Skip to main content
. 2021 Jun 3;68:103379. doi: 10.1016/j.ebiom.2021.103379

Table 3.

Gene selection using a machine learning approach.

Gene name Ensembl ID Type of RNA
SNHG32orC6orf48 ENSG00000204387 ncRNA, small nuclear RNA
MT-ND4 ENSG00000198886 protein coding
MT-ND5 ENSG00000198786 protein coding
MT-ND2 ENSG00000198763 protein coding
lnc-IL17RA-36 or AC005301.9 ENSG00000283633 lncRNA
MT-CO1 ENSG00000198804 protein coding
TAOK3 ENSG00000135090 protein coding
REPS1 ENSG00000135597 protein coding
MT-CYB ENSG00000198727 protein coding
TPGS1 ENSG00000141933 protein coding
MMRN1 ENSG00000138722 protein coding
UBC ENSG00000150991 protein coding
MTATP6P1 ENSG00000248527 pseudogene
RP11-385D13.4 ENSG00000266538 lncRNA
REX1BDorC19orf60 ENSG00000006015 protein coding
CCDC85B ENSG00000175602 protein coding
HCG4P12 ENSG00000225864 pseudogene
RNU6-238P ENSG00000200183 pseudogene
AC009303.2 ENSG00000279227 lncRNA

Genes identified by Random Forest to predict leprosy progression amongst household contacts of leprosy patients. In bold genes that were included in the final RNA-Seq signature and tested by reverse transcription quantitative PCR (RT-qPCR). Underlined the genes present in the final RT-qPCR RISK4LEP signature.