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Abstract 

 

Artificial intelligence (AI) methods for the automatic detection and quantification of COVID-19 
lesions in chest computed tomography (CT) might play an important role in the monitoring and 
management of the disease. We organized an international challenge and competition for the 
development and comparison of AI algorithms for this task, which we supported with public data 
and state-of-the-art benchmark methods. Board Certified Radiologists annotated 295 public 
images from two sources (A and B) for algorithms training (n=199, source A), validation (n=50, 
source A) and testing (n=23, source A; n=23, source B). There were 1,096 registered teams of 
which 225 and 98 completed the validation and testing phases, respectively. The challenge 
showed that AI models could be rapidly designed by diverse teams with the potential to measure 
disease or facilitate timely and patient-specific interventions. This paper provides an overview and 
the major outcomes of the COVID-19 Lung CT Lesion Segmentation Challenge - 2020. 
 
 

 



 

Introduction 

 

The SARS-CoV-2 pandemic has had a devastating impact on the global healthcare systems. As 
of May 28, 2021, more than 169 million people have been infected in the world with over 3.5 
million deaths 1. COVID-19  is known to affect nearly every organ system, including the lungs, 
brain, kidneys, liver, gastrointestinal tract, and cardiovascular system. The manifestations of the 
disease in the lung may be early indicators of future problems. These manifestations have been 
intensively reported in the adult populations and occasionally in pediatric subjects 2–6. Since the 
early days of the pandemic, lung imaging has been critical for both the early identification and 
management of individuals affected by COVID-19 7. Imaging also provides invaluable support for 
the evaluation of patients with long COVID and after the acute sequelae of the diseases. 
Repeated waves of infection and changes in the disease course require data, including imaging, 
classification, quantification, and response tools, as well as standardized reliable interpretation 
as the global society struggles to provide widely available vaccines and faces evolving challenges 
such as new mutations of the virus. 
 
The most common lung imaging modalities utilized for the evaluation of SARS-CoV-2 infections 
are chest radiographs (CXR) and chest computerized tomography (CT) with ultrasound (US) 
being used more sparingly. Chest CT is the reference modality that most accurately demonstrates 
the acute lung manifestations of COVID-19 8,9. As observed in CT, the most common findings in 
the chest of the affected individuals were ground-glass opacities (GGO) and pneumonic 
consolidations. Other manifestations include interstitial abnormalities, crazy paving pattern, halo 
signs, pleural abnormalities, bronchiectasis, bronchovascular bundle thickening, air 
bronchograms, lymphadenopathy, and pleural/pericardial effusions. The sensitivity of chest CT to 
detect these abnormalities in subjects with confirmed COVID-19 was widely variable and 
somewhat subjective, reported in the range of 44–97% (median 69%) 10. 
 
Beside its role in the identification of patterns of SARS-CoV-2 infections, lung CT is also important 
in the determination of the severity of COVID-19 6,8,9,11,12. The presence, location and extension 
of the lung abnormalities are critical factors for the clinical management of patients to potentially 
facilitate decisions towards more timely and personalized medical interventions. Quantification of 
lesions may further provide the tracking of disease progression and response to therapeutic 
countermeasures. Thus, improving COVID-19 treatment starts with a clearer understanding of the 
patient’s disease state, which must include accurate identification, delineation and quantification 
of lung lesions  and disease phenotypes and patterns. 
 
A prior lack of global data collaboration limited clinicians and scientists in their ability to quickly 
and effectively understand COVID-19 disease, its severity and outcomes. As access to data has 
improved, quality annotations have remained a limiting factor in the development of useful  
artificial intelligence (AI) models derived from machine learning and deep learning 13. Thus, a 
multitude of AI approaches have been developed, published and indicated great potential for 
clinical support, but they were often overfit, being trained using proprietary data or from a single 
site 14–19. Alternatively, federated approaches allow algorithms to access data from multiple sites 
without the need of sharing raw data, but through this paradigm access is granted to a single 
algorithm and consortium, with sharing of model weights instead of raw data 20,21. In particular, 
deep neural networks were used for the identification and segmentation of abnormal lung regions 
affected by SARS-CoV-2 infection. These can be grouped into two main classes: classification 
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models that extract the affected region inside the lung area by comparison with data from healthy 
subjects 22–25, and segmentation models that directly extract the abnormal lung areas according 
to patterns in the image and (typically using fully convolutional networks) 16,18,26–28.  
 
Without access to public data and an adequate platform to evaluate and compare their 
performance, AI approaches risk being overtrained, irreproducible, and ultimately clinically not 
useful. Thus, public efforts are needed to accelerate the understanding of the role of AI towards 
informing manifestations and qualifying impact of health crises such as the COVID-19 pandemic.  

The COVID-19 Lung CT Lesion Segmentation Challenge 2020 (COVID-19-20) created the public 
platform to evaluate emerging AI methods for the segmentation and quantification of lung lesions 
caused by SARS-CoV-2 infection from CT images. This effort required a multi-disciplinary team 
science partnership among global communities in a broad variety of often disparate fields, 
including radiology, computer science, data science and image processing. The goal was to 
rapidly team up to combine multi-disciplinary expertise towards the development of tools to 
simultaneously both define and address unmet clinical needs created by the pandemic. The 
COVID-19-20 platform provided access to multi-institutional, multinational images originating from 
patients of different ages and gender, and with variable disease severity. The challenge team 
provided the ability to quickly label a public dataset, allowing radiologists to rapidly add precise 
annotations. Open access was offered to the annotated CTs of subjects with PCR-confirmed 
COVID-19, and to a baseline deep learning pipeline based on MONAI 29 that could serve as a 
starting point for further algorithmic improvements. The challenge was hosted on a widely used 
competition website (covid-segmentation.grand-challenge.org) for easy and secure data access 
control. This paper presents an overview of this challenge and competition, including the data 
resources and the top ten AI algorithms identified from a highly competitive field of participants 
who tested the data in December 2020. 
 
Submissions 

 

The challenge was launched on November 2, 2020. The training and validation data were 
released and 1,096 teams registered before the training phase was closed on December 8, 2020. 
The 225 teams that completed the validation phase were given access to the test data. Ninety-
eight teams from 29 countries on six continents completed the test phase. Figure 1 shows the 
countries of origin of the 98 teams. Test results were released on December 18, 2020, and the 
statistical ranking of the top ten teams (see Results) was unveiled during a virtual mini symposium 
on January 11, 2021 30. Figure 2 shows the demographic information for the team leaders, i.e., 
age group, sex, highest educational degree, student status and job category, and algorithmic 
characteristics for the 98 submissions that completed the training, validation and test phases. We 
requested participants to disclose whether they used external data for training their algorithms or 
if they used a general-purpose pre-trained network for initialization (e.g., a network pre-trained for 
another lung disease). The use of public networks pre-trained for the segmentation of COVID-19 
lesions was not allowed (e.g., Clara_train_covid19_ct_lesion_seg 31).  
 
Participants uploaded the results on the validation and test data to the hosting website for 
evaluation. Only (semi-)automated methods were allowed. Submission of manual annotations 
was prohibited. For validation, the number of submissions from each user was limited to once-a-
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day for the purpose of refining their algorithms based on the live performance indicators on the 
challenge validation leaderboard 32. Submission of results on the test data was collected without 
showing the leaderboard and the last submission was used for final ranking. The test phase was 
open only to participants who had already submitted their results on the validation set. The 
leaderboard and final ranking are public and hosted on the challenge website 33. 

 

 

Figure 1 | The countries of origin of the 98 teams that completed the training, validation and test 
phases of the challenge. 
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Figure 2 | Demographic information of the leaders of the 98 teams that completed the training, 
validation and test phases of the challenge. The top row shows the age group (left), student status 
(middle) and sex (right) of the participant. The middle row shows the highest degree (left) and job 
category (right). Bottom row shows the algorithm characteristics for the 98 submissions that 
completed the training, validation and test phases of the challenge. We report if algorithms were 
fully-automated (left), used external data for training (middle) or used a general pre-trained 
network for initialization (right). 
 

 

 

 

 

 

 

 

 

 

 

 

 



 

Results 

 
Data sources 

 

This challenge utilized data from two public resources on chest CT images, namely the “CT 
Images in COVID-19” 34,35 (Dataset 1) and “COVID-19-AR”36 (Dataset 2) available on The Cancer 
Imaging Archive (TCIA) 36. CT images were acquired without intravenous contrast enhancement 
from patients with positive Reverse Transcription Polymerase Chain Reaction (RT-PCR) for 
SARS-CoV-2. Dataset 1 originated from China, while dataset 2 was acquired from the US 
population. In total, we used 295 images, including 272 images from Dataset 1 and 23 images 
from Dataset 2. Of these images, 199 and 50 from Dataset 1 were used for training and validation, 
respectively. We therefore refer to Dataset 1 as the “seen” data source that participants used to 
train and validate their algorithms during the first phase of the challenge. The test set contained 
23 images each from Datasets 1 and 2 (46 images in total). Hence, Dataset 2 was only used in 
the testing phase, and we refer to it as the “unseen” data source. 
 
Descriptive statistics, such as x-, y-, and z-resolutions and voxel volume in both data sources are 
shown in Figure 3. We also show the differences in COVID-19 lesion volumes annotated between 
the two data sources. 
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b 

 

c  

Figure 3 | Data variability between “seen” and “unseen” sources; a) Illustration of the differences 
in the image resolution and voxel volume grouped by training, validation, and test sets. b) 
Differences in COVID-19 lesion volumes across the image data sources. c) Normalized 
histograms showing the CT intensity distributions of the “seen” and “unseen” data sources in 
Hounsfield units (HU). Note, -1000 HU corresponds to air, and 750 to cancellous bone 37. 
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Annotation protocol 
 
All images were automatically segmented by a previously trained model for COVID lesion 
segmentation20 that is publicly available 38. All lung lesions related to COVID-19 were included. 
These segmentations were subsequently used as a starting point for board certified radiologists 
(RS, JZ, JM) who manually adjudicated and corrected them. The annotation tool used was 
ITKSnap39,40 showing multiple reformatted views of the CT scans, and allowing manipulations and 
corrections of the initial automated segmentation results in three dimensions.  
 
Evaluation metrics 

 

We used the three evaluation metrics described below. These metrics were both used to evaluate 
the performance of different algorithms, and to establish the interobserver variability. 

1. Dice Coefficient (Dice). A common evaluation metric of segmentation accuracy defined as 
the overlap between the volume of the ground truth segmentation 𝑆𝑔𝑡 and the predicted 

segmentation volume 𝑆𝑝𝑟𝑒𝑑; 𝐷𝑖𝑐𝑒 =  2 × (𝑆𝑔𝑡 ∩ 𝑆𝑝𝑟𝑒𝑑)𝑆𝑔𝑡 ∪  𝑆𝑝𝑟𝑒𝑑 . 

2. Normalized Surface Dice (NSD). Similarly to Dice, it provides the normalized measure of 
agreement between the surface of the prediction and the surface of the ground truth41. We 
chose a threshold of 1mm to define an “acceptable” derivation between the ground truth 
surface and the predicted surface. 

3. Normalized Absolute Volume Error (NAVE). The volume of COVID-19 lesion burden inside 
the patient’s lung can play an important role for clinical assessment 42. Therefore, a 
measure was chosen that assesses the agreement between the predicted and ground 

truth lesion volumes, defined as 𝑉𝑒𝑟𝑟𝑜𝑟 =  |𝑉𝑝𝑟𝑒𝑑  − 𝑉𝑔𝑡|𝑉𝑔𝑡 . Note, we used the negative of this 

value for ranking purposes as higher values indicate better performance in our ranking 
approach. 

 

Interobserver performance 

 
As a benchmark for comparing the AI algorithms with human performance on the lesion 
segmentation task, we measured the human interobserver agreement. We compared the 
annotations utilized in Yang et al.20  from 245 of the 272 cases from Dataset 1 used in the 
challenge with the ones obtained by our radiologists. The interobserver agreement showed mean 
± standard deviation (median) of Dice, NSD, and NAVE of 0.702 ± 0.172 (0.756), 0.538 ± 0.147 
(0.563), and 0.601 ± 1.969 (0.180), respectively. 
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Statistical ranking method 
 

Recent work on ranking analysis for biomedical imaging challenges has shown that ranking 
results can vary significantly depending on the chosen type of metric and ranking scheme 43. Most 
biomedical challenges use approaches such as “aggregate-then-rank” or “rank-then-aggregate”, 
which do not account for statistical differences between algorithms 43,44. These findings motivated 
the development of a challenge ranking toolkit 44,45 that we employed for our evaluation. This 
toolkit utilizes statistical hypothesis testing applied to each possible pair of algorithms. This allows 
us to better assess the differences between the evaluated metrics.  
 
Following the notation of Wiesenfarth et al 44, our challenge contained 𝒎 =  6 tasks (Dice, NSD, 
NAVE on each “seen” and “unseen” test data). The test cases for each task are denoted as 𝑛𝑘 , 𝑘 =1, . . . , 𝑚𝑡𝑒𝑠𝑡 . In our case, 𝑚𝑡𝑒𝑠𝑡  = 23for each task. A bootstrap approach is used to evaluate the 
ranking stability of the different algorithms. This means that ranking is performed repeatable on 𝑏 = 1,000bootstrap samples, see Figure 4. The statistical test employed to determine the 
consensus ranking is the one-sided Wilcoxon signed rank test with a significance level of 𝛼 = 5%, adjusted for multiple testing according to Holm 44.  
 
Each of the m tasks contributed equality to the final consensus using the Euclidean distance 
between averaged ranks across tasks. We ranked the 98 submitted algorithms using the 
proposed statistical consensus ranking algorithm to determine the top-10 methods, including the 
challenge winning algorithm. 
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Figure 4 | Blob plot visualization of the ranking variability via bootstrapping. An algorithm's ranking 
stability is shown across the different tasks, illustrating the ranking uncertainty of the algorithm in 
each task. For more details see 44. 
 
Summary of top-10 algorithms 

 
We show the final ranking of the top-10 performing algorithms in Table 1. All top-10 algorithms 
were fully-automated methods, and all were based on some variation of the U-Net46,47, a fully 
convolutional network48 for image segmentation based on the popular encoder-decoder design 
with skip connections 48,49. U-Net has dominated the field of biomedical image segmentation in 
recent years 50 and most challenge participants opted to use one of its implementations. In 
particular the nnU-Net open-source framework 51,52, which has shown success in multiple 
biomedical image segmentation challenges, was a popular choice for challenge participants. The 
U-Net architectures included 2D, 3D, high and low resolution configurations. One team used the 
open-source platform MONAI 53 (#68). The majority of algorithms used challenge data only with 
one method including additional unlabeled data from the public TCIA source (#53), which was 
done with pseudo labels in a semi-supervised approach. The majority directly targeted the 
segmentation of COVID-19 lesions, while one participant (#31) targeted multiple outputs, 
including body and lung masks. 
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A popular loss function for biomedical image segmentation is the Dice loss 54. In this challenge, 
most finalists utilized it together with additional cross entropy, top-k 55, and focal loss 56. An 
important strategy for winning image segmentation is model ensembling, the fusion of predictions 
from several independently trained models. Here, most methods used 5-fold cross validation and 
model ensemble to arrive at a consensus prediction. 
 
A full description of the top-10 finalists’ algorithms by their authors is given in Methods. 
 
Table 1 | Top-10 finalists after statistical ranking. “Value” represents the average rank the 
algorithm achieved across all tasks. We also show if methods were automated, used external 
data for training, the input data dimensions used in the algorithms, and the network architecture. 

Rank Value ID # 

Fully 

Automated 

Extra 

Data Pretrained Ensemble 

Data 

Dimension 

Network 

Architecture Authors Country 

1 2.6 53 ✓ ✓ ✗ ✗ 3D nnU-Net S. Hu et al. China 

2 6.0 38 ✓ ✗ ✗ ✓ 3D nnU-Net F. Isensee et al. Germany 

3 7.7 65 ✓ ✗ ✗ ✓ 2D/3D nnU-Net C. Tang USA 

4 8.4 58 ✓ ✗ ✗ ✓ 3D nnU-Net Q. Yu et al. China 

5 8.5 31 ✓ ✗ ✗ ✓ 3D nnU-Net J. Sölter et al. Luxembourg 

6 9.2 50 ✓ ✗ ✗ ✓ 2D/3D nnU-Net 
T. Zheng & L. 
Zhang Japan 

6 9.2 68 ✓ ✗ ✓ ✗ 2D/3D 

VGG16 
Hybrid, 
MONAI V. Liauchuk et al. Belarus 

8 9.4 95 ✓ ✗ ✗ ✓ 3D nnU-Net Z. Zhou et al. China 

9 10.6 29 ✓ ✗ ✗ ✗ 3D nnU-Net J. Moltz et al. Germany 

10 11.3 15 ✓ ✗ ✗ ✗ 3D U-Net B. Oliveira et al. Portugal 
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Ranking results 

 

Table 2 shows the mean and standard deviation of the Dice coefficients for the top-10 performing 
algorithms on test cases from the “seen” and “unseen” data sources. Top algorithms performed 
relatively similar to each other, but all showed a marked decrease when being evaluated on the 
“unseen” data (Table 2). 

 

Table 2 | Dice coefficients of the top-10 algorithms on (left) all test data, (middle) “seen” data 
(Dataset 1), and (right) “unseen” test data (Dataset 2). 

All test cases:  "Seen" test cases:  "Unseen" test cases: 

ID # mean std median  ID # mean std median  ID # mean std median 

53 0.666 0.236 0.754  38 0.740 0.195 0.797  53 0.598 0.264 0.700 

58 0.658 0.242 0.741  53 0.734 0.182 0.782  95 0.593 0.258 0.677 

95 0.658 0.237 0.729  31 0.729 0.190 0.769  58 0.588 0.263 0.724 

38 0.654 0.268 0.763  65 0.729 0.186 0.778  15 0.581 0.264 0.670 

15 0.649 0.242 0.716  58 0.728 0.195 0.789  68 0.570 0.276 0.703 

68 0.646 0.251 0.753  95 0.723 0.193 0.783  38 0.569 0.302 0.729 

31 0.645 0.265 0.753  68 0.723 0.196 0.779  50 0.562 0.279 0.692 

65 0.644 0.258 0.754  29 0.722 0.187 0.711  31 0.561 0.300 0.685 

50 0.639 0.252 0.733  15 0.717 0.197 0.751  65 0.559 0.291 0.686 

29 0.634 0.259 0.705  50 0.716 0.194 0.773  29 0.545 0.289 0.647 

 
Figure 5 shows boxplots of the top-10 performing algorithms for each of the 𝑚 = 6tasks. In 
general, methods present more outliers on the “unseen” test dataset. Figure 6 shows a typical 
example from the “seen” test data source. The top-performing algorithms (#53 and #38) achieved 
a mean Dice coefficient >0.734 Dice on the “seen” dataset. Figure 6 shows that most of the 
COVID-19 related lesions were well segmented by the automated algorithms. In contrast, Figure 7 
shows a challenging case from the “unseen” test data source. Both top-performing algorithms 
(#53 and #38) generated a false-positive segmentation region at a normal lung vessel while 
missing the real lesion. Their performance dropped to a Dice coefficient <0.598 on the “unseen” 
dataset. To illustrate the general performance of the top-10 algorithms on the individual test 
cases, Figure 8 shows podium plots 57 with the performance of different algorithms on the same 
test case connected by a line. 
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Figure 5 | Top-10 algorithms performance measured for the 𝑚 = 6 tasks used in the challenge, 
namely the Dice coefficient (top row), Normalized Surface Dice (middle row), and Normalized 
Absolute Volume Error (bottom row) on the “seen” (a, c, e) and “unseen” test datasets (b, d, f), 
respectively. Algorithms are ranked based on their performance from left to right. 



 

 

a 

 

b 

 

Figure 6 | Example test case from the “seen” data data source  (Dataset 1). The performance of 
the top algorithms #53 and #38 is shown in green and blue, respectively. Ground truth annotations 
are shown in red (a: axial view, b: coronal view). 
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Figure 7 | Example test case from the “unseen” data source. (a: axial view, b: coronal view) Top 
algorithms #53 and #38, shown in green and blue, respectively, both predict a false-positive lesion 
at the locations of a normal lung vessel. At the same time they missed the real lesion in red (c: 
axial view, d: coronal view).  
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Figure 8 | Podium plots for “seen” (a) and “unseen” (b) test data. The participating algorithms are 
color-coded. Each colored dot shows the Dice coefficient achieved by the respective algorithm. 
The same test cases are connected by a line. The lower part of the charts displays the relative 
frequency for a given algorithm to achieve a podium place, i.e. rank achieved by a given algorithm. 
 

 

 



 

Discussion 
 

Performance of algorithms 

 

Automatic AI algorithms showed great potential to accurately segment the lung COVID-19 lesions 
from CT images. In the validation phase, 87 out of 225 methods achieved superior Dice 
coefficients than the interobserver criteria (0.702), with the top team achieving a Dice coefficient 
of 0.771 (~9.8% improvement). However, their level of robustness is inferior to the radiologist’s 
performance: the top team gets a Dice coefficient of 0.666 on the test data 58 (~5.1% decrease). 
This discrepancy could be due to various reasons. One reason could be the domain shift as half 
of the test data is from an “unseen” source that has not been used in the training or validation 
phases. Another reason could be the limited number of allowed submissions for the testing phase, 
which mitigates the possibility for overfitting to the test data. Moreover, the limited number of 
training data could also affect algorithm performance. 
  
The evaluation of the analysis of top-10 algorithms revealed that the ensemble of segmentation 
from various individual automated methods plays an important role compared to other factors 
such as the complexity of the network architecture, the learning rate, losses, etc. Most 10 top 
teams used model ensembles to reduce outliers and improved their performance by collecting 
the consensus segmentation from separately trained models. This observation also shows that 
the training pipeline can potentially be further improved based on novel concepts like AutoML 59,60 
or neural architectures search 61–63 algorithms.  
 
Use of external training data 

 

Only one of the top 10 teams, which was the winning team of the challenge, used external data 
in their final solution. Using this semi-supervised training approach, they obtained an improvement 
of 4.27% and 0.86% Dice coefficient on the training and validation data, respectively. Another 
team did similar work in a student-teacher manner and saw improvement in the validation score. 
However, they submitted their final results without using the external data after noticing partial 
overlap between the chosen unlabelled external dataset and the provided training data. Both 
teams demonstrate that using external data, even unlabelled, could improve the segmentation 
performance. While this finding clearly calls for larger training datasets, it also shows the great 
potential of semi-supervised methods to achieve more robust solutions, especially for the 
healthcare domain where the annotation cost is much higher than in other fields 64. 
 
U-Net dominance 

 

All top-10 teams used a 2D/3D U-Net variant with at most minor modifications. While this seems 
to conflict with hundreds of yearly publications creating new network architectures, it also shows 
that most existing deep learning algorithms lack the robustness offered by model ensembles to 
handle large data variations (e.g., resolution, contrast, etc.) when training data are limited. nnU-
Net 51 was adopted by 5 out of the 10 teams to build an end-to-end solution while another team 
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used MONAI 65. Unsurprisingly, these findings show that the majority of participants employed 
well-validated, open-source resources.  
 
Data variability and generalizability gap 

 

The challenge was designed to use “seen” and “unseen” data sources and thus evaluate the 
generalizability of AI algorithms in front of variable clinical protocols. Our data sources varied in 
provenience (China and US), scanner manufacturers (various, as typical in routine clinical 
practice) and imaging protocols (image resolution). Figure 3 illustrates that the volumes of the 
annotated COVID lesions have similar distributions on the two data sources. However, there are 
substantial differences in the image resolution used for CT reconstruction in the data. These 
differences in voxel resolution, together with variability in scanner manufacturers and imaging 
protocols, were likely the main contributors to the generalization gap seen in the performance of 
algorithms on the “unseen” test cases. Additional factors were related to the variability of 
manifestations of the disease in the lungs. For examples, in the challenging case from the 
“unseen” test data source shows in Figure 7, the top-performing algorithms generated false-
positive predictions at a normal lung vessel while missing to segment the real lesion. Domain 
shifts like the ones observed in the data used in this challenge are still proving to be challenging 
for current AI models. Disease phase variability may also have broadened the features of what 
defines a standard or expected set of features. Early disease may not look like later disease 
cycles on CT, which may have also increased model noise.  
 
Potential for clinical use 

 

Segmentation and classification models have been postulated to impact diagnosis in outbreak 
settings with delayed or unavailable PCR, however the point of care classification of COVID-19 
versus other pneumonia such as influenzae, could prove of some value during flu season in 
specific outbreak settings as an epidemiologic tool or as a red flag for patient isolation at the 
scanner, by early identification, thus expediting or prioritizing interpretation using more 
conventional radiologist review and verification. AI models have also been proposed to assist in 
triage or selection of resource-limited therapeutics or critical care, prognostication or prediction of 
outcomes, or as one data element of a multi-modal model combining clinical, laboratory and 
imaging data. Standardized response criteria for clinical trials can provide a level “playing field”, 
thus uniformly defining effects of medical and other countermeasures, or specific scenarios for 
patient-specific therapies. Specific phenotypes may respond to certain therapies, for example. 
Imaging AI could thus play a role in determining the optimal disease phase for steroid 
administration or monoclonal antibodies, or even characterize the presence of different disease 
manifestations according to variant or underlying comorbidity, although many of these clinical or 
research utilities are quite speculative. AI models in COVID-19 have been justifiably criticized for 
a lack of generalize-ability, lack of clinical testing and validation, impracticality of model design, 
“me-too” models and studies, and easy replaceability of functionality with standard clinical tools. 
Potential clinical impact has yet to match the excitement from the data science and computational 
community nor realize the promise at the outset of the pandemic. Federated learning and open-
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source tools and modeling may help address this, especially for specific research questions for 
clinical trials or radiologist-sparse settings.  
 
Limitations 

 

The challenge organizers aimed to create a fair and robust evaluation platform for (semi-
)automatic AI algorithms. This was a timely effort completed with limited resources, thus several 
factors could potentially be improved in retrospect. For example, 295 annotated CT images from 
two different data sources were used in the challenge, which may be suboptimal data quantity for 
training deep learning algorithms, as performance metrics improve with size of datasets. 
However, the challenge set a benchmark for the development and evaluation of AI methods to 
segment lung lesions in COVID-19, the first of its kind to our knowledge, which was reflected by 
the large number of participants. It is advisable to add more data in future challenges, even if the 
data are non-annotated as the results of this challenge indicated. 
 
Another limitation may be the data annotation. Each case was annotated by one radiologist who 
rectified the prediction from a publicly available COVID lesion segmentation AI model 66. Although 
these initial predictions may be considered as a suggestion from an expert, which is a typical 
workflow for many AI data annotation solutions, a second verification from another human expert 
would likely further improve the annotation quality. 
 
Finally, the statistical consensus ranking algorithm over multiple tasks, although it overcomes the 
limitations of ranking based on single evaluation metrics, is computed only at the image level. The 
ranking does not provide a measurement of the algorithm on the lesion level, thus without 
consideration of each lesion’s clinical relevance. Such information, which was nor available in our 
data, could be important for clinical diagnosis and tracking of disease progress. It could also 
provide a more granular interpretation of the strengths and weaknesses of each algorithm, and a 
guidance on how to improve them. 
 
 
Conclusion 

 
The COVID-19 Lung CT Lesion Segmentation Challenge - 2020 provided the platform to develop 
and evaluate AI algorithms for the detection and quantification of lung lesions from CT images. AI 
models help in the visualization and measurement of COVID specific lesions in the lungs of 
infected patients, potentially facilitating more timely and patient-specific medical interventions. 
Over one thousand teams registered to participate in the challenge participating in this challenge 
reflecting the engagement of the global scientific community to combat COVID-19. The AI models 
could be rapidly trained and showed good performance that was comparable to expert clinicians. 
However, robustness to “unseen” data decreased in the testing phase, indicating that larger and 
more diverse data may be beneficial for training. A more granular interpretation of the strengths 
and weaknesses of each algorithm might highlight pathways on the road towards a future where 
AI and deep learning might help standardize, quantify, assess disease response, select patients 
or therapies, or predict outcomes. But first steps first, as the scientific community builds multi-

https://paperpile.com/c/QmXGFs/rGLy


 

disciplinary teams to develop new tools and methodology to walk before we run. As more AI 
applications are being introduced in the biomedical space, it is essential to adequately validate 
and compare the functionality of these applications through challenges as proposed in this paper. 
 
 

METHODS 

 
Rank 1: “Semi-supervised Method for COVID-19 Lung CT Lesion Segmentation” 

Team: Shishuai Hu, Jianpeng Zhang and Yong Xia 
Affiliation: Northwestern Polytechnical University, China 
Abstract:  We noticed that the dataset provided in this challenge came from the TCIA database. Although the data in 
the TCIA database are not labeled for the COVID-19 Lung CT Lesion Segmentation task, they can be used as unlabeled 
data to improve the generalization ability of the segmentation model. To this end, we developed a simple but effective 
semi-supervised approach to utilize abundant unlabeled infected CT images. Specifically, we employ nnUNet as the 
backbone of the segmentation network and train it using labeled data at first. Next, we utilize the trained segmentation 
model to generate the pseudo lesion masks of both labeled and unlabeled infected CT images. Finally, a segmentation 
network can be trained in a fully supervised manner by feeding the data with generated pseudo labels. We validated 
our method on COVID-19 Lung CT Lesion Segmentation Challenge. Compared with the vanilla fully-supervised 
segmentation network, our approach can improve the Dice Similarity Coefficient by 4.27% (from 72.38% to 76.65%) on 
the training set (5-fold cross-validation). 
 
Rank 2: “nnU-Net for Covid Segmentation” 

Team: Fabian Isensee, Peter M. Full, Michael Götz, Tobias Norajitra, Klaus H. Maier-Hein 
Affiliation: Division of Medical Image Computing, German Cancer Research Center, Germany 
Abstract: nnU-Net is a robust out-of-the-box segmentation tool that automatically configures itself for each dataset it 
is applied to. We use it as a framework to implement five 3D U-Net configurations: 

1) a low resolution residual U-Net with extensive data augmentation and batch normalization (BN) 
2) a high resolution U-Net with extensive data augmentation and instance normalization (IN) 
3) a high resolution residual U-Net 
4) a high resolution plain U-Net with extensive data augmentation and IN and 
5) a high resolution plain U-Net with extensive data augmentation and BN. 

High resolution U-Nets have a patch size of 28x256x256 voxels and operate on data resampled to a common voxel 
spacing of 5x0.74x0.74mm. The low resolution U-Net operates on 5x1.14x1.14mm with a patch size of 40x224x192. 
Each configuration is trained as a 5-fold cross-validation. Additionally, 5 random 80:20 data splits are trained for each 
configuration. We use the standard nnU-Net hyperparameters for training. 
The configurations listed above were selected based on their cross-validation performance on the training set. We 
should note that none of these substantially outperformed the nnU-Net baseline. The best performing model was 2) 
with an average Dice score of 75.43 vs 74.41 for the 3d_fullres baseline. 
The 10 models from the 5 configurations are all ensembled for the test set prediction (50 models) through softmax 
averaging. No post-processing is applied. We only use the data provided by the challenge. 
 
Rank 3: “Automated Ensemble Modeling for COVID-19 CT Lesion Segmentation” 

Team: Claire Tang 
Affiliation: Lynbrook High School, USA 
Abstract: We developed an automated U-Net model training and optimization pipeline. Our pipeline includes the 
automated data preprocessing, automated U-Net model training with various data inputs and various loss functions, as 
well as the automated best combination for ensemble modeling. For data preprocessing, we create both 2D and 3D 
images. For 2D, we construct each CT slice as training data. For 3D, we construct both low-resolution images via down-
sampling and full resolution images. Then, the whole training data is split into 5-fold training sets. For U-Net model 
training, we automatically train the following models: 2D U-Net using 2D images, 3D U-Net using both low resolution 
and full-resolution 3D images, 3D cascade U-Net which is first trained low-resolution U-Net on low-resolution 3D images 
and then uses its prediction to further train a full-resolution U-Net. For each U-Net model, we use the following three 
loss functions: DiceCE loss which combines region-based soft Dice loss and distributional-based cross-entropy loss, 



 

DiceTopK loss which combines soft Dice loss and TopK loss, DiceFocal loss which combines soft Dice loss and Focal 
loss. For ensemble modeling, we automatically evaluate the combination of our trained models by considering the 
combination of 2 to 4 models. The best model combination is then selected to test on validation and testing dataset. 
Our results show the best Dice Coefficient via cross-validation results on the training set is 0.7288. Our submitted 
validation results achieve Dice Coefficient 0.7363. 
 
Rank 4: “COVID-19-20 Lesion Segmentation Based on nnU-Net” 

Team: Qinji Yu, Qikai Li, Kang Dang 
Affiliation: Shanghai Jiao Tong University, China 
Abstract: In the COVID-19 Lung CT Lesion Segmentation Challenge, we use nnU-Net which refers to a robust and 
self-adapting framework for medical image segmentation automatically. In view of the 3D CT data type in the challenge, 
we choose 3D U-Net to serve as the network architecture. Limited by the amount of available GPU memory, we try to 
train this architecture on 3D CT patches instead of the optimal whole CT scans. Firstly, we do preprocessing to all the 
training CT scans including cropping, resampling and normalization. After preprocessing, we divide the total 200 training 
CT scans into 5 folds randomly to perform 5-fold cross-validation on the training dataset and all models will be trained 
from scratch. The following augmentation techniques are applied on the fly during training: random rotations, random 
scaling, random elastic deformations, gamma correction augmentation and mirroring. We trained our networks with a 
noise-robust Dice loss for 400 epochs. During the inference stage, all inference is done patch-based. For the test cases 
we use the five networks obtained from our training set cross-validation as an ensemble to further increase the 
robustness of our models. 
 
Rank 5: “Leveraging state-of-the-art architectures by enriching training information - a case study” 

Team: Jan Sölter (1), Daniele Proverbio (1), Mehri Baniasadi (1), Matias Nicolas Bossa (1), Vanja Vlasov (1), Beatriz 
Garcia Santa Cruz (2,1), Andreas Husch (1) 
Affiliation: (1) Univ. of Luxembourg, Luxembourg Centre for Systems Biomedicine, Belvaux, Luxembourg, (2) Centre 
Hospitalier de Luxembourg, National Dept. of Neurosurgery, Luxembourg City, Luxembourg 
Abstract: Our working hypothesis is that key factors in COVID-19 imaging are the available imaging data and their 
label noise and confounders, rather than network architectures per se. Thus, we applied existing state-of-the-art 
convolution neural network frameworks based on the U-Net architecture, namely nnU-Net [3], and focused on 
leveraging the available training data. We did not apply any pre-training nor modified the network architecture. First, 
we enriched training information by generating two additional labels for lung and body area. Lung labels were created 
with a public available lung segmentation network and weak body labels were generated by thresholding. Subsequently, 
we trained three different multi-class networks: 2-label (original background and lesion labels), 3-label (additional lung 
label) and 4-label (additional lung and body label). The 3-label obtained the best single network performance in internal 
cross-validation (Dice-Score 0.756) and on the leaderboard (Dice-Score 0.755, Haussdorff95-Score 57.5). To improve 
robustness, we created a weighted ensemble of all three models, with calibrated weights to optimise the ranking in 
Dice-Score. This ensemble achieved a slight performance gain in internal cross-validation (Dice-Score 0.760). On the 
validation set leaderboard, it improved our Dice-Score to 0.768 and Haussdorff95-Score to 54.8. It ranked 3rd in phase 
I according to mean Dice-Score. Adding unlabelled data from the public TCIA dataset in a student-teacher manner 
significantly improved our internal validation score (Dice-Score of 0.770). However, we noticed partial overlap between 
our additional training data (although not human-labelled) and final test data and therefore submitted the ensemble 
without additional data, to yield realistic assessments. 
 
Rank 6: “Ensembling 2D and 3D nnU-Net for fully-automated COVID-19-20 lesion segmentation” 

Team: Tong Zheng, Luyang Zhang, Masahiro Oda, Kensaku Mori 
Affiliation: Nagoya University, Japan 
Abstract: Chest CT image processing for COVID-19 cases is becoming a big topic in the medical imaging field. 
Development and implementation of accurate COVID-19 CT image processing are fascinating challenges. In this 
COVID-19-20 lesion segmentation challenge, we used U-Net architecture as a baseline segmentation framework. The 
nnU-Net, which is based on U-Net is an image segmentation framework that automatically adapts its 
architectures to a given image geometry. 
We trained 2D and 3D low-resolution nnU-Net on the training dataset (199 cases). Patch size for training 2D nnU-Net 
was 512×512 pixels (same as the resolution of each axial slice). Patch size for training 3D nnU-Net was 28×256×256 
voxels (downsample each axial slice to 1/2 scale). The 2D nnU-Net was trained for 1,000 epochs, and 3D 



 

nnU-Net was trained for 200 epochs. We used the Dice loss and the cross-entropy loss in the training process. 
We merge 2D and 3D low-resolution nnU-Net’s outputs in the inference process. The trained 2D and 3D low-resolution 
nnU-Nets take the CT images as inputs. We obtain prediction results from softmax layers as outputs from 2D nnU-Net 
(result a) and 3D low-resolution nnU-Net (result b). Prediction results are the same size as the input image (512×512 
pixels each slice). We calculate the mean of prediction results I = (a+b) / 2 for evaluation. Then we assign segmentation 
labels based on the prediction result I at each voxel. If the intensity of a specific voxel in I is larger than 0.5, we assign 
the foreground label (lesion) to such a pixel. At last, we also removed small connected components from the output. In 
the experimental results, we obtained a mean Dice coefficient of 0.7456 on the training dataset (2D nnU-Net, five-fold 
evaluation) and 0.6213 on the validation dataset (2D nnU-Net). On the test dataset (2D nnU-Net + low-resolution 3D 
nnU-Net), Dice coefficient score was 0.6392, and the mean Hausdorff95-Score was 118.6340. 
 
Rank 7: “Semi-3D CNN with ImageNet pretraining for segmentation of Covid lesions on CT” 

Team: Vitali Liauchuk 
Affiliation: United Institute of Informatics Problems (UIIP), Belarus 
Abstract: The utilized network starts with 2D slice-wise convolutions and performs slice-wise extraction of a pyramid 
of features with use of an ImageNet-pretrained VGG16 model. Then a UNet-like decoder is attached to the feature 
pyramid. Indecoder, the convolutions are performed with 3D kernels. Max-pooling in the encoder and upsampling in 
the decoder are performed slice-wise in this version, though optionally can be made 3D as well. 
 
The CNN training was performed with the use of the MONAI framework, the training parameters are mostly similar to 
the default ones. Data augmentation was extended by Gaussian blurring and sharpening and contrast adjustment. The 
probability of affine transform was increased to 0.3. 
 
The training was performed at two stages: 
1) Starting with ImageNet weights in the encoder and random weights in the decoder; learning rate: 0.0001; loss: Dice 
+ 10 * Cross-Entropy; ~150 epochs. 
2) Starting with the checkpoint with the highest Dice on validation subset; learning rate: 0.0001; loss: Dice; few epochs. 
 
The Train dataset was split into training and validation subsets (“domestic”) in different ways. Depending on the split 
version the average Dice score on the domestic validation subset varied from 0.751 to 0.765 for the best runs. On the 
challenge Validation set, the best run resulted in 0.717. 
 
The Test set submission was averaged over three trained models resulting from three different custom train/validation 
splits and resulted in 0.646 average Dice score. 
 
Rank 8: “3D Automated Chest CT Image Segmentation of COVID-19 with nnU-Net framework” 

Team: Ziqi Zhou, Li Kang, Jianjun Huang 
Affiliation: College of Electronics and Information Engineering, Shenzhen University, China 
Abstract: Ground glass opacities in CT images are important indicators to diagnose COVID-19, and segmenting them 
is significant for diagnosis, treatment, and prognosis. In this paper, we propose a simple method based on nnU-Net 
training pipeline. First, we preprocess CT images using data augmentation to generate enough data for training, thus 
reducing the risk of overfitting. Then, we train the 3D high-resolution network and the 3D low-resolution network 
respectively with five-fold cross-validation. After the training, we select the best-performing network of each type for 
ensemble modeling. This is because we found through experiments that the ensemble of a few premium models is 
better than that of many mediocre models, since the former makes our model less affected by noise labels and causes 
false positives. Moreover, the ensemble of different resolutions can complement information at different semantic levels 
in images. This method uses neither pseudo-labels during the validation and test phases nor extra data. Dice coefficient 
of our model reaches 0.658 with all test cases, and particularly, 0.723 in the seen domain and 0.593 in the unseen 
domain. 
 
Rank 9: “Segmentation of COVID-19 lung lesions in CT using nnU-Net” 

Team: Jan Hendrik Moltz, Alessa Hering, Hannah Strohm, Felix Thielke, Volker Dicken, Bianca Lassen-Schmidt 
Affiliation: Fraunhofer Institute for Digital Medicine MEVIS, Germany 



 

Abstract: We used the nnU-Net framework to train a convolutional neural network for segmenting COVID-19 lung 
lesions in CT in a fully automatic manner. We trained only the 3D U-Net in a single fold on the training data. We 
achieved a mean Dice coefficient of 0.793 on the training data and 0.744 on the validation data. 
 
Rank 10: “Automatic COVID-19 detection and segmentation from lung computed tomography (CT) images 

using 3D cascade U-net” 

Team: Bruno Oliveira, MSc 1,2,3,4, Pedro Morais, PhD 1, Helena R. Torres, MSc 1,2,3,4, Fernando Veloso, MSc 
1,2,3, Jaime C. Fonseca, PhD 4, João L. Vilaça, PhD 1 
Affiliation: (1) 2Ai – School of Technology, IPCA, Barcelos, Portugal; (2) Life and Health Sciences Research Institute 

(ICVS), School of Medicine, University of Minho, Braga, Portugal; (3) ICVS/3B’s - PT Government Associate 
Laboratory, Braga/Guimarães, Portugal; (4) Algoritmi Center, School of Engineering, University of Minho, 
Guimarães, Portugal  
Abstract: The early diagnosis of COVID-19 is fundamental for the patient treatment and management of the medical 
facilities. Thus, lung computed tomography (CT) images have been used to detect early indicators of COVID-19, namely 
ground-glass opacities. Owing to the large field of view of these images, automatic segmentation strategies are 
required, facilitating the clinical evaluation and speeding up the diagnosis of COVID-19. In medical imaging encoder-
decoder, DCNNs have proved to be the best architectures for medical imaging segmentation. Here, we propose to use 
a coarse-to-fine 3D U-net approach. Firstly, the training images are downsampled and used to train a 3D low-resolution 
U-net. Next, the segmentation from the lower resolution training is used to crop the region-of-interest. The remaining 
volume is upsampled, and a new 3D U-net is further trained using the concatenation of high-resolution images with the 
coarse segmentation result. The two U-net were trained separately with the loss being defined as a combination of 
DICE and Cross Entropy. Finally, post-processing is applied to remove noncoherent anatomical results, namely lesions 
detected outside the lungs. Average Dice coefficients of 88.1% and 75.7%, average surface distances of 2.68 mm and 
4.8 mm, and 95th quartile of Hausdorff distances of 9.91 mm and 78.3 mm were achieved for the training and validation 
dataset, respectively.  
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