversion
to mathematical model and network analysis – are needed to cre-
ate a metabolic model [268,269]. There are different tools to create
metabolic reconstructions [270–274] and among them, new auto-
mated tools, such as CarveMe universal model, allow the recon-
struction of both species and community metabolisms, creating
amazing metabolic model collections [275]. This automated tool
overcomes the problems of previous methods, such as gap-filling,
correction of elemental balance or directionality of reactions,
detection of futile cycles and removal of blocked reactions or
dead-end metabolites [275]. In addition, a flexible tool capable of
combining information of GSMMs to identify promising targets
as well as multi-target treatments is the web application FindTar-
getsWEB, which has been used to evaluate metabolic networks of
both Gram-negative and Gram-positive multidrug-resistant patho-
gens such as P. aeruginosa or S. aureus [276].

Together with the use of -omic approaches, GSMMs across mul-
tiple strains and species or communities provide knowledge of
pathogenic shifts due to AR at system-level [26] (Fig. 2). As an
example, the use of GSMMs together with metabolomics data
has been used to study streptomycin and chloramphenicol resis-
tance in Chromobacterium violaceum. This study revealed that,
while chloramphenicol resistance enhanced acetate production,
streptomycin resistance increased acetate and formate secretion
[259]. In addition to describe common metabolic pathways,
GSMMs are essential to describe specific metabolic pathways for
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each microorganism, including AR ones, as well as virulence factor
synthesis pathways [26]. This knowledge, together with transcrip-
tomic, proteomic and metabolomic data can be used to understand
the physiology of the bacterial pathogen under different condi-
tions, including those with relevance for infection. For instance,
this type of models has allowed to elucidate key elements associ-
ated to biofilm type of growth [277,278], to identify virulence fac-
tors [279] or to simulate the metabolic dynamic of P. aeruginosa in
cystic fibrosis patients [280]. Further, recent works have identified
common metabolic signatures associated with AR, virulence and
clinical outcome in P. aeruginosa causing cystic fibrosis chronic
infections [281] or metabolic profiles of multidrug resistant M.
tuberculosis [282]. All this information is valuable for diagnosis/
prognosis purposes, as well as for finding pathways whose meta-
bolic reprogramming may tackle resistance [283–287] or impair
virulence aside from identifying metabolites that might be used
for improving antibiotics’ activity [284,288].

Even though transcriptomic/proteomic data have been used for
target identification, the absence of correlation between transcrip-
tional and phenotypical responses triggered by antibiotics calls
into question if these studies could be generalized [129]. Transcrip-
tional response related to antibiotics is unrelated to stress and con-
fers no fitness advantage, thus a more useful approach to predict
drug targets and eradicate pathogens would include network topo-
logical analyses to put into realistic models high-throughput
experiments [129]. It is for these reasons that the development
of GSMMs linking the metabolic phenotype to environmental and
genetic perturbations is central to drug discovery [275,289].

There are different computational methods used to test and val-
idate GSMMs in the field of drug target discovery. Firstly, flux bal-
ance analysis (FBA) is used to represent the possible behaviour of
microbial metabolism and to predict gene essentiality [290]. One
of the objectives of FBA is the use of biomass production studies
to detect new elements able to compromise pathogen’s growth.
This approach has provided insights into Porphyromonas gingivalis
essential growth and has postulated LPS production as a potential
drug target [291]. Moreover, FBA is used to determine if the dele-
tion of a given gene can arrest the selected function in the bacterial
metabolism, being the gene knockout stimulation using FBA the
most popular method employed for drug discovery [289,276]. Sec-
ondly, flux variability analysis (FVA) determines the range of alter-
nate routes able to get the same objective, identifying other
potential drug targets [292]. Thirdly, flux sampling calculates all
solutions in a statistical meaningful way when the objective is
not clear [293].

Traditionally, the most commonmethod to identify drug targets
has been the prediction of essential genes whose inactivation leads
to flux redistribution, being the enzymes they encode potential
drug targets. GSMMs are highly effective in gene deletion analysis
studies, since this type of computational analyses, performed in a
few seconds, save time and effort in comparison to experimental
work [26]. Consequently, GSMMs have allowed to identify essen-
tial enzymes that can be exploited as targets of broad-spectrum
antibiotics against different pathogens. For instance, these studies
have revealed that Yersinia pestis essential genes are mainly genes
encoding proteins involved in amino acid transport and metabo-
lism and that some of these metabolic genes are also identified
as essential in E. coli and Salmonella typhimurium [294]. The use
of GSMMs for the identification of the organisms’ catabolic cores
might then be a useful tool for identifying pathways predicted to
be critical for biomass generation, being even essential. The exper-
imental validation of such prediction shows that this approach is
indeed useful [295].

Besides the identification of essential pathways, another
approach is the prediction of essential metabolites [296]; when a
metabolite is removed within the model, all reactions in which it
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is involved disappear and the consequences are studied. The
enzymes found to be involved in the consumption and production
of these metabolites can be studied as new drug targets [263,289],
and the information on the metabolites themselves can be used to
search for analogues of them that might inhibit bacterial growth
[289]. These approaches can also be used to explore the chemical
space that may be eventually useful to develop combination antibi-
otic therapies [297] or multi-target antibiotics. For the later, sets of
reactions that act together may be targeted as an unique pathway
[298] and consequently, altering the flux of one of them by target-
ing one enzyme results in an altered flux of all the reactions. For
instance, 147 reactions were found to be coupled in M. tuberculosis
models and 25 of these reactions account with previously known
drug targets; thus, lethal combinations of these reactions could
be assessed as potential targets [299].

GSMMsmay also allow to simulate different infection scenarios,
predict cellular phenotypes by changing nutrient sources and
deduce infection features in different infected locations. This infor-
mation on the metabolic situation of bacteria at different stages of
infection might serve for identifying specific biomarkers and puta-
tive drug targets not so easily identified through in vitro
approaches. For instance, pathogens may require specific nutrients
and resources from the host cells. One example of this situation is
Leishmania major, which obtains certain amino acids from the host
macrophages since it is unable to synthesize them. The inhibition
of this kind of pathways associated to infective situations and host
characteristics, which may lead to environment perturbations, may
help in defining new targets and therapeutic options based in
metabolism remodelling [300,301]. Among others, fatty acid and
lipid metabolic reactions have been recently proposed as promis-
ing antimicrobial targets [26].

All in all, conventional methods to detect possible targets are
expensive and slow. Accordingly, computational studies are a more
efficient alternative to detect essential genes and their products as
possible drug targets, facilitating, upon validation of the generated
predictions, the development of new drugs targeting at different
stages of infection [26]. Despite the fact that metabolic modelling
is a new approach, it has allowed to detect targets that are consis-
tent with previous data [28] as well as to provide new hypotheses
[296] to explore.

Once drug targets are identified, drugs capable of inhibiting
these targets should be screened. The most evident category for
developing new drugs interfering with bacterial metabolism would
be the structural analogues of the essential metabolites found by
metabolic reconstruction and reprogramming through GSMM.
These analogues would be able to replace and to compete with
the essential metabolite, disrupting metabolism and causing cell
death [289]. For instance, lysine analogues that target lysine ribos-
witches inhibit Bacillus subtilis growth by repressing lysine biosyn-
thesis pathway. Some of these riboswitches regulate essential
genes whose proteins produce metabolites that cannot be obtained
from the external medium, being promising targets for the devel-
opment of new RNA-binding antibiotics [302]. In addition to the
search of new antibacterial compounds, these approaches could
be used to identify metabolite analogues able to re-sensitize resis-
tant pathogens to existing antibiotics. As mentioned before, C. vio-
laceum resistance is induced by metabolic shifts, more specifically
by a switch to fermentative metabolism thanks to an increased
NADH/NAD ratio. GSMM studies have allowed to identify 2-
oxoadipate as a compound able to re-sensitize these resistant pop-
ulations, inducing susceptibility to existing antibiotics and death in
C. violaceum [259]. Nevertheless, and despite these advances in the
field, no novel antibiotic based on these approximations is in the
market yet.
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10. Summary and outlook

Before the worldwide COVID pandemic emerged, AR was con-
sidered as the most relevant One Heath, Global Health problem
that might compromise human health and welfare in the next
years [303,304]. Traditionally, AR studies have focused on infected
patients. However, it is now clear that the problem goes outside
hospitals and that AR evolution and spread involves a variety of
ecosystems that, besides humans, include other animals (farm ani-
mals, pets and also wild-animals) and natural, non-clinical, ecosys-
tems [36,200]. Most common methods to analyse the genetic and
molecular bases of AR are gene-centric: the presence of a specific
gene or mutation is sought and, eventually, the association of this
gene with mobile genetic elements is determined. While relevant
for detecting specific mechanisms of resistance, these approaches
are not sufficient to provide a global picture of the elements
involved in the emergence and spread of AR. In this regard, it is rel-
evant to state that AR is a multihierachical process with different
interconnected elements (from genes to global population)
involved and the simultaneous analysis of these processes requires
the implementation of holistic approaches. WGS and other -omic
techniques (transcriptomics, proteomics and metabolomics) have
been implemented in the last years as the most appropriate tools
for the integrative analysis of AR. These tools have already demon-
strated to be valuable in basic studies on AR and in molecular epi-
demiology studies. However, they still present some limitations in
their use as diagnostic tools (see below). Further, several of the
tools require some bioinformatic training by users. This is not nec-
essarily a drawback if the teams include bioinformaticians and
experts in AR, but the fast translation of the results into clinics
requires the development of user-friendly tools, not always
available.

There two areas that still require novel tools and information;
one is the accurate prediction of AR based in WGS data, which is
needed for implementing sequence-based diagnostic approaches.
Mutation-driven resistance is likely an affordable task, although
it still requires a more comprehensive information of all mutations
leading to AR resistance in the different organisms under study.
Indeed, recent studies on experimental evolution in presence of
antibiotics have shown that there are still hidden AR mutations
that should be incorporated into the models [116,305–307]. Com-
prehensive, organism-specific databases as MUBII-TB-DB, devel-
oped for predicting WGS-based M. tuberculosis AR have shown to
be effective for this type of analysis [100]. The situation concerning
acquired ARGs is more complex. Although there exist specific data-
bases on mobile elements as ACLAME [208], INTEGRALL [207], or
mMGE [209], most databases contain information on mutations,
intrinsic and acquired ARGs. This information is fundamental for
manual annotation of the results, but is less amenable for the auto-
matic analysis of ARGs. Hierarchically organized databases as
HMD-ARG [218] may help in solving this problem. However, even
in these cases further refinement in the annotation is needed to
distinguish between phenotypically validated ARGs and predicted
ones. Rankings as those stablished in some genomic databases, as
the one of P. aeruginosa, distinguishing among genes, which func-
tion has been validated in the organism under study, genes that
are orthologs to genes with a validated function in another organ-
ism and genes with a function inferred just by homology [308] can
help to distinguish between functionally validated and predicted
AR, a feature with relevance for risks analysis [5,48].

The other area requiring further development is the binning
between the identified ARGs and the organism carrying them
(commensal or pathogen) when metagenomes are studied. The
use of powerful, automatic analytical tools as PhyloPhlAn 3.0
[309], which uses hundreds of thousands of genomes and tens of
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thousands of metagenomes for genome reconstruction may help in
this endeavour. However, even in this case, the incorporation of
HGT-acquired genes into the genomes is still cumbersome, unless
the genomes containing ARGs are highly represented in the meta-
genome, because they present a different nucleotide composition
and, if present in plasmid a different abundance. Sequence meth-
ods that provide long reads can help to solve this problem, and
the combination of long- and short-reads information for assem-
bling seems to be superior than using independently either
short-reads or long-reads based methodologies, however costs will
be higher too [310]. Hybrid methods making use of information on
abundance and composition are the best option for binning the
generated contigs [311]. However, even in this case, plasmid-
chromosome binning can be cumbersome. The above-mentioned
analysis of DNA methylation patterns that are specific of restric-
tion/modification systems may help in these studies [312].

Once omic-based global information on AR is becoming accessi-
ble, time has come to implement models for its synthesis. The
future perspective in the advancement of knowledge on complex
biological systems will be highly dependent on the progresses in
the integration of throughput analytic methods (-omics) and pow-
erful synthetic tools (as natural multihierarchical computing,
GSMMs, Big Data, machine-learning and metadata management,
or artificial intelligence for systems engineering). In the case of
AR, both detailed and global genomic information should become
increasingly available, feeding integrative models to extract the
predominant trends and to associate them with anthropogenic
interventions. The information will constitute an important step
forward for stablishing rational, ecological, and evolutionary
approaches to tackle this relevant health problem.
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