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Abstract

Objective: To develop and evaluate novel word embeddings (WEs) specific to ophthalmology, 

using text corpora from published literature and electronic health records (EHR).

Materials and Methods: We trained ophthalmology-specific WEs using 121,740 PubMed 

abstracts and 89,282 EHR notes using word2vec continuous bag-of-words architecture. PubMed 

and EHR WEs were compared to general domain GloVe WEs and general biomedical domain 

BioWordVec embeddings using a novel ophthalmology-domain-specific 200-question analogy test 

and prediction of prognosis in 5547 low vision patients using EHR notes as inputs to a deep 

learning model.

Results: We found that many words representing important ophthalmic concepts in the EHR 

were missing from the general domain GloVe vocabulary, but covered in the ophthalmology 

abstract corpus. On ophthalmology analogy testing, PubMed WEs scored 95.0%, outperforming 

EHR (86.0%) and GloVe (91.0 %) but less than BioWordVec (99.5%). On predicting low vision 

prognosis, PubMed and EHR WEs resulted in similar AUROC (0.830; 0.826), outperforming 

GloVe (0.778) and BioWordVec (0.784).
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Conclusion: We found that using ophthalmology domain-specific WEs improved performance 

in ophthalmology-related clinical prediction compared to general WEs. Deep learning models 

using clinical notes as inputs can predict the prognosis of visually impaired patients. This work 

provides a framework to improve predictive models using domain-specific WEs.
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1. INTRODUCTION

With the widespread adoption of electronic health records (EHR), informatics techniques are 

increasingly used to mine this rich source of information to build prediction algorithms, 

including in the field of ophthalmology.[1–3] However, much of the clinical information is 

captured in unstructured free text using highly specialized domain-specific language and 

abbreviations (Figure 1).[4,5] In ophthalmology, this includes crucial information on eye 

examination findings which are important indicators of disease severity and prognosis, 

which are difficult to incorporate into prediction models as free text.

In particular, in ophthalmology there is a need to develop algorithms that can predict the 

visual prognosis of patients with visual impairment, in order to better enable the targeting of 

important resources, such as multidisciplinary low vision rehabilitation services,[6] to those 

patients most likely to benefit. Almost 3 million adults in the United States are estimated to 

have irreversible low vision and would benefit from such rehabilitation services to improve 

their quality of life and daily functioning,[6] but the referral rate is extraordinarily low, 

leaving almost 90% of patients who may benefit without access to or awareness of these 

services[7], which may be due to a variety of reasons including limited time during clinic 

visits to introduce these services, or optimistic assumptions that vision will soon improve 

with therapy. Using information from EHR to identify vision rehabilitation candidates in an 

automated manner could better facilitate timely referrals to improve access to these 

important services. Such predictive algorithms could detect particular findings or diagnoses 

documented in clinical free text notes which are known not to be reversible, such as retinal 

atrophy associated with macular degeneration, or predict for particular patients that they 

would not achieve vastly improved vision with treatment.

The use of neural word embeddings is an approach to incorporating biomedical text into 

prediction models, as word embeddings enable computation over free-text by representing 

word meaning as dense numerical vectors. General word embeddings enabled breakthroughs 

in performance on named entity recognition, sentence classification, relation extraction, and 

other general natural language processing tasks,[8] and general domain GloVe (Global 

Vectors for Word Representation), pre-trained on large corpora of general content such as 

Common Crawl (general internet pages)[9–12], are publicly available. However, use of 

general word embeddings in the biomedical domain may be hampered by the concern that 

many biomedical terms would appear so infrequently in conventional corpora that pre-

trained word embeddings for those terms may not be meaningful. In addition, out-of-

vocabulary terms which do not appear at all in the corpus vocabulary do not have a 
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meaningful word embedding. Word vectors trained on large corpora of general biomedical 

text have also been developed.[13,14] However, application to even more subspecialized 

biomedical domains such as ophthalmology, with its own very rich set of abbreviations and 

terminology,[4,5] may pose an especial challenge due to differences in vocabulary and their 

usage.

In ophthalmology and in other biomedical domains, a major challenge to the use of EHR to 

develop predictive algorithms is the inability to incorporate the wealth of information 

sequestered within the clinical free-text, and the use of domain-specific neural word 

embeddings may provide one solution. The objective of this study was to train and evaluate 

word vectors specific to the ophthalmology domain using corpora from published 

ophthalmology literature and from EHRs, comparing them to embeddings pre-trained on 

more general corpora. We include evaluation of ophthalmology word embeddings on 

intrinsic tasks, including on a novel set of ophthalmology domain-specific analogies 

developed for this purpose, as well as evaluation on an extrinsic prediction task to predict the 

visual prognosis of visually impaired patients using clinical free-text notes from the EHR. 

We hypothesized that using ophthalmology domain-specific word embeddings would result 

in better performance on ophthalmology-related tasks than using more general word 

embeddings. The work we present provides a framework for training and evaluating domain-

specific word embeddings that can be generalized to many domains across medicine and 

applied to a variety of clinical prediction tasks.

2. METHODS

2.1 Training Ophthalmology Domain-Specific Word Embeddings:

2.1.1 PubMed Ophthalmology Embedding Corpus: We extracted all English-

language abstracts indexed in PubMed from 2009–2019 belonging to the MeSH categories 

of “Eye Diseases,” “Ocular Physiological Phenomena”, “Ophthalmology”, “Ophthalmologic 

Surgical Procedures,” or their subcategories. Animal studies were excluded. Abstracts 

shorter than 50 characters, with an associated title shorter than 3 characters, or with no listed 

authors or journal were excluded. In total there were 121,740 ophthalmology abstracts 

included.

2.1.2 Electronic Health Records Ophthalmology Embeddings Corpus: We 

identified all ophthalmology clinical notes from Stanford STARR[15,16] of length > 50 

characters. As clinical notes are often copied forward from visit to visit for each patient, 

resulting in highly repetitive text, we randomly sample one clinical note for each unique 

patient, resulting in a corpus of 89,282 ophthalmology EHR notes. This study received 

approval from the Institutional Review Board (IRB) of the participating institution.

2.1.3 Corpora Processing and Model Training: The PubMed and EHR corpora 

were pre-processed in identical fashion. All words were lowercase and tokenized. Common 

stopwords were removed (‘a’, ‘all’, ‘also’, ‘an’, ‘and’, ‘are’, ‘as’, ‘at’, ‘be’, ‘been’, ‘by’, 

‘for’, ‘from’, ‘had’, ‘has’, ‘have’, ‘in’, ‘is’, ‘it’, ‘may’, ‘of’, ‘on’, ‘or’, ‘our’, ‘than’, ‘that’, 

‘the’, ‘there’, ‘these’, ‘this’, ‘to’, ‘was’, ‘we’, ‘were’, ‘which’, ‘who’, ‘with’). In all there 

were 55,937 tokens in the PubMed corpus and 41,630 tokens in the EHR corpus which 
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appeared with frequency ≥ 5 in their respective corpora. Embeddings were trained with the 

established word2vec neural network architecture[11] for the continuous-bag-of-words task 

which predicts a target word given a context window. The embedding dimension was set to 

300 to facilitate comparison to baseline GloVe vectors (see below). The word window size 

was set to 5. Models were trained using Tensorflow (version 2.1.0).

2.1.4 Baseline Embedding Comparisons: We used as our baseline comparisons 

uncased 300-dimensional GloVe vectors, covering 42 billion tokens trained on the Common 

Crawl,[9,10] and the 200-dimensional BioWordVec vectors previously trained on PubMed 

biomedical literature and MMIC-III containing EHR data from inpatient ICU hospitalization 

notes.[13,14]

2.2 Evaluation of Word Embeddings:

Word embeddings can be evaluated on an “intrinsic” basis, so-called because “intrinsic” 

evaluation only relies upon evaluation of the structure of the word embeddings themselves, 

as well as on an “extrinsic” basis, which evaluates performance upon downstream 

applications of the word embeddings to specific external tasks.[17,18]

2.2.1 Intrinsic Evaluation

2.2.1.1 Examining Vocabulary and Principal Component Visualization of Example 
Clusters: We examined vocabulary that was common in the EHR corpus but that was not in 

PubMed, BioWordVec, or GloVe corpus, to identify potential gaps in coverage for important 

clinical concepts. After training of the ophthalmology word embeddings, we also 

qualitatively examined whether similar concepts were clustered appropriately in 

ophthalmology embedding space. We chose three seed terms, “poag”, “orbit”, and “guttae”, 

and determined their 9 nearest neighbors in the corpus in the full embedding space. These 

three clusters of 10 embeddings each were then visualized in a 2-dimensional projection 

onto the first and second principal components of embedding space. These seed terms were 

chosen as they come from different subspecialties of ophthalmology; “poag” is an 

abbreviation for primary open angle glaucoma and would be most relevant to the glaucoma 

subspecialty, “orbit” would be most commonly encountered in the context of oculoplastics 

subspecialty notes, and “guttae” is a finding of the cornea that would be most commonly 

encountered in the cornea subspecialty.

2.2.1.2 Ophthalmology Domain-Specific Analogies: General analogies developed to 

evaluate word vectors cannot be easily extended for use in subdomains such as 

ophthalmology as they do not adequately or accurately test ophthalmology-related concepts. 

For example, only a small fraction of general biomedical domain analogies are relevant to 

ophthalmology. Thus, we developed novel ophthalmology domain-specific 200-question 

analogy test to perform formal intrinsic evaluation of our word embeddings. 

Ophthalmology-related word pairs with analogous semantic relations were matched by a 

board-certified ophthalmologist, identified from words that were common to all three sets of 

embeddings. These word pairs were matched into analogies, for example, an analogy 

constructed as word1:word2::word3:word4 might have an example of 

conjunctiva:conjunctival::eyelid:palpebral. For each correct analogy, a random wrong word 
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was chosen from the analogy vocabulary to serve as a wrong answer choice compared to 

word4, the correct analogy completion choice. All analogies as well as the random wrong 

word choice were manually reviewed for semantic validity. Final analogies are publicly 

available.[19] For the analogy test, the cosine similarity between (word2-word1+word3, 
word4) and (word2-word1+word3, wrongword) was calculated in the PubMed, EHR, 

BioWordVec, and GloVe embedding spaces, and the closer word choice was determined to 

be the “answer” for that embedding for that analogy question. Accuracy on the analogy test 

was calculated as wrong answers / total number of questions (N=200).

2.2.2 Extrinsic Evaluation: Predicting Low Vision Prognosis—To evaluate the 

performance of our domain-specific embeddings on an extrinsic task, we mapped words 

from EHR free-text clinical notes to neural word embeddings to use as input features for a 

deep learning model to predict the visual prognosis in a cohort of patients with visual 

impairment.

2.2.2.1 Cohort Definition: We identified from the Stanford Clinical Data Warehouse[15] 

all documented visual acuity measurements (N=553,184) belonging to N=88,692 unique 

adult patients from 2009–2018.[16] Visual acuity measurements were captured from semi-

structured fields, including distance, near, with refraction, with or without habitual glasses or 

contacts for either eye, using a combination of rule-based algorithms based on regular 

expressions[16]. Low vision on a particular encounter date was defined as visual acuity 

worse than 20/40 on all visual acuity measurements documented for that encounter. If only 

the visual acuity of one eye was measured for that encounter date, as may be common in a 

postoperative visit focused on one eye, then the most recent previous visual acuity for the 

contralateral eye was used to forward fill the missing value for that encounter. In total there 

were N=13,847 patients with at least one documented encounter with low vision. The first 

date of low vision was determined for each patient (hereafter referred to as the index date). 

We included patients with follow-up for at least one year from the index date, defined as ≥ 

one visit with documented visual acuity measurement ≥ 365 days from the index date 

(N=5612). For these patients, we extracted all ophthalmology free-text clinical notes on or 

prior to the index date (N=5547 patients with available notes).

2.2.2.2 Modeling approach: The prediction task was to determine whether low vision 

patients would still have poor visual acuity (<20/40) after one year or follow-up, indicating a 

poor visual prognosis that may benefit from referral to low vision rehabilitation services 

aimed at improving quality of life and activities of daily living of visually impaired patients 

by delivering interventions to maximize the function of the remaining vision. Overall, 40.7% 

(N=2,258) of patients did not improve to 20/40 or better within one year. The model 

architecture is depicted in Figure 2. The overall architecture is based on a previously 

published TextCNN architecture,[20] which utilizes multiple convolutions with multiple 

filter widths to convolve over word sequences of different lengths, thus capturing some 

information regarding the context in which words are used. We used as inputs to the models 

clinical free text notes on or prior to the date of low vision, as these would be the same 

information available to clinicians presented with a low vision patient. Because the amount 

of historical clinical documentation varied between patients, we arranged all notes in 
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backwards chronological order on the premise that more recent notes would hold more 

relevant information for prognosis prediction. The most recent 1000 words of clinical 

documentation were mapped to word embeddings (either EHR, PubMed, BioWordVec, or 

GloVe) and used as inputs to the deep learning model. This length of input text was 

arbitrarily chosen to be close to the median length of documentation for each patient (923 

words). Words that were missing from embedding vocabularies were mapped to a generic 

token for unknown words. The embedding layer was followed by a fully connected layer to 

expand the representation matrix to shape 1000 × 512 and a dropout layer (rate = 0.5). After 

following hyperparameter tuning procedures as described by Zhang et al [21], we arrived at 

a model architecture which used 4 convolutions of region size 3, 5, 7, and 10 with 256 filters 

each, followed by a max pooling layer. The resulting vectors are concatenated and flattened 

and followed by a dropout layer (rate = 0.5), a fully connected layer with L2 regularization 

(alpha = 0.01), a subsequent dropout layer (rate = 0.5), an additional fully connected layer 

with L2 regularization (alpha = 0.01) and a final sigmoid output for the prediction. We 

randomly selected 6% of the training data as the validation set for early stopping.

2.2.2.3 Model Evaluation: The cohort was split into validation and test sets of 300 

patients each, with the remainder reserved for training. Final performance metrics for all 

models included the standard measures of prediction accuracy, sensitivity (recall), 

specificity, positive predictive value (precision), negative predictive value, and F1 score (the 

harmonic mean of precision and recall). We also calculated the area under the receiver 

operating curve (AUROC) and area under the precision-recall curve (AUPRC). In addition, 

notes from a random subset of the test set of patients (N=102) were evaluated by a board-

certified ophthalmologist (SYW) to provide a human-level performance baseline for 

evaluation metrics.

2.2.2.3.1 Code Availability: All code used to train and evaluate ophthalmology word 

embeddings is available in a public code repository.[19] PubMed ophthalmology word 

embeddings are also available for download. Due to the potential sensitive patient health 

information contained in words in the EHR, our EHR word embeddings are not included. 

The full set of ophthalmology domain-specific analogies is also included for reuse. Finally, 

code for training the deep learning algorithm to predict visual prognosis is also included in 

the repository.

3. RESULTS

3.1 Word Embedding Vocabulary

There were 41,630 unique words and 55,937 unique words that appeared with frequency ≥ 5 

in the EHR and PubMed corpora, respectively. A total of 4370 unique words appeared in the 

EHR corpus at least 5 times which did not appear in GloVe, while a total of 20,894 unique 

words appeared in the EHR corpus a minimum of 5 times which did not appear in the 

PubMed embeddings at least 5 times. A total of 3354 unique words that appeared in the 

EHR corpus at least 5 times were not in BioWordVec. The most common of these words 

along with their frequency of appearance is summarized in Table 1.
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We used principal component analysis to project onto two dimensions the word embeddings 

for the 10 closest words clustered around three separate ophthalmology concepts (Figure 3). 

For both EHR and PubMed embeddings, words embeddings close to poag included a variety 

of abbreviations for different forms of glaucoma; those close to orbit included anatomical 

structures near the orbit. In EHR embeddings, words close to guttae included other findings 

common in the cornea; in PubMed embeddings, words close to guttae included words often 

used to describe diseased corneal endothelial cells (“polymegathism”, “polygonal”) and 

Fuch’s endothelial corneal dystrophy (“fecd”), which all result in the finding of guttae.

3.2 Novel Ophthalmology Domain-Specific Analogies

We created a novel set of 200 ophthalmology-related analogies to evaluate the intrinsic 

performance of these word embeddings on an ophthalmology-specific task. Examples of 

analogies are shown in Table 3, with the full set publicly available.[19] On analogy testing, 

PubMed WEs scored 95.0% accuracy, outperforming EHR (86.0%) and GloVe (91.0 %). 

BioWordVec WEs scored 99.5% accuracy, outperforming all other embeddings. An example 

analogy with correct and incorrect answer choices is depicted in embedding spaces in Figure 

4.

3.3 Extrinsic Evaluation: Predicting Low Vision Prognosis in Electronic Health Records 
Using Word Embeddings

To compare the results of using different types of word embeddings on an extrinsic 

evaluation task, we developed deep learning models to predict visual prognosis using 

clinical progress notes from EHR. Words from free text clinical progress notes for a cohort 

of low vision patients were mapped to either PubMed, EHR, BioWordVec, or GloVe word 

embeddings and used as inputs to a deep learning model to predict whether patients would 

still have poor vision after 1 year of follow-up. Using PubMed and EHR WEs resulted in 

similar AUROC (0.830; 0.826), outperforming GloVe (0.778) and BioWordVec (0.784). 

Receiver operating and precision recall curves are depicted in Figure 5. Additional 

performance metrics at the classification probability threshold of 50% are shown in Table 4.

4. DISCUSSION

Predicting the prognosis of visual impairment is a challenge in ophthalmology and the lack 

of ophthalmology-specific embeddings may contribute to this challenge. In this study, we 

trained ophthalmology-specific embeddings using EHR and PubMed text corpora. We found 

that EHR and PubMed embeddings perform similarly, yet better than more general word 

embeddings on an extrinsic evaluation with an ophthalmology-specific clinical predictive 

task using EHR free-text progress notes. Using only clinical progress notes as inputs, deep 

learning models using ophthalmology-specific embeddings were able to perform with 

relatively good AUROC (>0.80) to predict the prognosis of visually impaired patients in a 

held-out test set, indicating that this may be a promising approach to using ophthalmology 

clinical notes for clinical predictive tasks.

For formal intrinsic comparison of ophthalmology domain-specific embeddings to general 

embeddings, we developed a novel ophthalmology domain-specific analogy test.[19] An 
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advantage of using analogies to evaluate embeddings is that evaluation is easy to perform, 

not computationally intensive, and does not require the curation and labeling of a dataset for 

a specific downstream clinical task. Because the corpus of all biomedical terms is vast, and 

the proportion of ophthalmology-related words is relatively small, previous approaches in 

developing general biomedical domain analogies[18,22] using word pairs from general 

biomedical ontologies was not an appropriate method of evaluating embeddings created 

specifically for ophthalmology-related tasks. In addition, programmatically matching word 

pairs to create analogies more than occasionally created analogies which were semantically 

invalid. For example, in one prior set of biomedical analogies, BMASS, left lower 
eyelid:right lower eyelid::olfactory sulcus:gingival margin is given as an analogy pair, even 

though olfactory sulcus and gingival margin are structures in the brain and in the mouth, 

respectively, and do not share a right:left relationship.[22] Many similar mismatched word 

pairs were found upon manual inspection, which led to the creation of our novel set of 

ophthalmology domain-specific analogies, which were all hand-curated and semantically 

valid. Researchers wishing to evaluate neural word embeddings specific to a particular 

biomedical domain may also need to develop novel sets of analogies for appropriate testing.

In our ophthalmology analogy set, GloVe general embeddings performed surprisingly well 

with 91.0% accuracy, outperforming EHR analogies at (86.0%) accuracy. One reason for 

this may be that all words in the analogy set were limited to vocabulary which was present in 

all sets of embeddings. We found that while many words in the EHR vocabulary were 

missing from both GloVe and PubMed embeddings, the most common words missing from 

GloVe covered important clinical concepts, findings, and tests, whereas the most common 

words missing from PubMed were less clinically relevant, including more social words like 

“dear”, “thank”, and “sincerely”. Since analogies had to utilize words common to all 

vocabulary sets, the highly specialized vocabulary present in the EHR and PubMed which is 

not covered by GloVe was not tested in the analogies, so the advantages of EHR and 

PubMed embeddings in greater vocabulary coverage is not reflected in their performance on 

the analogy test. Thus, differences in vocabulary coverage between different sets of word 

embeddings must be considered when creating analogy tests, and represents a limitation to 

their usage as evaluation tools for domain-specific word embeddings. In addition, we found 

that BioWordVec embeddings actually outperformed all other embeddings on the analogy 

test, with near-perfect performance. This may be due to the fact that BioWordVec 

embeddings were trained on an enormous corpus including all PubMed biomedical 

literature, a superset of the PubMed ophthalmology literature used to train our own 

ophthalmology-specific domains.

A unique strength of this study was that we also extrinsically evaluated ophthalmology 

domain-specific word embeddings on a novel clinical task of predicting the visual prognosis 

of low vision patients using free text clinical notes from the EHR. Many previous studies 

evaluating medical domain word embeddings use a specific intermediate NLP task, such as 

named entity recognition, rather than directly on a downstream clinical prediction task, 

which is an important step for assessing likelihood of success for model deployment.[23–27] 

Specifically, we were able to predict using free-text EHR notes which visually impaired 

patients would still be visually impaired one year later, despite ongoing follow-up and 

treatment, with predictions that substantially outperform a human ophthalmologist with 
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access to the same clinical notes. In the clinical setting, it is important to identify these 

patients who may most benefit from automated referrals to low vision rehabilitation services. 

Rather than waiting to observe the effects of treatment before referring to low vision 

services, an early referral based on predicted prognosis would result in earlier benefits to 

patients in their quality of life.[6] To our knowledge, there has been no previous work 

developing machine learning models to predict the visual prognosis for low vision patients, 

likely due to the lack of a ability to incorporate free-text information, such as afforded by the 

use of ophthalmology domain-specific word embeddings. Most previous work developing 

machine learning models in the domain of ophthalmology use imaging data or structured 

clinical data for classification, diagnosis, and prediction of future outcomes. This includes 

work predicting progression on visual field testing using imaging data[1,3,28,29], and work 

predicting glaucoma progression to surgery using structured EHR data.[2] Our method of 

incorporating ophthalmology free-text notes into deep learning models by using 

ophthalmology domain-specific word embeddings results in good performance in predicting 

clinical outcomes. We found that using domain-specific word embeddings resulted in 

substantial improvements in model performance compared to more general word 

embeddings, which suggests that training domain-specific word embeddings should be the 

default approach when planning to use word embeddings to represent highly specialized 

domain-specific text.

Our approach to developing domain-specific word embeddings and analogy evaluations can 

serve as an example for those working in other subspecialties with their own highly 

specialized terminologies, such as obstetrics, neurology, and others, who may wish to boost 

performance of predictive models by using free text note input features. The pre-trained 

ophthalmology word embeddings that we have made available can have broad applicability 

and can be easily used to incorporate EHR free text notes into predictive models for a wide 

variety of ophthalmology prediction tasks. Furthermore, an advantage of using domain-

specific embeddings is that loading and computing over them is likely to require fewer 

computational resources, owing to their significantly smaller vocabulary (and thus file size) 

compared to more general vectors. Future refinements to ophthalmology domain-specific 

word representations can also make use of the novel analogies for benchmarking.

Our approach has several limitations. Word embeddings could only be developed for single 

words, which does not cover concepts spanning multiple words. Therefore, abbreviations 

like “amd” would have one embedding vector, whereas the corresponding “age-related 

macular degeneration” would have separate embeddings for each component word. 

Analogies were therefore limited also to single words, as well as to words that appeared in 

all three corpora. The EHRs and clinical notes used in this study were extracted from a 

single healthcare system, therefore it is possible that we capture local terms and concepts 

that may not be generalizable across other settings. Other systems may wish to train their 

own domain-specific embeddings on their own site-specific corpora for the best 

performance; alternatively, use of our publicly available PubMed-based embeddings could 

be a ready solution to those not wishing to train their own embeddings as these were trained 

on ophthalmology literature and would not be expected to exhibit site-specific variation. 

Additionally, due to our center being a tertiary ophthalmology referral center, a relatively 

high proportion of our patients have complex or severe eye problems that, while amenable to 
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ongoing treatment, may never recover to a level of vision better than 20/40. Thus, our 

dataset was fairly balanced, which may not be the case for cohorts of ophthalmology 

patients seen in other treatment settings. Furthermore, although we were able to predict the 

visual acuity prognosis of for patients with reduced visual acuity, we recognize that 

qualifying for low vision services is not merely a question of visual acuity, but also depends 

on the presence of visual deficits which damage peripheral vision or create specific blind 

spots while preserving central acuity, as well as functional deficits. Thus, the potential pool 

of patients who would benefit from low vision rehabilitation services is likely to be larger 

than the patients we have identified. Future work to improve this model could include 

identifying these additional patients, combining the free-text unstructured data from clinical 

progress notes with the structured demographic, diagnosis, medication, and examination 

data available in the EHR, and experimenting with and the incorporation of the time 

dimension into predictive models.[30,31]

We also recognize that in recent years, context-aware word embeddings such as those 

learned in transformer-based approaches[32–34] have grown more popular than embeddings 

in the style of GloVe or word2vec. These transformer-based models can operate on 

character-based subwords which can mitigate the issue of out-of-vocabulary words. Future 

work can experiment with tuning transformer-based models for the ophthalmology domain,

[33] and using multiple hierarchical levels of text representation, such as sub-word, 

paragraph, and/or document-level representations.[35] However, understanding how to 

customize word2vec type of embeddings is still valuable, as this approach is significantly 

simpler and computationally less intensive, both to train and to use in model deployment, 

where resources may be limited. Furthermore, transformer-based approaches with sequence 

architecture often have additional limitations, such as relatively short limits on the length of 

text inputs, slower training, and larger data requirements.

In conclusion, we developed novel ophthalmology domain-specific word embeddings using 

publicly available PubMed ophthalmology literature abstracts as well as EHR 

ophthalmology notes. We evaluated their performance against more general word 

embeddings on a novel ophthalmology-specific analogy task as well as on a prediction task 

using free-text ophthalmology progress notes to predict the visual prognosis of low vision 

patients. We found that using ophthalmology domain-specific embeddings improved the 

predictions of deep learning models, suggesting that clinical prediction tasks using highly 

specialized free text from EHRs benefit from domain-specific word embeddings. Our 

publicly available ophthalmology word embeddings can be immediately and broadly used 

for other predictive tasks in ophthalmology using free text clinical progress notes, and our 

approach can be readily replicated for other subspecialties to improve the performance of 

other predictive models.
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Highlights

• We trained novel word embeddings that are domain-specific to 

ophthalmology

• Ophthalmology word embeddings are now publicly available for further 

research

• We train a deep learning model to predict the visual prognosis of patients with 

low vision

• Performance using ophthalmology embeddings is improved over general 

word embeddings
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SUMMARY POINTS

What was known:

• Neural word embeddings are a powerful way of representing text in general 

and general biomedical domains.

• Publicly available neural word embeddings trained on general English 

corpora and general biomedical corpora are available for use.

• Some medical domains, such as ophthalmology, are highly subspecialized and 

have unique vocabulary and style not captured in these general corpora.

What this study adds:

• Novel word embeddings specifically trained for the highly subspecialized 

ophthalmology text outperform publicly available off-the-shelf word 

embeddings in a real-world task of predicting patients’ visual prognosis from 

information in their electronic health records.

• We make ophthalmology domain-specific word embeddings and a set of 

ophthalmology domain-specific evaluation analogies publicly available for 

further research use.

• Researchers in other subspecialized medical domains with highly unique 

language may also wish to train subspecialty-specific word embeddings for 

use in prediction models.
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Figure 1. Example Ophthalmology Progress Note.
Legend: There are many specialized and domain-specific terms and abbreviations, such that 

even physicians in other specialties would have difficulty understanding ophthalmology 

progress notes. Words highlighted in red are those which occur very commonly in 

ophthalmology but are not in the vocabulary of general-domain word embeddings (GloVe).
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Figure 2. Visual Prognosis Prediction Task Model Architecture
Legend: Words from clinical progress notes were mapped to word embeddings (either EHR, 

PubMed, BioWordVec or GloVe) and used as inputs to a deep learning model. Multiple 

convolutions with multiple filter widths were passed over the word representation matrix 

followed by max pooling, concatenation, and flattening operations. Subsequent fully 

connected layers included dropout, regularization, and a final sigmoid output to predict the 

binary outcome of whether patients would have persistent poor visual acuity after one year 

of follow-up.
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Figure 3. Clusters of Word Embeddings Projected onto the First Two Principal Components.
Legend: The 10 closest words in embedding space to poag (blue), orbit (red), and guttae 
(green) are projected into the first two principal components of the embedding space for A) 

EHR embeddings and B) PubMed embeddings. In both panels, terms from these different 

ophthalmology subspecialties cluster appropriately in different areas of embedding space. 

Words are similar between the two sets of embeddings, although PubMed words closest to 

guttae contain more words often used to describe diseased corneal endothelial cells in the 

scientific literature (polymegathism, polygonal) rather than in clinical use.
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Figure 4. Example Ophthalmology-Specific Analogy Test Question in Embedding Space
Legend: An example analogy question (ocp:conjunctiva::pseudoexfoliation::???) is depicted 

in a two-dimensional principal component projection of word embedding space. The correct 

word for analogy completion is lens, whereas the randomly chosen incorrect word is 

neuritis. Cosine similarity is calculated between (pseudoexfoliation - ocp + conjunctiva) and 

either lens or neuritis and the closer word in embedding space is chosen as the answer. In 

this example, (A) PubMed, (B) EHR, and (C) BioWordVec word embeddings identify the 

correct answer while (D) GloVe chooses the wrong answer.
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Figure 5: Receiver Operating and Precision-Recall Curves for Prediction of Low Vision 
Prognosis
Legend: (A) Receiver operating and (B) precision-recall curves are shown for deep learning 

models predicting low vision prognosis which use as inputs free text clinical notes mapped 

to either more general GloVe or BioWordVec word embeddings, or custom ophthalmology-

domain embeddings trained on either PubMed ophthalmology abstracts or ophthalmology 

clinical free text notes from the electronic health records (EHR). Ophthalmologist prediction 

performance is shown as a single point.
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Table 1:

Vocabulary Comparison between Word Embeddings

Words in EHR but not in GloVe Words in EHR but not in PubMed Embeddings Words in EHR but not in BioWordVec

Word Frequency Word Frequency Word Frequency

tonopen 52650 hx 71719 {redacted, physician name} 12751

autorefraction 20272 psh 55803 {redacted, physician name} 9805

adnexae 17195 disp 53091 {redacted, zip code} 6972

perrl 10633 rfl 50736 pfshx 5804

pciol 7969 reconciliation 33314 {redacted, zip code} 4392

pseudophakia 7186 dob 31171 {redacted, physician name} 4217

pfshx 5804 dear 29437 {redacted, physician name} 3156

dermatochalasis 5652 6995 28153 cannot 2794

proparacaine 4876 thank 27984 cuie2 2204

lissamine 3683 accomodation 26110 eoph453 2204

eomi 3043 {redacted, zip code} 21635 basename 2035

{redacted, physician name} 3156 sincerely 19479 {redacted, physician name} 1987

cclist 2911 csn 19446 {redacted, zip code} 1794

hypertropia 2646 dist 17459 {redacted, zip code} 1544

orthophoric 2567 meds 13694 {redacted, zip code} 1200

Int J Med Inform. Author manuscript; available in PMC 2022 June 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Wang et al. Page 22

Table 3.

Examples of Ophthalmology Domain-Specific Analogies

Relationship Word 1 Word 2 Word 3 Word 4

Sister drugs within the same class dorzolamide brinzolamide bromfenac ketorolac

Anatomical locations and their adjectives limbus limbal canthus canthal

Diseases and their affected anatomy ocp conjunctiva pseudoexfoliation lens

Anatomical locations and inflammatory
conditions at that location

uvea uveitis choroid choroiditis

Antonyms photopic scotopic light dark

Laterality left right os od

Drugs and the disease they treat brinzolamide glaucoma bevacizumab amd

Anatomical locations and procedures
performed at that location

sclera sclerotomy iris iridotomy
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Table 4:

Performance Metrics for Prediction of Visual Prognosis Using Various Word Embeddings

Pubmed EHR BioWordVec GloVe Ophthalmologist

F1 0.73 0.72 0.63 0.65 0.59

Sensitivity (Recall) 0.76 0.77 0.59 0.74 0.69

Specificity 0.78 0.76 0.82 0.63 0.49

PPV (Precision) 0.70 0.68 0.69 0.58 0.52

NPV 0.82 0.82 0.74 0.78 0.67

Accuracy 0.77 0.76 0.72 0.68 0.58
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