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Background: A wide range of bacterial infections occur in coronavirus disease 2019 (COVID-19) patients,
particularly in those with severe coronaviral disease. Some of these are community-acquired co-
infections.
Objective: To review recent data that indicate the occurrence of hospital-onset bacterial infections,
including with antibiotic-resistant isolates, in COVID-19 patients.
Sources: Using PubMed, the literature was searched using terms including: ‘COVID-19’; ‘SARS-CoV-2’;
‘bacterial infection’; ‘healthcare-associated infection’; ‘antibiotic resistance’; ‘antimicrobial resistance’;
‘multi-drug resistance’; ‘Streptococcus’; ‘Staphylococcus’; ‘Pseudomonas’; ‘Escherichia’; ‘Klebsiella’;
‘Enterococcus’; ‘Acinetobacter’; ‘Haemophilus’; ‘MRSA’; ‘VRE’; ‘ESBL’; ‘NDM-CRE’; ‘CR-Ab’; ‘VRSA’; ‘MDR’.
Content: There is a growing number of reports of bacterial infections acquired by patients with severe
COVID-19 after hospital admission. Antibiotic-resistant pathogens found to cause healthcare-associated
infections (HAIs) in COVID-19 patients include methicillin-resistant Staphylococcus aureus, New Delhi
metallo-b-lactamase-producing carbapenem-resistant Enterobacterales, carbapenem-resistant Acineto-
bacter baumannii, extended-spectrum b-lactamase Klebsiella pneumoniae and vancomycin-resistant
enterococci. COVID-19 has impacted bacterial HAIs in a number of ways with an increase in the inci-
dence of New Delhi metallo-b-lactamase-producing carbapenem-resistant Enterobacterales and
carbapenem-resistant A. baumannii reported at some hospital sites compared with before the pandemic.
Recommended guidelines for antimicrobial stewardship in COVID-19 patient treatment are discussed
regarding minimization of empiric broad-spectrum antibiotic use. Other studies have reported a
decrease in methicillin-resistant S. aureus and vancomycin-resistant enterococci cases, which has been
attributed to enhanced infection prevention and control practices introduced to minimize intra-hospital
spread of COVID-19.
Implications: Poorer outcomes have been observed in hospitalized COVID-19 patients with an antibiotic-
resistant infection. Although heightened IPC measures have been accompanied by a reduction in some
HAIs at specific sites, in other situations, COVID-19 has been associated with an increase in bacterial HAI
incidence. Further research is needed to define the costebenefit relationship of maintaining COVID-19-
related infection prevention and control protocols beyond the pandemic to reduce the burden of HAIs. In
addition, the longer-term impact of high usage of certain broad-spectrum antibiotics during the COVID-
19 pandemic requires evaluation. Ronan F. O'Toole, Clin Microbiol Infect 2021;27:1772
© 2021 European Society of Clinical Microbiology and Infectious Diseases. Published by Elsevier Ltd. All

rights reserved.
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Introduction

On 31 December 2019, the WHOWestern Pacific Regional Office
was notified of reports of cases of ‘pneumonia of unknown cause’
fromWuhan, China [1]. The disease, identified as being caused by a
novel strain of coronavirus designated severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2), was named coronavirus
ublished by Elsevier Ltd. All rights reserved.
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disease 2019 (COVID-19). The relatively rapid international spread
and rise in COVID-19 cases prompted WHO to declare the disease a
pandemic on 11 March 2020 [1]. There have been more than 166
million cases recorded and over 3.4 million estimated deaths across
186 countries attributed to COVID-19 by WHO as of 23 May 2021
[2]. Hence, COVID-19 is the largest WHO-recognized pandemic
since the influenza A viral subtype H1N1 ‘Spanish Flu’ in
1918e1920, which was estimated to have killed 20e50 million
people worldwide [3].

Emergence of reports of bacterial infections related to COVID-19

In the early stages of the COVID-19 outbreak and before the
declaration of the pandemic, data on bacterial infections in COVID-
19 patients were limited. Guan and colleagues assessed medical
records of 1099 adult patients across China with laboratory-
confirmed COVID-19 reported between 11 December 2019 and 29
January 2020 [4]. They identified common symptoms of the disease
as being fever and cough [4]. Unfortunately, they noted that ‘many
patients did not undergo sputum bacteriologic or fungal assess-
ment on admission because, in some hospitals, medical resources
were overwhelmed.’ There may also be difficulty in collecting
sputum samples from COVID-19 patients because they are not al-
ways attainable from patients who do not have a productive cough
and furthermore, induction of cough may promote viral spread [5].
Zhou et al., in an analysis of 191 hospitalized adult COVID-19 pa-
tients in Wuhan, found that sepsis was the most frequently
observed complication in both non-survivors and survivors of the
disease [6]. The authors noted that sepsis could have resulted from
viral infection in these patients and hence, specific data confirming
bacterial involvement in COVID-19 were still needed.

With more studies, a relationship between COVID-19 and bac-
terial infection began to appear in severe cases of COVID-19. Among
221 adult COVID-19 patients admitted to the Zhongnan Hospital in
Wuhan, severely affected patients, for example those who required
intensive care unit (ICU) admission and mechanical ventilation
therapy, exhibited a significantly higher rate of bacterial co-
infection compared with patients with non-severe COVID-19 dis-
ease (25.5% versus 1.8%; p < 0.001) [7]. This indicated that bacterial
infectionmay play a lesser role in early non-severe stages of COVID-
19. Indeed, a UK study of 836 patients with SARS-CoV-2 infection
reported a low frequency of bacterial co-infection during early
COVID-19 hospitalization (3.2% at 0e5 days post admission) [8].

Findings have begun to reveal specific bacterial pathogens that
cause infections in COVID-19 patients. In a study of 989 adult pa-
tients admitted to hospital with COVID-19 for >48 hours in Bar-
celona, Spain, 74 bacterial infections were recorded in 72 of the
patients [9]. Bacterial species identified included Streptococcus
pneumoniae (16.2%), Staphylococcus aureus (16.2%), Pseudomonas
aeruginosa (13.5%), Escherichia coli (9.5%), Klebsiella pneumoniae
(8.1%), Enterococcus faecium (5.4%) and Haemophilus influenzae
(2.7%). While Streptococcus pneumoniae and H. influenzae were
associated with community-acquired pneumonia alone, S. aureus
was linked to both community-acquired co-infection (community-
acquired pneumonia) and hospital-associated superinfections
(ventilator-associated pneumonia and hospital-acquired pneu-
monia) [9]. Community- and hospital-acquired urinary tract in-
fections were caused by Escherichia coli, K. pneumoniae and
E. faecium [9]. The authors noted that systematic testing for co-
infections was not performed in their study, such that bacterial
infections may have been missed in some patients.

An analysis by Rawson et al. of investigations fromChina and the
USA, reported that 8% of 806 COVID-19 patients had a bacterial or
fungal co-infection [10]. In 712 hospitalized adult COVID-19 pa-
tients in Valladolid, Spain, 16% were reported as presenting with
bacterial/fungal co-infections or superinfections [11]. Another
study reported that co-infections and secondary infections varied
from as low as 0.6% to as high as 45% of COVID-19 patients [12].

Given the wide range of positivity for co-infection or secondary
infection across different studies, it is clear that larger studies are
needed that are specifically designed to ascertain the levels of
bacterial infection in COVID-19 patients, and that the data obtained
should be stratified with respect to variables including infection
site and bacterial species. A recent PCR-based analysis of 50 419
respiratory samples from nasopharyngeal, oro-pharyngeal and
sputum swabs in the USA reported that S. aureus infected SARS-
CoV-2-positive patients at a significantly higher rate than SARS-
CoV-2-negative individuals (13.17% versus 11.64%, p < 0.05) [13].

Bacterial healthcare-associated infections in COVID-19
patients

The WHO defines a healthcare-associated infection (HAI) as ‘an
infection occurring in a patient during the process of care in a
hospital or other healthcare facility, which was not present or
incubating at the time of admission’ [14]. One of the issues in
relation to COVID-19 is obtaining data that differentiate between
healthcare versus community sources of bacterial infection in
patients.

The leading culprits in causing HAIs globally are the so-called
ESKAPE pathogensdE. faecium, S. aureus, K. pneumoniae, A. bau-
mannii, P. aeruginosa and Enterobacter species [15]. Staphylococcus
aureus is the second most frequent cause of HAIs in the USA,
causing up to 11.8% of all HAIs and 20.7% of surgical-site infections
[16]. Of 92 adult patients admitted to a 40-bed ICU in Argenteuil,
France, for acute respiratory failure due to SARS-CoV-2 pneumonia,
26 (28%) were regarded as being co-infected with a pathogenic
bacterium [17]. Among these, methicillin-sensitive S. aureus made
up 31% of bacteria detected [17]. Thirty patients had been hospi-
talized for >48 hours before ICU admission, indicating that S. aureus
infection of a number of these patients occurred in the healthcare
setting.

Of 2679 patients hospitalized for COVID-19 in New York, USA, 42
(1.57%) had S. aureus bacteraemia [18]. More specifically, 28 of these
patients were categorized as having hospital-onset bacteraemia,
defined as a positive blood S. aureus culture on or after the fourth
day post hospital admission [18]. This provides direct evidence of
the acquisition of healthcare-associated S. aureus infection by
COVID-19 patients. It is of concern as 54.8% and 66.7% of these
patients died by days 14 and 30, respectively, after their first pos-
itive blood culture [18].

Enterococcus faecalis and E. faecium have emerged as further
common nosocomial pathogens in the USA, responsible for up to
7.4% and 3.7% of all HAIs, respectively [16]. The abundance of
Enterococcus sp. was reported to increase significantly in the gut
microbiome of adult COVID-19 patients with a poor prognosis [19].
In 78 critically ill COVID-19 patients who developed a bloodstream
infection following ICU admission in Genoa, Italy, Enterococcus
faecalis was identified as the cause of the bloodstream infection in
18% of patients [20]. Most ICU-related bloodstream infections in 60
hospitalized COVID-19 patients in Milan, Italy, were found to be
caused by an Enterococcus species, in particular, E. faecalis or
E. faecium [21].

COVID-19 and antibiotic-resistant HAIs

Data are emerging on antibiotic-resistant HAIs in COVID-19
patients. Among 4221 adult patients admitted with COVID-19
pneumonia in New York, USA, 472 patients (11.1%) produced a
positive respiratory culture [22]. In these patients, the prevalence of
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methicillin-resistant S. aureus (MRSA) in respiratory cultures rose
from a low of 0.6% on day 3 to 5.7% at day 28 post admission. The
authors deduced that the MRSA in severe COVID-19 cases was
‘more likely to be a hospital-acquired or ventilator-associated
complication than a community-acquired coinfection’ [22]. Staph-
ylococcus aureus has been reported as a frequently isolated organ-
ism from deep respiratory specimens taken from critically ill
COVID-19 patients with ventilator-associated pneumonia [23].

With regard to New Delhi metallo-b-lactamase-producing
carbapenem-resistant Enterobacterales (NDM-CRE), five cases in
COVID-19 patients at the Albert Einstein College in Medicine, New
York, USA were believed to have been hospital acquired [24].
Heightened prevalence of NDM-CRE colonization/infection was
positively associated with length of hospital stay in a study of 331
COVID-19 patients in Pisa, Italy [25]. Only 3 COVID-19 patients were
NDM-CRE-positive at admission; however, 40 COVID-19 patients
acquired NDM-CRE during their hospitalization [25]. COVID-
positive patients with NDM-CRE had a longer duration of hospital
stay compared with NDM-CRE patients during the previous pre-
COVID-19 year (40.2 versus 15.8 days, p 0.0001) [25]. Furthermore,
the rate of NDM-CRE cases increased from 25.3 per 10 000 hospital
days in the previous year to 75.9 during the COVID-19 study period
in the same wards [25].

An outbreak of carbapenem-resistant Acinetobacter baumannii
(CR-Ab) has also been reported in COVID-19 patients at a hospital in
Israel [26]. Superinfections by CR-Ab of hospital ICU patients with
COVID-19 have been reported in Spain, Mexico and Brazil [11,27,28].
Recent work at three hospitals in Bologna, Italy found that the
overall incidence of CR-Ab infections increased from 5.1 per 10 000
ICU-patient-days in JanuaryeApril 2019 to 26.4 per 10 000 ICU-
patient-days in JanuaryeApril 2020 [29]. This suggests that a
worsening of CR-Ab incidence in ICU patients at these hospitals
coincided with the advent of COVID-19. All of the CR-Ab isolates
from one hospital clustered into a single monophyletic group based
on whole-genome sequencing analysis, indicating transmission of
CR-Ab to COVID-19 patients from a common source.

Whole-genome sequencing has also previously been used to
decipher transmission networks of vancomycin-resistant entero-
cocci (VRE) in hospitalized patients [30,31]. The spread of VRE to
COVID-19 patients in a healthcare setting has been demonstrated
through the application of whole-genome sequencing in work
conducted at the University Hospital Münster in Germany [32]. The
researchers detected clonally related isolates of VRE in both ICU
patients and in environmental samples indicating a role for
contaminated surfaces in VRE transmission to COVID-19 patients
[32].

Multi-drug resistance and antimicrobial stewardship

Several bacterial HAI pathogens isolated from COVID-19 pa-
tients display resistance to multiple antibiotic classes. Of 32
critically ill COVID-19 patients admitted to an ICU in Naples, Italy,
half of them developed a multi drug-resistant (MDR) infection
during their ICU stay [33]. Ten patients were infected with a
single MDR agent, but multiple MDR pathogens were identified
in the remaining six patients. A shorter time to onset of MDR
infection was associated with higher mortality in COVID-19 pa-
tients (p 0.042) [33].

Of 1617 hospital discharges in Rome, Italy over a 4-month period
in each of the years 2017 to 2020, a reduction in total MDR bacterial
infectionswas observed during the pandemic comparedwith the pre-
pandemic years (p < 0.05) [34]. However, COVID-19 departments had
a higher incidence of MDR infection than non-COVID-19 departments
over the same period (29.2% versus 19.2%, p < 0.05). In particular, the
incidence of extended-spectrum b-lactamase K. pneumoniae was
significantly higher in COVID-19 departments (p < 0.05) [34]. The
authors speculated that a number of factors may have contributed to
this finding, including COVID-19 departments are commonly
managed by infectious disease specialists who are more likely to
request microbiological testing; intrinsic characteristics of COVID-19
patients including co-morbidities, impaired immunity and repeat
hospitalization; and widespread use of broad-spectrum antibiotics in
COVID-19 patients [34].

The latter potential contributory factor is currently amajor focus
of attention. A study of 36 COVID-19 ICUs across Lombardy, Italy,
reported that 359 of 774 adult COVID-19 pneumonia patients had
microbiologically confirmed HAIs during their ICU stay including
ventilator-associated pneumonia (51%) and bloodstream infection
(34%) [35]. The authors also observed that a high proportion of their
patients (68%; 524/774), were already receiving a broad-spectrum
antibiotic before ICU admission [35].

High empiric use of broad-spectrum antibiotics observed for
COVID-19 patients is heightening concern that antibiotic overuse
during the COVID-19 pandemic will exacerbate the problem of
antimicrobial resistance in microorganisms of clinical significance
in the future [36e38]. The review by Rawson et al. found that 72% of
COVID-19 patients had received antibacterial therapy and that
recorded agents tended to be broad-spectrum antibiotics pre-
scribed empirically in both critical and non-critical settings [10]. A
meta-analysis by Langford et al. of 3338 hospitalized and critical
COVID-19 patients across 24 studies reported that a majority of
COVID-19 patients received antibiotics (71.9%, 95% CI 56.1%ee

87.7%) [39]. This high level of antibiotic usage occurred despite the
fact that the bacterial co-infection and secondary infection rates in
these COVID-19 patients were much lowerd3.5% (95% CI 0.4%e
6.7%) and 14.3% (95% CI 9.6%e18.9%) of patients, respectively. They
concluded that ‘there is currently insufficient evidence to support
widespread empirical use of antibiotics in most hospitalized pa-
tients’. The overall rate of bacterial infectionwas higher in critically
ill COVID-19 patients (8.1%, 95% CI 2.3%e13.8%) than in hospitalized
COVID-19 patients (5.9%, 95% CI 3.8%e8.0%). A disparity in bacterial
infection levels has also been reported in another meta-analysis
study whereby the overall proportion of COVID-19 patients in ICU
who had laboratory-confirmed bacterial co-infection was 14% (95%
CI 5%e26%, n ¼ 204) compared with 4% of COVID-19 patients from
mixed hospitalizations (95% CI 1%e9%, n ¼ 1979) [40].

For patients with suspected bacterial infections, Langford et al.
have recommended that antibiotic selection be based on local
epidemiology and patient factors, with early discontinuation when
there is no evidence of bacterial infection [39]. Elements of this
antimicrobial stewardship approach are exhibited in current WHO
guidelines for the clinical management of COVID-19, which advise
against the use of antibiotic therapy or prophylaxis in patients with
suspected or confirmed mild COVID-19, or in patients with sus-
pected or confirmed moderate COVID-19 unless there is clinical
suspicion of a bacterial infection [41]. Furthermore, WHO recom-
mends that ‘Antimicrobial therapy should be assessed daily for de-
escalation’ [41]. Similarly, the COVID-19 Rapid Guideline for man-
aging COVID-19 from the National Institute for Health and Care
Excellence in the UK, recommends against the use of antibiotics ‘for
preventing or treating COVID-19’ and that antibiotics should only
be used ‘if there is strong clinical suspicion of additional bacterial
infection’ [42].

COVID-19 and infection prevention and control

In terms of infection prevention and control (IPC), a variety of
measures were introduced during the pandemic to hinder noso-
comial spread of COVID-19 between patients and healthcare
workers (HCWs). This was necessitated by reports such as that
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from University College London Hospitals NHS Trust that 66 of its
435 (15%) COVID-19 inpatient cases between 2 March and 12 April
2020 were definitely or probably hospital-acquired [43]. Rickman
et al. identified patient-to-patient transmission as being involved
in 55% of hospital-acquired COVID-19 cases, and shared-use fa-
cilities and equipment, or staff movement as potentially contrib-
uting to another 14% of cases [43]. Measures used to minimize
nosocomial outbreaks of COVID-19 include expansion of testing to
asymptomatic patients, residents and HCWs; physical distancing;
and visitor restrictions [44]. In addition, there is increased use of
personal protective equipment, for example surgical masks,
gloves, face shields, fluid-resistant aprons and isolation gowns, as
part of contact and droplet precautions by HCWs caring for pa-
tients with suspected or confirmed COVID-19 as currently rec-
ommended by national governments and WHO [45e48]. New
research is also emerging on the type of gowns that best promote
hand washing among HCWs [49].

As well as reducing COVID-19 spread in healthcare settings,
there is interest in whether augmentation of hospital IPC measures
during the COVID-19 pandemic has affected the prevalence of
bacterial HAIs. A study from Los Angeles, USA, reported a decline in
the MDR organism rate per 1000 patients between Q1 and Q2 2020
of 41% for MRSA, 80% for VRE and 20% for extended-spectrum b-
lactamase [50]. The authors attributed the decrease in MDR or-
ganisms over this period to IPC measures adopted in response to
COVID-19, in particular, increased usage of alcohol sanitizer and
hand soap among HCWs [50].

Another study examined the incidence of HAIs and MDR or-
ganisms at a 1700-bed medical centre in Taiwan between January
and May 2020, encompassing the COVID-19 outbreak period, and
compared with the same time-frames from 2018 and 2019 [50].
Measurable increases in 75% alcohol and surgical mask use during
the COVID-19 pandemic coincided with a significantly lower level
of VRE incidence at the centre in 2020 relative to 2018 and 2019
[50]. The authors concluded that there was ‘a collateral benefit of
the COVID-19 prevention measures on the incidence density of
MDRO’ at their hospital [50].

The Singapore General Hospital campus introduced a compre-
hensive multimodal IPC bundle that included: improved segrega-
tion of patients with respiratory symptoms into respiratory
surveillance wards; upgrading of mandatory personal protective
equipment for HCWs in respiratory surveillance wards from sur-
gical masks to N95 respirators, face-shields, gowns and gloves;
housing of confirmed COVID-19 cases in dedicated airborne-
infection-isolation-rooms; cleaning with 1:1000 hypochlorite-
based disinfectant three times per day; and post-discharge UV-C
disinfection of areas that housed COVID-19 patients [51]. As well as
coinciding with a reduction in healthcare-associated respiratory
viral infections at the hospital in August 2020 compared with
January 2018, the IPC measures were accompanied by a decrease in
healthcare facility onset MRSA infection [51].

It should be noted that increasing the number and stringency of
IPC measures is not possible in all situations. In settings where
hospitals have reached inpatient capacity, segregation of all pa-
tients with signs of COVID-19 disease into specialized wards may
not be possible. There is also burnout risk among HCWs associated
with a patient-to-nurse ratio above 2:1, higher workloads, deaths of
COVID-19 patients and a shortage of personal protective equipment
[52]. Such effects of intense COVID-19 caseloads on hospitals could
potentially impact IPC practices. Supply shortages of personal
protective equipment have been previously reported during the
pandemic as well as the role they could play in nosocomial infec-
tion [53e55]. Therefore, while heightened IPC protocols may assist
in further control of HAIs, an ongoing challenge will be balancing
these measures with other immediate clinical demands.
Conclusions and future directions

It is becoming apparent from early studies that COVID-19 pa-
tients are at a low but significant risk of acquiring an HAI following
admission. This risk increases markedly with severity of COVID-19
disease and duration of hospitalization. Many of the bacterial HAIs
detected in COVID-19 patients exhibit antibiotic non-susceptibility
including multidrug resistance. Studies comparing pre- and mid-
pandemic periods have reported a higher incidence of some HAIs
at specific hospitals since the advent of COVID-19. It has been
proposed that underlying factors may include the high empiric use
of broad-spectrum antibiotics documented in COVID-19 patients.
Conversely, an intensification of IPC measures to prevent nosoco-
mial transmission of COVID-19 has been linked to reduced inci-
dence of some bacterial HAIs at certain sites. Further research is
required to validate these findings and provide a costebenefit ev-
idence base for maintenance of intensified IPC measures beyond
the COVID-19 pandemic for augmented control of HAIs. Although
beyond the scope of this review, there is also evidence for the
occurrence of viral and fungal co-infections in COVID-19 patients
[56e60]. Ultimately, it is hoped that valuable lessons can be drawn
from the COVID-19 pandemic in terms of improving infection
control and antimicrobial stewardship practices in health care to
lower the burden of HAIs and antibiotic resistance in the future.
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