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ABSTRACT
Background  The prognosis of early breast cancer is 
linked to clinic-pathological stage and the molecular 
characteristics of intrinsic tumor cells. In some patients, 
the amount and quality of tumor-infiltrating immune cells 
appear to affect long term outcome. We aimed to propose 
a new tool to estimate immune infiltrate, and link these 
factors to patient prognosis according to breast cancer 
molecular subtypes.
Methods  We performed in silico analyses in more 
than 2800 early breast cancer transcriptomes with 
corresponding clinical annotations. We first developed 
a new gene expression deconvolution algorithm that 
accurately estimates the quantity of immune cell 
populations (tumor immune contexture, TIC) in tumors. 
Then, we studied associations between these immune 
profiles and relapse-free and overall survival among the 
different intrinsic molecular subtypes of breast cancer 
defined by PAM50 classification.
Results  TIC estimates the abundance of 15 immune 
cell subsets. Both myeloid and lymphoid subpopulations 
show different spread among intrinsic molecular breast 
cancer subtypes. A high abundance of myeloid cells 
was associated with poor outcome, while lymphoid cells 
were associated with favorable prognosis. Unsupervised 
clustering describing the 15 immune cell subsets revealed 
four subgroups of breast tumors associated with distinct 
patient survival, but independent from PAM50. Adding this 
information to clinical stage and PAM50 strongly improves 
the prediction of relapse or death.
Conclusions  Our findings make it possible to refine the 
survival stratification of early patients with breast cancer 
by incorporating TIC in addition to PAM50 and clinical 
tumor burden in a prognostic model validated in training 
and validation cohorts.

INTRODUCTION
Breast cancer is the most common cancer 
in women, and its incidence has markedly 
increased in recent years. However, most 
patients are actually diagnosed with early-
stage disease, and can thus be cured by locore-
gional and adjuvant systemic treatments. In 

recent decades, progress and intensification 
of adjuvant therapies in early breast cancer 
has significantly contributed to reducing 
relapse rates and improving survival.

Beyond classical prognostic factors (eg, 
age, tumor size, lymph node involvement, 
histological grade, ER, Ki67, and HER2 
expression) used for treatment-related deci-
sions, the development of multigene expres-
sion technologies in the early 2000s led to 
the discovery of transcriptomic heterogeneity 
among breast cancers, and brought about a 
refined tumor molecular classification with 
distinct clinical prognosis.1 Numerous multi-
gene expression assays have been developed 
to help clinicians to refine the evaluation 
of the risk of relapse.2–4 Most are based on 
cancer cell intrinsic biology, with a domi-
nant weight given to proliferation-associated 
genes.5 Among these assays, the PAM50 assay, 
which was initially developed to identify the 
different intrinsic breast cancer subtypes 
(luminal A/B, HER2 enriched, and basal 
like),3 6 is able to refine the outcome predic-
tion, not only in ER+, but also in ER− tumors.6

Besides the intrinsic biology of breast cancer 
cells, recent studies on the tumor micro-
environment provide new insights into the 
prognostic importance of immune response 
in breast cancer. Breast cancer was largely 
considered as non-immunogenic for many 
decades. However, the prognosis of breast 
cancer now appears to be associated with 
some features of host immune response, like 
tumor infiltrating lymphocyte (TIL) density, 
composition, and activity.7–10 Numerous 
studies over the past years have highlighted 
that the presence of high levels of TILs, but 
also of Th1 immune signatures, is associated 
with improved survival in early stage breast 
cancer, especially HER2-overexpressing 

http://bmjopen.bmj.com/
http://orcid.org/0000-0002-5465-8305
http://orcid.org/0000-0003-0895-4813
http://dx.doi.org/10.1136/jitc-2020-002036
http://dx.doi.org/10.1136/jitc-2020-002036
http://crossmark.crossref.org/dialog/?doi=10.1136/jitc-2020-002036&domain=pdf&date_stamp=2021-06-03


2 Klopfenstein Q, et al. J Immunother Cancer 2021;9:e002036. doi:10.1136/jitc-2020-002036

Open access�

and triple negative subtypes.11 12 Regarding the latter 
subtype, it was recently shown that the organization of the 
immune response within the tumor is also associated with 
prognosis.13–15 In contrast, a strong tumor infiltration in 
immunoregulatory cells such as regulatory T lymphocytes 
(Tregs), M2 macrophages, or a Th2 polarization of the 
immune response have been associated with a poor prog-
nosis in early breast cancer.12 16 17

Moreover, accumulating data also suggest that the 
clinical efficacy of cytotoxic therapies commonly used 
by oncologists (and assessed by pathological complete 
response after neoadjuvant chemotherapy), may some-
times be positively influenced by local T dependent 
immune response, here again, mainly in HER2 positive 
and triple negative subtypes.9 10 18 In the recent context 
of the arrival of immunotherapy in triple negative breast 
cancer, a strong tumor infiltration of TILs, but also the 
presence of an interferon-γ (IFN-γ) inflammatory signa-
ture, or a high tumor mutational burden (TMB), have 
been associated with greater effectiveness of not only 
immunotherapy but also chemotherapy.19 These results 
raised the question whether certain breast tumors might 
benefit more from immune-based interventions and 
which cancer cell-intrinsic and/or microenvironmental 
factors define anti-tumor immune response.20

However, it must be noted that all these pioneering 
studies suffered from technical limitations, only evalu-
ating the global pool of TILs (commonly detected in 
H&E on stained histological slides via light microscopy), 
or only one or two particular subtypes of immune cells, 
detected by specific staining in immunohistochemistry. 
For instance, with their role as final effectors of immune 
response, a favorable impact of breast tumor-infiltrating 
CD8+ T cells on survival has been largely reported.21 22 
Nonetheless, all these histological studies offered only 
a narrow view of the complexity of immune response, 
immune cell interactions, and immune cell function 
and diversity in breast tumors. For example, it is still 
unknown whether the respective proportions of the 
different subpopulations of CD8+ T cells vary across 
intrinsic molecular subtypes of breast cancer (based on a 
transcriptomic definition), and how these different popu-
lations could influence early breast cancer prognosis. 
Moreover, in addition to CD8+ T cells, breast cancers are 
usually infiltrated by many other lymphoid or myeloid 
immune cells. This leukocyte complexity, and the respec-
tive role of each immune cell population on breast cancer 
prognosis, is only starting to be described.23 24 Thanks to 
deconvolution algorithms and public transcriptome data-
sets, we were able to estimate from tumor bulk mRNA 
the relative abundance of distinct subsets of immune and 
non-immune cells, and their relationships with outcome.

In order to reconcile the prognostic information given 
by both molecular intrinsic subtype (assessed by PAM50), 
and tumor global immune contexture (TIC) of early breast 
cancers, we performed complementary in silico analyses 
in more than 2800 early breast cancer transcriptomes 
with corresponding clinical annotations. We therefore 

developed a new gene expression deconvolution algo-
rithm derived from Cibersort,25 and which accurately esti-
mates in tumors not only the respective proportions of 
immune cells, but also the absolute quantity of distinct 
immune cell populations in the tumor sample, allowing 
us to study their statistical associations with relapse-free 
and overall survival (OS) among the different intrinsic 
molecular subtypes (defined by PAM50 expression assay). 
Moreover, this approach gave us the opportunity to study 
the added value of immune contexture on top of clinical 
parameters, and tumor molecular intrinsic subtype, for 
early breast cancer risk stratification.

MATERIAL AND METHODS
Deconvolution process for estimating the proportions/quantity 
of cells
Signature matrices
The signature matrices used for the deconvolution process 
were built from public data found on Gene Expression 
Omnibus respository (GEO; https://www.​ncbi.​nlm.​nih.​
gov/​geo/). The building process was (1) to find over-
expressed genes in one of the 15 cell types considered, 
and then (2) to rank the genes for each cell population 
from most significant to least significant, keeping only the 
genes with a false discovery rate (FDR)26 p value <0.05. 
Step (3) was to iteratively add a gene from each cell popu-
lation of a given level and compute the condition number 
of the matrix at each step. The matrix kept as the signa-
ture matrix for a given level was the one with the smallest 
condition number as done in.25 Signature matrices can be 
found in online supplemental file 1.

Optimization problem
The mathematical modeling behind the deconvolution 
process is based on Cibersort25 except that the constraints 
of finding a vector of proportions (sum of proportions 
equal to 1) is directly included in the mathematical 
model. It yields a constrained version of the well-known 
support vector regression problem to solve and shows 
better performance than the Cibersort estimator27 that 
computes the unconstrained Support Vector Regression 
(SVR) and then projects it to have a proportion vector 
(see online supplemental file 2). Figures included in this 
file shows that our algorithm outperforms Cibersort in 
terms of better estimation performances, especially for 
small proportions.

Absolute versus relative
We chose to work with 15 different types of immune cells 
(see online supplemental figure S1 for the full list). The 
choice was based on different factors: purified samples 
available, the ability to discriminate them, and choice of 
cells of interest according to their biological relevance in 
cancer immune response. The list of the different samples 
used to construct the signature matrices is given in online 
supplemental file 3. The estimation of proportions of 
cells was done at each level of cell families; it results in an 
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estimation of the relative proportions of cells inside each 
level as represented in online supplemental figure S1. 
However, because our modeling tries to capture all the 
cells that are present inside a tumor, the absolute quan-
tities can be computed by multiplying the proportion of 
a given type of cell by its upper parents’ proportions. To 
be clearer, if the lymphoids represent 10% of the total 
cells and the T-cells represents 20% of the lymphoids, 
the absolute quantity of T-cells is obtained by multiplying 
20% with 10% which makes 2% of the total number of 
cells. This can be done up to the fourth level with the 
CD8 T-cells subtypes.

There is a lot more information carried out by the abso-
lute quantities. For example, two patients could have a 
relative T-cells quantity of 10% (ie, 10% of lymphoids are 
T-cells) but patient A has 10% of lymphoids and patient 

B only 1%; the absolute quantity distinguishes the two 
patients: patient A has 1% of T-cells in absolute propor-
tions and patient B only 0.1%.

Patient dataset
Aggregation of datasets
The cohort of patients with breast cancer comes from 
different sources but regroup only microarray data 
coming from the H133a and the H133plus Affymetrix 
platforms. The CIT cohort comes from the Cartes d’Iden-
tité des Tumeurs project from the French Ligue Nationale 
Contre le Cancer.28 The transcriptomic data are available 
on ArrayExpress under the accession code E-MTAB-365. 
The rest of the cohort was downloaded from GEO; part 
of it comes from a study of KMplot.29 A description of the 
datasets is given in figure 1, the KMplot and GEO cohorts 

Figure 1  (A–B) Flow chart presenting the different cohorts used in the study and their classification based on PAM50 (A) and 
on the estrogen receptor (given by IHC when data were available or gene expression otherwise), and on human epidermal 
growth factor receptor 2 (B). In each box, the first set of numbers corresponds to number of patients broken down by the cohort 
(respectively, CIT, KMplot, and GEO dataset cohorts), and the bottom number corresponds to total number of patients. IHC, 
immunohistochemistry; GEO, Gene Expression Omnibus.
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were used as the training cohort, while the CIT cohort 
was used for validation purposes. clinical characteristics 
of patients and tumors are described in online supple-
mental table 1.

PAM50 classification from transcriptome
The PAM50 classification was performed on publicly avail-
able microarray transcriptomic data using the Genefu30 R 
package. The summary of the PAM50 classification and 
the number of patients in each group and each dataset 
can be found in figure 1A. The normal-like group was not 
kept for the rest of the analysis. Hereafter, “PAM50 classi-
fication” refers to the results of this process.

ER and HER2 status
As there is no complete overlap between the transcrip-
tomic subtypes defined by the PAM50 signature, and 
the breast cancer subtype assessed by routine patholog-
ical techniques (expression of estrogen receptors and 
HER2),31 we also have evaluated our models within the 
different breast cancer subtypes, as defined with these 
routine techniques (namely: luminal non-HER2 (ER+/
HER2−), triple negative (ER−/HER2−), and HER2+). 
When ER or HER status was unknown, the expression 
of the genes ESR1 and ERBB2 were used to define the 
patient’s status. A threshold of these two genes was 
computed using the patients for whom the information 
was available. The ER threshold was chosen such that it 
maximizes the correct classification rate in the available 
patients, and the same was done for HER status (results 
not shown). This approach has been validated on a 
test dataset that was not used in the rest of the analysis 
and (GEO accession number GSE129551). This dataset 
contains 147 breast cancer samples on which IHC ER 
and HER2 status are available. Using our cut-off values 
we obtained 100% well classified rate on the ER status 
and 97% on the HER2 status (5 misclassified out of 147 
samples). These results justify our approach for the rest 
of this paper. In this way, the ER status was inferred by 
the described method for 590 patients of the 2736 (21%). 
The Her2 status was inferred for 1966 patients of the 
2736 (72%) which still makes a training for the validation 
threshold of 770 patients.

Analysis of the estimated immune cell proportions
Testing the differences in cell quantity between molecular 
subtypes
In order to test whether a given cell population was 
significantly more abundant in one group of patients 
compared with another, we performed a Wilcoxon test 
and used adjusted p values (FDR controlling procedure). 
An adjusted p value <0.05 was considered as significant.

Clustering based on the proportions of cells
To make sure that the differences observed between 
patients were not only due to the molecular subtype, 
we performed clustering of patients based on the abso-
lute quantity of the 15 immune cell types. Hierarchical 

clustering using the Euclidean distances and Ward’s 
method was used.

Survival analysis
Univariate survival analysis
Univariate survival analyses were performed using Cox 
proportional hazards regression models with a log rank 
test to compare survival distributions. Each variable 
was taken as a continuous variable. The Kaplan-Meier 
method was used to calculate survival probabilities. The 
log-rank test was used for comparison of survival curves. 
OS was calculated as the time from diagnosis of cancer to 
the date of death (from any cause). Relapse-free survival 
(RFS) was computed as the time between start of primary 
treatment and the time of any breast disease recur-
rence (local (including second primary breast cancer), 
regional, or distant). Patients were censored at 10 years 
for OS and RFS.

FDR-adjusted p values were obtained by Benjamini 
Hochberg method.

Multivariate survival analysis and models for survival prediction
Multivariate survival analyses were performed with Cox 
regression models. Patients were censored at 10 years. 
The “PAM50” model was built using the four classes of the 
molecular subtype variable. The “TIC” (tumor immune 
contexture) model includes the estimated absolute quan-
tities of the different cell populations. The “clinical” 
model was built using the T and N variables considered as 
factor variables. The variable N is binary and is equal to 
0 when there is no lymph node involvement and 1 when 
there is at least one lymph node involved. The T variable 
splits the patients in three groups: T1, T2, and T3 (this 
last category encompasses stages T3 and T4). Patients 
for whom the clinical information was missing were 
excluded from the construction and validation of the 
model. The model combining “PAM50” and “TIC” infor-
mation models the interactions between the estimated 
quantities of immune cells and the PAM50 levels. As it 
was confirmed that each molecular subtype has an impact 
on the prognostic role of each immune cell population, 
a LASSO (Least Absolute Shrinkage and Selection Oper-
ator) algorithm for variable selection in the Cox model 
was then used on immune and PAM50 variables and their 
respective interactions, to select variables that were most 
strongly related to the outcome. Online supplemental file 
4 shows corresponding multivariate Cox models for RFS 
and OS. The linear predictor of this model was then used 
to build a final model combining the three types of infor-
mation (quantitative immune populations, PAM50, and 
clinical).

RESULTS
Dataset containing 2813 breast cancer samples from three 
independent cohorts
A summary of available samples among the three indepen-
dent cohorts of patients is depicted in figure 1. Samples 
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were classified according to intrinsic molecular subtypes 
(PAM50) (figure 1A), or classical immunohistochemistry 
(ER and HER2 status) (figure 1B). Concerning intrinsic 
molecular subtypes, 998 cases (35.5%) were classified as 
luminal A subtype, 1015 (36%) as luminal B, 278 (10%) 
as HER2 enriched, and 445 (16%) as basal-like subtype. 
Seventy-seven (2.5%) of samples were classified as normal-
like subtype, and were thereby excluded from subsequent 
analyses. A summary of available clinicopathological char-
acteristics is also presented in online supplemental file 4.

CD8 SUBPOPULATIONS ACCORDING TO BREAST CANCER 
MOLECULAR SUBTYPES
Because of their role as effectors in the cytotoxic response 
against cancer cells, we first investigated whether CD8+ 

T cell subpopulations were different in ER-positive and 
ER-negative breast cancers. Figure  2 shows the esti-
mated proportions (figure  2A), and absolute quantities 
(figure  2B) of CD8 fractions: effector memory CD8 T 
cells (EM CD8) constitute the majority of CD8 infil-
trating breast tumors. Among all CD8 T cells, the esti-
mated proportions of EM CD8 are significantly higher 
in ER− tumors (p value Wilcoxon test 9e-06), while the 
proportion of naïve CD8 is higher in ER+ tumors (p value 
Wilcoxon test 1e-11). There was no difference in propor-
tions as regards central memory (CM) CD8 between 
ER+ and ER− tumors (p value Wilcoxon test 0.19). 
Similar trends were observed for the absolute quantities: 
compared with ER+ tumors, ER− breast cancer tissue 
contained more CD8 T cells, especially more EM CD8 (p 

Figure 2  (A–D) Bar graph representing the estimation of T-CD8 subtype absolute quantities in the different groups based 
on ER status (A–B) or PAM50 classification (C–D). (E–F) Forest plot representing the HR for relapse free survival (RFS) (E) and 
overall survival (OS) (F) of the different CD8 subtypes taken as a continuous variable in different PAM50 subgroups.
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value Wilcoxon test 6e-06), while ER+ tumors contained 
more naïve CD8+ (p value Wilcoxon test 5.7e-05). Here 
again, there was no difference in terms of CM CD8 (p 
value Wilcoxon test 0.54).

In view of these differences, we then investigated CD8 T 
cell subpopulations according to breast cancer molecular 
subtype, defined by PAM50, and found marked differ-
ences (figure 2C,D). HER2-enriched and basal-like molec-
ular subtypes contained higher quantities of EM CD8, 
but also CM CD8 T cells compared with luminal tumors 
(Wilcoxon test basal vs luminal, p value=5e-9 and HER2 vs 
Luminal, p value=2e-4). Among luminal tumors, luminal 
B subtypes contained more EM CD8 T cells compared 
with luminal A tumors. Here again, among all CD8 T cells, 
the estimated proportions of the different CD8 subpopu-
lations show the same results as the absolute quantities 
between the four molecular subtypes (figure  2D). The 
largest difference between pam50 subgroups is on the 
EM CD8 T cells whereas the differences in quantity for 
the CM CD8 T cells and the naïve CD8 T cells are rather 
small. According to their specific location in peripheral 
blood,32 we did not find the significant presence of intra-
tumoral EMRA cells.

Prognostic roles of CD8 subpopulations according to breast 
cancer molecular subtype
We then examined the relationships between CD8 T cell 
subpopulations and prognosis of early breast cancer (in 
terms of RFS and OS) in each tumor molecular subtype 
(figure 2E,F, respectively). Considering all breast cancer 
samples, naïve CD8 (HR: 0.930 p=0.12, and HR: 0.796 
p=0.13 for RFS and OS, respectively), but mostly EM CD8 
(HR: 0.851 p=0.008, and HR: 0.629 p=0.01 for RFS and 
OS, respectively) are associated with better RFS and OS. 
Conversely, CM CD8 T cells are not associated with signifi-
cantly different outcome. The favorable effect of EM CD8 
on RFS and OS is particularly marked in the basal-like 
molecular subtype (HR: 0.580 (0.44 to 0.76), p=3.8e-4, 
and HR: 0.464 (0.28 to 0.78), p=0.02 for RFS and OS, 
respectively), and to a lesser extent in HER2 enriched 
(HR: 0.781 (0.63 to 0.97), p=0.06, and HR: 0.656 (0.41 to 
1.04), p=0.18 for RFS and OS, respectively), and luminal 
B (HR: 0.819 (0.69 to 0.97), p=0.05, and HR: 0.310 (0.14 
to 0.68), p=0.02 for RFS and OS, respectively) subtypes. 
naïve CD8 cells have significant prognostic effect (but 
numerically modest, considering HRs) in luminal B 
tumors only. Of note, as for TIL evaluation, CD8 T cell 
subpopulations are not associated with differences in 
outcome in luminal A tumors.

TIC is quantitatively different across breast cancer molecular 
subtypes
In view of these differences between breast cancer molec-
ular subtypes considering only CD8 T cells, we then 
examined the overall immune cell composition (TIC) 
obtained by similar deconvolution approaches. Thus, we 
inferred 15 immune cell subsets among lymphoid and 
myeloid populations (see top of figure 3).

The absolute quantities of different immune subpopu-
lations vary widely between ER+ and ER− breast tumors 
(figure  3A), notably with significantly higher absolute 
quantities of M2 macrophages, B cells, CD4 T cells, 
and CD8 EM T cells in ER− tumors. These differences 
are even more pronounced when considering molec-
ular intrinsic subtypes (figure 3B). Lymphoid cells were 
the most represented immune population (especially 
B cells and CD4 T cells). Briefly, concerning the main 
differences, among myeloid cells, M2 macrophages are 
more abundant than M1 in all molecular subtypes. M2 
macrophages are more abundant in HER2 enriched, and 
above all, in basal-like subtypes, compared with luminal 
tumors (p<0.001). Luminal B tumors contained more 
macrophages than luminal A tumors (especially more 
M2) (p<0.001). Similar trends are observed for dendritic 
cells, with no significant difference between basal-like 
and HER2 enriched subtypes, but a significantly lower 
number of this cell subset in luminal subtypes, espe-
cially in luminal A tumors. Concerning lymphoid cells, 
B cells, NK cells, and T cells (both CD8 and CD4) were 
significantly higher in the basal-like subtype. Here again, 
there was no significant difference between basal-like and 
HER2 enriched subtypes, but lymphoid subpopulations 
were more abundant in these tumors than in luminal 
tumors. No difference was seen between luminal A and 
B subtypes concerning lymphoid populations (except for 
CM CD8 T cells, slightly higher in luminal B tumors). The 
heatmap of the significance of the differences among 
PAM50 molecular subtypes of breast cancer for each 
immune cell population is depicted in figure 3H and a 
table with average proportions by subgroup is available in 
online supplemental table 3.

Prognostic impact of overall TIC among breast cancer 
molecular subtypes
Figure  3C–F depicts the HRs and 95% CI for RFS for 
each immune subset taken as a continuous variable, and 
in the whole population (figure 3G, N=2736), and high-
lights the complex impact of different immune cells on 
the outcome of patients with breast cancer. While most 
myeloid populations are significantly associated with 
worse RFS (granulocytes, macrophages, especially M2, 
and dendritic cells), lymphoid subsets (T cells, B cells 
populations, and NK cells), are generally associated with 
significantly better outcome.

Figure 3C–F shows the prognostic role of each popu-
lation according to breast cancer molecular subtype. 
In the basal-like subtype (figure  3C), all immune cell 
subtypes tend to be associated with better RFS. However, 
these associations were mainly statistically significant for 
lymphoid populations (B cells, T cells, and NK cells), 
consistent with the high prognostic value of TILs in triple 
negative breast cancer. In the HER2-enriched subtype 
(figure  3D), all immune populations also tend to be 
associated with better prognosis (here again, especially 
for lymphoid subtypes), but with less marked HRs than 
in basal-like subtypes. Interestingly, in luminal tumors, 
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Figure 3  (A–B) Bar graph representing the estimation of cell population absolute quantities in the different groups of ER 
status (A) and PAM50 (B). (C–G) Forest plot representing the HR for relapse free survival (RFS) of the different immune cell 
populations taken as a continuous variable in Basal (C), HER2 (D), LumA (E), LumB (F) subgroups, and in the whole cohort (G). 
(H) Represents the −log10 FDR (false discovery rate) corrected p values of Wilcoxon tests on a heatmap. The Wilcoxon test was 
used to compare the distributions of absolute quantities of a certain type of cells (in rows) between two subgroups (in columns). 
The p values were corrected due to the high number of tests using the FDR method. Crosses indicate non-significant tests.
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the prognostic value of immune cell subsets had a totally 
different profile, since in luminal A tumors, no immune 
cell subset was associated with outcome (figure  3E). In 
luminal B tumors (figure  3F), only B cell (and plasma 
cells), and T cell subsets (CD4, CD8, and NK cells), 
were associated with better RFS (but clearly with a lesser 
impact than in basal-like and HER2 enriched subtypes). 
In contrast, in this molecular type of breast cancer, most 
myeloid cells (granulocytes, macrophages both M1 and 
M2, and in a statistically significant manner, plasmacy-
toid cells), tended to be associated with worse RFS. These 
results obtained in luminal tumors reflect the contrasting 
and complex prognostic role of TILs, and more generally 
of the immune response, in ER+/HER2− breast cancers. 
Importantly, similar trends were also obtained for OS, 
despite many values not statistically significant when 
considering subgroup analyses (online supplemental 
figure S2A–E).

Added value of TIC on top of breast cancer molecular subtype 
for predicting relapse
Unsupervised clustering analysis using immune cell rela-
tive quantities revealed four subgroups of breast tumors 
(ImmunoClass 1–4, figure 4A). Cluster 2 is characterized 
by a high level of myeloids and lymphoids in comparison 
to the other groups. Overall, this subgroup has a high 
level of immune cell infiltration. Cluster 4 is character-
ized by a high proportion of myeloids in comparison to 
other groups. Lymphoid and more precisely, most T-cell 
subpopulations are present in small quantities. Cluster 
3 is characterized by low infiltration of lymphoids and 
myeloids, this type of tumor is poor in immune cells and 
could be considered as “immune desert.” Cluster 1 is the 
average of the previous cluster, it is not very infiltrated but 
some immune cells are present in average proportions. As 
shown in online supplemental figure S3, these immune 
clusters differ in terms of RFS (online supplemental 
figure S3A), with cluster 2 harboring better survival than 
the three others, and cluster 4 associated with the worst 
RFS. Clusters 1 and 3 have intermediate RFS. These 
exploratory results are in accordance with the respective 
prognostic role of lymphoid (favorable) and myeloid cells 
(unfavorable) in patients with cancer.33 These results 
have been obtained both in peripheral blood (namely 
the neutrophil-lymphocyte ratio),34 and in tumor tissue, 
especially in breast cancer.24 35 In an original, but logical 
way, patients with mild or low immune infiltration share 
intermediate prognosis. These results are also in accor-
dance with the intermediate prognosis of moderate TILs 
infiltration in breast cancer.10 Interestingly, the spread of 
breast cancer molecular subtypes defined by PAM50 is 
independent of these TIC clusters (online supplemental 
figure S3B), suggesting that these two prognostic factors 
could be additive, to better refine breast cancer patients’ 
outcomes.

Descriptive analysis was performed on both training 
and validation cohorts and this aggregation of patients 
is hereafter termed the “whole cohort.” The training 

cohort comprised the Kmplot and GEO cohorts together, 
and the validation cohort was the CIT cohort. As the 
importance and the respective prognostic roles of the 
different immune cell subsets varied among tumor types, 
we computed this “immune” prognostic information for 
each breast cancer molecular subtype with the prognostic 
information given by clinical stage (T and N status), and 
PAM50 subtype (figure 4B,C).

Compared with clinical parameters, neither PAM50 
alone nor immune TIC cluster alone had better a C-index 
for the prediction of relapse (figure  4B). Concerning 
the risk of death, PAM50 alone or TIC cluster alone are 
slightly better than clinical parameters, but here again 
with low C-indexes (figure  4C). However, combining 
these independent parameters substantially increased the 
prognostic information. Adding immune TIC informa-
tion to the clinical stage, and mainly to PAM50, strongly 
increased the C-index for the prediction of relapse or 
death. Above all, the C-index was best when we added 
immune TIC information to the model containing both 
clinical stage and PAM50. These results argue for the 
complementary prognostic value of these clinical and 
biological factors.

A scatter plot of the relapse probability at 5 years for 
each patient from both the training and validation cohorts 
in each of the PAM50 groups is depicted in figure  4D, 
according to our classification of risk (low, medium, or 
high) via our model combining all three types of available 
information (clinical+PAM50+TIC). This figure high-
lights the fact that the model can help to stratify patients 
risk in each molecular subgroup, and can for example 
identify patients with poor-risk luminal tumors (including 
luminal A tumors having comparable risk of relapse than 
HER2 or basal-like tumors).

Together these data underline the capacity of TIC to 
discriminate patient prognosis in a specific molecular 
subtype.

Refining survival stratification of patients with breast cancer 
with the final model incorporating TIC prognostic information
We computed survival of patients with breast cancer 
according to our final best model, which incorporated 
clinical stage, PAM50, and immune TIC. A score was 
obtained as the linear combination between the coeffi-
cients estimated by the Cox models (online supplemental 
table 2) and the variables. This score was then divided 
in three groups using tertiles (low score, medium, and 
high) stratifying the patients. In the training cohort 
(Kmplot and GEO cohorts, n=2276 patients), our final 
model identified a low-risk group with significantly better 
RFS compared with medium and high-risk groups in the 
whole population (figure  5A), the ER+/HER2− popu-
lation (figure  5B), and the triple negative population 
(figure  5C). In the population of patients with breast 
cancer with HER2 positive tumors, there was no signif-
icant difference in RFS between the three prognostic 
groups (figure  5D). The 10-year RFS rates for low-risk 

https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
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groups were 79% (ER+/HER2−), 70% (triple negative), 
and 70% (HER2), respectively.

Similar results were obtained in the training cohort for 
OS (figure 6A–D). The 10-year OS rates were 90% (ER+/
HER2−), 83% (triple negative), and 88% (HER2). OS was 

not significantly different among the three prognostic 
groups in triple negative tumor patients (figure  6C), 
despite a clear poor survival for high-risk group. Overall, 
regarding the prognostic groups of patients, compared 
with PAM50 alone, our final classifier enabled better 

Figure 4  (A) Pie charts representing the relative proportions of immune cells in each cluster of patients (ImmunoClass 1–4). 
The total proportions of these immune cells inside the tumor is indicated for each cluster. (B–C) Bar graphs representing the 
C-index values obtained by computing different Cox models. The PAM50 model is built using PAM50 classification, the tumor 
global immune contexture (TIC) is built using immune quantities information and the clinical model is built using T and N clinical 
variables. The model combining “PAM50” and “TIC” information models the interactions between the estimated quantities of 
immune cells and the PAM50 levels. As it was confirmed that each molecular subtype has an impact on the prognostic role of 
each immune cell population, a LASSO algorithm for variable selection in the Cox model was then used on immune and PAM50 
variables and their respective interactions, to select variables that were most strongly related to the outcome (overall survival 
(OS) or relapse-free survival (RFS)). The linear predictor of this model was then used to build a final model combining the three 
types of information (quantitative immune populations, PAM50, and clinical). The C-index allows comparison between nested 
Cox models and was computed for the RFS models (B) and for the OS models (C). (D) Scatter plot of the relapse probability at 
5 years of each patient of the whole cohort in each of the PAM50 groups. The points were colored based on the classification 
obtained via our model combining all three types of available information (clinical+PAM50+TIC). The number of patients with 
low, medium and high risk of relapse according to our final model (using tertiles as the threshold) appears, respectively in 
blue, gray, and yellow, distinguishing different outcomes in each PAM50 tumor group. LASSO, Least Absolute Shrinkage and 
Selection Operator.
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discrimination of the three different populations in terms 
of outcome, notably a group of patients with nearly 100% 
OS at 10 years, and in contrast, a group of patients with 
very poor survival. Note that for ER−/HER2− and HER2+ 
groups, number of patients is low, results should thus be 
interpreted with caution.

Importantly, similar survival profiles were obtained 
when testing the same models in the validation cohort 
(CIT cohort, n=537) (RFS: online supplemental figure 
S4A–D, OS: online supplemental figure S4E–H).

DISCUSSION
Thanks to a new gene expression deconvolution algo-
rithm derived from Cibersort, allowing estimation of 
the relative and absolute quantities of various tumor-
infiltrating immune cells, our study highlights the addi-
tional prognostic value of overall TIC on top of the breast 
cancer molecular intrinsic subtypes defined by the PAM50 
classifier.

Our results show that the different CD8 T cell subpop-
ulations, but also more generally, the immune contexture 
of breast tumors, as assessed by hierarchical clustering 
based on both myeloid and lymphoid cells, differ between 
breast cancer molecular intrinsic subtypes. They also have 
variable and complex associations with different level of 

clinical impact in terms of patient outcome. Finally, our 
findings make it possible to refine the survival stratifica-
tion of patients with early breast cancer by incorporating 
TIC with PAM50 and clinical tumor burden (T and N 
stage) in a prognostic model assessed in training and vali-
dation cohorts.

The four breast cancer intrinsic subtypes were first 
described by Perou et al,1 and were initially defined by 
a large set of genes, subsequently reduced to 50 classi-
fier genes in the PAM50 assay.6 36 Numerous studies have 
shown that PAM50 provides better estimates of early 
breast cancer patient outcome than classical clinicopath-
ological factors.3 37 38 Moreover, PAM50 intrinsic subtypes, 
especially PAM50 proliferation genes, have also been 
shown to have a predictive value concerning the benefit 
of chemotherapy.6 38–41 Indeed, among the 50 genes 
involved in PAM50, the majority are related to prolifer-
ation, estrogen, or other growth factor pathways, but are 
not linked to immune response.6

Breast cancer was previously thought to be a non-
immunogenic cancer, but numerous recent studies have 
suggested that in some cases, the presence of TILs can 
be a strong indicator of immune response against cancer 
cells, and thus a favorable prognostic factor.7 9 10 Indeed, 
in TNBC and HER2-overexpressing breast tumors, 

Figure 5  (A–D) Kaplan-Meier estimates for relapse free survival; patients from the training cohort were stratified according to 
the score obtained from the Cox model combining clinical variables, PAM50 classification, and immune cell estimations, using 
tertiles as thresholds. Graphs are presented for all patients of the training cohort (A), for ER+/HER2− patients (B), for ER−/HER− 
patients (C), and for HER2+ patients (D). n.s., not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.

https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
https://dx.doi.org/10.1136/jitc-2020-002036
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retrospective analyses of large adjuvant/neoadjuvant 
studies have shown that high level of TILs and CD8 T 
cells, or a Th1 cytotoxic signature, are independently asso-
ciated with better survival and/or with better response 
to chemotherapy.7 9–11 18 42 In accordance with these 
pioneering histological studies, we found that TNBC and 
HER2-overexpressing cancers are breast tumors with the 
highest immune cell infiltration, and molecular subtypes 
in which most, if not all, immune cells are associated, 
or tend to be associated, with better survival. This was 
previously demonstrated in transcriptomic analyses from 
TNBC reported by Denkert et al,43 in which all immune 
genes were positively correlated among themselves (and 
with favorable treatment response), even when genes 
were markers of immunosuppressive populations.

More recent studies, based, like ours, on deconvo-
lution analysis of gene expression data coming from 
early breast cancer, have highlighted the complexity of 
tumor-infiltrating immune cell types, and their respec-
tive proportions and prognostic roles.23 24 Accordingly, 
our unsupervised clustering analysis using immune cell 
quantities revealed four subgroups of breast tumors, 
largely independent of the PAM50 intrinsic subtype, and 
with distinct risks of relapse and death. These results indi-
cate that the patterns and prognostic impact of immune 
infiltrates are not strictly linked to the biological tumor 
behavior defined by the molecular intrinsic subtypes. 

Accordingly, we demonstrate here the complementarity 
of both tumor intrinsic biology and tumor complex 
immune response, to better assess the prognosis of early 
breast cancer.

From an immunological point of view, our study 
demonstrates the prognostic relevance of 15 different 
subsets of immune cells among myeloid and lymphoid 
populations. More specifically, we describe here the rela-
tive infiltration of different CD8+ T cells. Among TILs, 
CD8+ T cells are believed to be one of the most important 
components of cell-mediated immunity, able to directly 
kill tumor cells presenting tumor-associated antigenic 
peptides. Accordingly, high tumor-infiltrating CD8+ cell 
density has been independently associated with improved 
survival in various types of cancer, including breast 
cancer.42 In breast cancer, this favorable effect appeared 
to be restricted to HER2-overexpressing and TNBC, with 
no significant impact in ER+/HER2− subtype.44

However, many different subpopulations of CD8+ T 
cells can be found in the tumor immune microenviron-
ment, including naïve, memory, effector, and exhausted 
lymphocytes. After antigen encounter, naïve CD8+ T cells 
are activated and differentiate into memory T -cell popu-
lations, including effector CD8+ T cells.45 This differentia-
tion is accompanied by the cell’s ability to proliferate and 
home into lymphoid organs, and to acquire a proinflam-
matory and cytotoxic phenotype.45 46 Among memory T 

Figure 6  (A–D) Kaplan-Meier estimates for overall survival; patients from the training cohort were stratified according to the 
score obtained from the Cox model combining clinical variables, PAM50 classification and immune cell estimations using tertiles 
as thresholds. Graphs are presented for all patients of the discovery cohort (A), for ER+/HER2− patients (B), for ER−/HER− 
patients (C), and for HER2+ patients (D). n.s., not significant, *p<0.05, **p<0.01, ***p<0.001, ****p<0.0001.
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cell populations, EM T cells are able to rapidly produce 
IFN-γ after antigenic recall stimulation, while CM T cells 
express lymph node homing receptors and produce less 
IFN-γ on stimulation.47

Our analyses revealed that EM CD8+ T cells constitute 
the predominant population of breast cancer CD8+ infil-
trating T cells. These cells were more abundant in basal-
like and HER2 molecular subtypes. Such results have been 
obtained elsewhere by flow cytometry analysis in a small 
cohort of localized breast cancer.48 Interestingly, in this 
translational study, and mostly based on luminal breast 
tumors, these CD8+ TILs expressed checkpoint molecules 
like programmed cell death protein 1 (PD-1) or TIGIT 
and are enriched in an exhausted phenotype. However, 
the authors demonstrated that these CD8+ infiltrating T 
cells retained the capacity to produce cytokines and to be 
cytotoxic.48 This could explain the favorable, and prepon-
derant prognostic role of EM CD8+ T cells observed in our 
study. Indeed, compared with CM or naïve CD8 T cells, 
our results highlighted the prominent prognostic impor-
tance of effector memory cells, among the CD8 T cell 
population. The presence of CD45RO+ tumor infiltrating 
memory T cells has been associated with an absence of 
signs of early metastatic invasion, less advanced patho-
logical stage, and increased survival in pioneering works 
conducted in localized colorectal cancer samples.49 More 
recently, a specific favorable role of EM CD8 T cells has 
been deciphered in ovarian cancer,50 and melanoma.51 
In ipilimumab-treated metastatic melanoma patients, 
peripheral CD8 effector-memory type 1 T-cells have been 
correlated with more favorable outcome,52 highlighting 
their potential role as a predictive biomarker for immu-
notherapy efficacy.

Interestingly, in our breast cancer cohorts, this favor-
able prognostic effect was observed in basal like and HER2 
tumors, but also significantly in luminal B subtypes. This 
is another means of underlining the complementarity 
of both immunological and tumor molecular intrinsic 
information to decipher the complexity of TIL impact in 
ER+ luminal breast tumor prognosis. Indeed, our results 
demonstrate a clear and different effect of CD8, and 
more generally, of the different subsets of immune cells 
included in TIC, among luminal A and luminal B tumors, 
with a clear favorable prognostic impact of lymphoid 
populations (but not myeloid cells, which tend to be 
associated with worse outcome) for luminal B tumors, 
whereas no significant effect can be seen for luminal A 
tumors. These results may partially explain the controver-
sial role of TILs and immune response in luminal breast 
cancer. In this respect, it should be noted that our final 
prognostic model incorporating tumor stage, PAM50 and 
TIC prognostic information was more efficient in ER+ 
tumors than PAM50 alone or combined with tumor stage, 
making it possible to discriminate three different popu-
lations in terms of outcome, notably a group of patients 
with nearly 100% OS at 10 years and in contrast, a group 
of patients with very poor survival considering ER+ local-
ized breast cancer. These results highlight, in our view, 

the clinical importance of immune response in early 
breast cancer, even in ER+subtypes.

It should be noted that usually, such correlative studies 
do not constitute formal proof of a causal relationship, 
leaving open questions as to whether all immune subsets 
of TILs cooperate to influence the prognosis of patients, 
or whether these associations with survival are solely the 
result of tumor cell intrinsic biological conditions. In this 
regard, our results show for the first time that different 
clusters of overall TIC in breast cancer appear to be 
independent of the intrinsic molecular subtypes usually 
defined by PAM50. This argues for a specific role of 
immune response in the prognosis of patients with breast 
cancer, and for the complementarity of both biological 
information to refine patient prognosis. This refinement 
in the prediction of clinical outcome makes it possible to 
identify, within each subtype of breast cancer, patients with 
good, intermediate or poor prognosis, thereby opening 
the door for tailored adjuvant treatment, according to the 
risk of relapse and death. These results are of particular 
interest in the recent context of new immunotherapies, 
since the prognostic and predictive value of antitumor 
immune response in breast cancer indicates that immuno-
therapy could constitute a promising option for the treat-
ment of some breast cancers. However, in breast cancer, 
despite some clinical response observed with anti-PD-1 or 
anti-programmed death-ligand 1 (PD-L1) monotherapy, 
the rate of responders remains low compared with other 
cancer types (such as melanoma, kidney, or non-small cell 
lung cancer), even in the triple negative subtype, despite 
higher rates of TILs, PD-L1 expression, and higher TMB.53 
A better understanding of tumor-infiltrating immune cell 
composition among the different breast cancer molec-
ular subtypes could benefit the future design of specific 
immunotherapeutic clinical trials for patients with breast 
cancer in each molecular type of disease.

Our study has other limitations: thus, the immunolog-
ical parameters that we integrated into our models do 
not take into account the degree of activation or inacti-
vation of the different immune populations (evaluated in 
part by the degree of expression of the checkpoints of 
immune response), nor the spatial organization of these 
immune cells, to which we have not had access. As these 
two pieces of information are also associated with the 
prognosis of early breast cancer,12 13 15 54 it could be inter-
esting to study to what extent these parameters could be 
complementary with our approach to further refine the 
individual prognosis.

In addition, whether our tool could also help to select 
patients for standard adjuvant systemic treatment (eg, 
endocrine treatment or chemotherapy) remains unclear. 
Additional studies in cohorts of patients treated with 
neoadjuvant strategies are ongoing, and would help us 
to understand whether overall TIC, and our prognostic 
model also enable identification of responding tumors or 
not (as a predictive biomarker).

In conclusion, our study provides new insights into the 
complexity of breast cancer immune response, and its 
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clinical relevance, when combined with tumor intrinsic 
molecular subtypes to refine prognosis of patients with 
breast cancer in each subtype. We bring together in the 
context of early breast cancer, the prognostic informa-
tion given by both molecular intrinsic subtype (assessed 
by PAM50), and by the overall TIC assessed by a new 
gene expression deconvolution algorithm. However, the 
complexity of immune infiltrate interplay, and how they 
influence long term outcome, remains largely unclear in 
breast cancer, as in the majority of other solid cancers. 
In the future, novel biological techniques, like single-
cell molecular analyses will certainly help to reveal 
the profound complexity of cellular subsets, and their 
molecular and functional properties. Together with an 
improved understanding of tumor cell intrinsic biology, 
these techniques of high analytic resolution could be 
complementary to multiplexed histological analyses55 and 
high throughput bioinformatic tools in deciphering the 
complex landscape of immune response against cancer 
cells, and providing better rationales for the design of 
future clinical trials in immunotherapy and oncology.
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